Usage of a Graph Neural Network for Large-Scale
Network Performance Evaluation

Cen Wang
Photonic Transport Network Lab.
KDDI Research, Inc.
Saitama, Japan
ce-wang @kddi-research.jp

Abstract—To quickly and accurately perform network eval-
uation, we propose a graph convolutional network-based per-
formance evaluation method for ultralarge-scale networks. The
learning results show that our method outperforms the fully
connected network and convolutional neural network in the pre-
diction error of the end-to-end latency and network throughput.
In addition, we show that our method is significantly less time-
consuming than traditional methods.

Index Terms—optical network performance evaluation, topol-
ogy flexibility, graph convolutional network, large-scale network

I. INTRODUCTION

Traffic diversity requires an adaptive network topology.
The reason is that a good topology can reduce the number
of hops on a traffic path, the probability of congestion and
queueing delays. In large-scale networks, this effect is even
more pronounced. To improve the network performance in
support of diverse traffic patterns (i.e., spatial and temporal
traffic features), active studies on enabling network topological
flexibility have occurred in recent years. For example, modern
datacenter networks (DCNs) usually connect tens of thousands
of servers, although traditional hierarchical DCN structures
with a fixed topology cannot effectively match dynamic east-
west traffic. Zhang et al. [1] proposed a flattened small-
world DCN structure using optical circuit switching (OCS)
and optical packet switching (OPS). Xia et al. [2] proposed a
reconfigurable structure for a Clos-based DCN using a special
converter switch (CS). Another instance is the global low-
earth-orbit satellite (LEO) network. Such a network has a
lattice-shaped topology with an ultralarge network diameter,
which considerably increases the network latency and de-
creases the network throughput. Our previous work [3] intro-
duced a transparent forwarding module onto the LEO by using
OCS. The modified structure can also achieve topological
reconstruction by reconfiguring the optical switch matrix on
the LEO. However, before building a mobile network and a
content delivery network, one should apply user statistics (e.g.,
population distribution) and previous traffic statistics (e.g.,
statistical network assessment process [4]) to infer/predict an
approximate future traffic pattern for network planning. In the

This work was partially funded by the Ministry of Internal Affairs and
Communications, Japan, grant number JP MI00316.

978-3-903176-33-1 © 2021 IFIP

Noboru Yoshikane
Photonic Transport Network Lab.
KDDI Research, Inc.
Saitama, Japan
yoshikane @kddi-research.jp

Takehiro Tsuritani
Future Network Infrastructure Division
KDDI Research, Inc.
Saitama, Japan
tsuri @kddi-research.jp

aforementioned use cases, network performance evaluation is
necessary to obtain the best topology; that is, we should verify
whether the network with a dedicated topology works well for
a specific traffic pattern in terms of, e.g., the end-to-end latency
and network throughput.

Traditional network performance evaluation is complex.
As for the end-to-end latency, we commonly acquire a
traffic arrival model, which is a stochastic process; and use
queueing theory to deduce a general calculation formula. In
addition, for the network throughput, the linear programming
(LP) model is often used. The number of constraints is
proportional to the square of the number of network nodes.
For a network with hundreds of nodes, a few tools can solve
such a large LP model for network throughput, and it takes
hours or days. However, a network with topological flexibility
expects to use online evaluation methods so that it can adapt
to current traffic patterns in time. Additionally, a fast and
effective evaluation method can improve the efficiency of
network planning. The machine learning method shows a
great parameterization ability for very complex tasks, which
inspired us to use a related method to generate a neural
model for high-speed evaluation. Wang et al. [5] proposed
a network performance (i.e., latency) scoring model based
on a fully connected (FC) neural network. However, the
basic FC has to serialize a network topology and a traffic
pattern that are graphs (i.e., non-Euclidean data structure)
and cannot effectively capture the features of graphs; thus,
its learning effect is limited. Besides, only one evaluation
term is insufficient. A recent graph neural network (GNN)
[6] was proposed by Kipf et al. to fulfill the tasks related to
graph-like data. Network topologies and traffic patterns are
natural graph data structures; thus, in this paper, we propose
an efficient evaluation method for large-scale networks based
on GNNs. More specifically, we select the use case of the
LEO network with 288 nodes to test our GNN model. The
learning results show that our GNN model outperforms the
FC and a convolutional neural network (CNN) in terms of the
prediction error. Moreover, we compare the time consumption
of the training of the GNN and traditional LP models. The
results show that using a GNN can significantly accelerate
the evaluation time.

Ci Pod Converter Core
Bswich B0 'switen O5ever L switen B switon

7 A P D

oy O/E E/O
{ al por

Optical
Switching
Matrix

SOFT 42110 01

to other LEOs { {11!

stations

Transparent Module

(9)

Nontransparent Module

Pod
BO0swien Oserver
(7

c Pod
Qswicn ODsmiten OServer

2 4
>

)
(i)

(h)

Fig. 1. The node/network architecture, basic/physical topology and reconfigurable logical topology of OpenScale ((a), (b) and (c)); Flat-tree ((d), (e) and (f));

and LEONet ((g), (h) and (i)).

II. ENABLED TECHNIQUES

A. Large-Scale Network with Topological Flexibility

OpenScale [1]. The node structure is shown in Fig. 1 (a).
Each node belongs to three adjacent OPS-based rings; thus,
one node is implemented with three sets of input/output ports.
For each input port, a DEMUX partitions wavelengths into two
groups. One group connects the wavelength switching fabric to
build the direct lightpaths, and the other enters the fast optical
switch (FOS). The FOS selects the channels and forwards
the drop traffic into the optical packet disassembler via burst
mode receivers (BMRs). The additional traffic in each node
can be switched either to the lightpaths (i.e., OCS) or to the
optical packet assembler (i.e., OPS). The OpenScale network
has multiple hexagonal rings composed of such OCS+OPS
nodes, as shown in Fig. 1 (b). As shown by the blue paths
in Fig. 1 (c), OpenScale uses OCS lightpaths to implement
cross-ring connections without optical-electrical-optical (O-E-
O) conversion, which is free of queueing delay and congestion.
OPS, on the other hand, realizes intraring (i.e., time division
multiplexing) meshed connections. As a result, the logical
topology is similar to the Watts—Strogatz (WS) small world
network [7].

Flat-tree [2]. As shown by the zoomed-in pod in Fig. 1
(d), in a pod of the flat-tree, an original pod-server link and an
original pod-core link are disconnected, and the corresponding
servers, pod switches, and core switches are connected to
two 4-port CSs and two 6-port CSs. The 4-port CS has
two alternative configurations. The ‘“default” configuration
maintains a basic Clos topology, and the “local” configuration
enables the server to connect the core switch directly. The 6-
port switch has two additional valid configurations: “side” and
“cross”. The “side” and “cross” configurations both relocate
servers to core switches yet connect pod switches to their
peers in different ways. To retain a Clos pod, the CSs and
the additional wiring are packaged together. Flat-tree converts
between multiple topologies with different CS configurations.
Fig. 1 (e) shows the Clos network in which all CSs are with
the “default” configuration. Fig. 1 (f) shows an approximate
global random graph with the 4-port “local” and 6-port “side”
configurations.

LEONet [3]. Each LEO is equipped with a switching
system, and its principle is similar to that on the ground.
One can forward Ethernet or IP packets using electrical packet
switches (EPSs) according to the commercial standard digital
video broadcasting (DVB) protocol. In Fig. 1 (g), we addi-

%@333333222

Degree of each node
Original Topology in equivalent random graph

(a) (b)

Fig. 2. How to transform (a) the original topology to (b) equivalent topology
in order to calculate the relative network throughput.

tionally introduced an optical switching matrix on the node.
The optical switching matrix has 4 optical interfaces (i.e.,
a pair of transmitters and receivers), and EPS has 8 optical
interfaces and 1 RF interface (to the ground gate station). Four
optical interfaces of the optical switching matrix and 4 optical
interfaces of EPS are used to connect the adjacent LEOs via
laser linking by spatial division multiplexing. Each port of the
optical switching matrix connects to a 1x2 optical switch. By
configuring the optical switch, the 4 optical interfaces can be
redirected to the other 4 interfaces on the EPS so that the
traffic can either transparently pass the node or go to the EPS
domain for packet parsing. In this manner, over a basic LEO
network topology with only one-hop intersatellite links (as
shown in Fig. 1 (h)), optical lightpaths can be dynamically
reconfigured between nonadjacent LEOs. Fig. 1 (i) shows a
type of topology called “Knit” [3].

B. Large-Scale Network Performance Evaluation

End-to-end latency. For a network with a relatively large
network diameter (the highest number of hops of all the paths),
the end-to-end latency approximates the accumulation of the
queueing latencies of all the nodes in a path [8].

We obtain a basic queueing delay tt(;) of node ¢ according
to the queueing theory,

@__ri_ L
KR Y M
where p; = \;/u;; and \; and p,; are the traffic intensity
(GB/s) and the node capacity (Gb/s), respectively. The node
capacity is the number of ports N," times the port capacity
Cp.

End-to-end latency is partially influenced by the routing
policy. To obtain a general and valuable result, we set the
routing policy to randomly select a path from all the shortest
paths with equal probability. One can choose another preferred
routing policy to evaluate. For a path p; having n hops (i.e.,
the nodes), the end-to-end latency [.o. is calculated by,

n
leae(py) = lp(py) + Y 11 2)
i=1
where p; € P, and P is the set of all the paths of the network
topology. I,,(p;) is the propagation delay of path p;.
Network throughput. There are various definitions of the
throughput. We adopt the definition of the network throughput

aInld
ydein

Matrix
Transformation

T

joussy Buipls |

3 o
g]
3 =}
» (o]
@ &
=]
o) 5
aA =3
S S

[erlez] -+ les]

|-~ Feature

Maps Eigenvector | .-~

Graph
(b) GNN (or GCN)

(a) CNN

Fig. 3. The working principles of (a) a CNN and (b) a GNN.

as an evaluation term from Jyothi et al. [9]. If a network
with topology A can accommodate k traffic matrix T'M (the
TM can be any), we call it the absolute network throughput.
However, comparing the absolute network throughputs of
different networks is unfair because a network with a larger
node degree and a higher number of links certainly obtains
higher throughputs. Thus, it is better to use a relative network
throughput [9] (hereafter the network throughput) to avoid
unfairness.

The relative network throughput uses the absolute network
throughput of network A to divide the absolute network
throughput of an equivalent network FE(A),

ka/kpa) 3)

where E(A) is constructed according to A. The construction
method (an example with a small number of nodes) is shown
in Fig. 2:

e Add the degree of each node in the original network
topology to obtain D 4.

o The equivalent network has the same number of nodes
N as the original network. Divide D4 by N to obtain
the quotient d. and the remainder 7.

o In the equivalent network, N — r. nodes are assigned
d. node degrees, and r. nodes are assigned d. + 1 node
degrees.

o Randomly add edges between the nodes in the equivalent
network until all the node degrees run out, and we obtain
E(A).

The LP model (a Java version of this linear program model
can be found in [10]) that solves the network throughput takes
the maximization of k as the objective, and the constraints
include three parts: (1) the content (i.e., data size) in all links
over the entire network that belongs to a traffic flow T'M (4, j)
from source node 7 to target node j with data size s7ps(s,j)
does not exceed k X s7p(; j), (2) the sum of the data size from
different traffic flows in a link does not cross the capacity of
this link, and (3) the input and output traffic of a node should
be equal.

C. Graph Neural Network

Neural networks learn the representations of input data to
obtain target results. The basic CNN is shown in Fig. 3 (a), and
it is suitable to process pixels. The CNN uses multiple chan-
nels of sliding kernels to perform 2D convolution and obtains

Traffic request from node i to the other nodes N
the ele
0 4 3 2
=

30 Input ’5:‘ % ?
ol | —> > £a
x S8
> 1o 0 55 %
Node Feature Matrix F 3 \”’ FO
@ o |Output 3 &
T —> S5
N Sm
01 - 0 <y 32
Construct | O wee Of nput | @ t? é?..':

N
-1 e = <g
I S = 33
11 - 0 s £<

P Non-directional =

Network Topology Adjacent Matrix A

Fig. 4. The usage of the GCN for network performance evaluation.

multiple feature maps. Then, pooling layers can transform the
feature maps into the representations of the pictures.

In contrast, the input of the GNN is a graph, as shown in
Fig. 3 (b). Although the popular GNN is called the graph
convolutional network (GCN), no convolution operation is
conducted. The internal processing of the GCN is a type of
matrix transformation (spectral analysis). The GCN generates
the eigenvectors of the graph and uses it to learn the graph
representations.

The GCN can be described as (recursive form),

GCN(H"Y A) = o(DV2ADY2HOW®Y (4
where A is an adjacent matrix of a graph, and H® is the
node (or vertex) feature matrix from the layer [. A=A+
I, where I is the identity matrix. D;; = 5 i Agj and WO
is a trainable weight matrix of the layer /. o(-) denotes an
activation function, such as ReLU(-) = maxz(0, -).

III. MODELING FOR NETWORK PERFORMANCE
EVALUATION

The challenge of using a GCN is to map both the network
topology and traffic pattern into the first layer of the GCN,
that is, how to determine H(® and A.

A. Modeling

We use a trick to regard the traffic matrix (in this matrix,
an element at row ¢ and column j denotes the amount of
traffic data from ¢ to j in a period of time) as the node feature
matrix F', as shown in Fig. 4; that is, each column vector
in F' represents the received amount of data of each node
(using a row vector is also acceptable). Then, we let H(©) =
F. The network topology is the matrix A, representing the
node relationship in a graph. The GCN takes the traffic matrix
and topology as inputs and transforms them into a predictive
network performance term g (i.e., k and l~ege) after an FC layer.
By minimizing the mean square error (MSE) between y (i.e.,
k or l.2) and g, we can train a GCN to tune WO to achieve a
lower MSE in the prediction of the average end-to-end latency
and network throughput.

A F y
. leZe
item | 0.175s
fr
k
0.39
Fig. 5. An example item of the dataset.
TABLE I
PREDICTION OF MSE
Perc. of train data 25% 50% 75% 100%
Latency MSE 0.042 0.027 0.021 0.021
Throughput MSE | 0.0144 | 8.22E-3 | 6.58E-3 | 6.49E-3
B. Dataset

We generate a dataset with 2000 data items (each item is one
of the combinations of 50 topologies and 40 traffic patterns).
A total of 1500 items were used for training, and the other 500
items were used for testing. Each item contains an adjacent
matrix, a traffic matrix and a label (i.e., the latency or the
throughput). When performing testing, the labels are removed.
These labels were previously calculated by the aforementioned
methods (Section II-B). An example item of the dataset is
shown in Fig. 5, where the two matrices are visualized.

C. Learning Setup

Baselines. We take the basic three-layer FC and the basic
three-layer CNN (the output layer is an FC) as the learning
baselines. In the FC, we conjunct the adjacent matrix and
feature matrix together and serialize the joint matrix (to a long
vector) as the input. However, in the CNN, we regard the two
matrices as two channels of input. The output of each baseline
has 1 dimension (i.e., a value of latency or throughput).

The proposed GCN has 3 layers. In the input layer, the
adjacent matrix and feature matrix are 288x288. The hidden
size of the input layer and second layer is 16. The output
layer is a fully connected network, and the output is also
1 dimension. We run the GCN for 500 epochs and retrieve
prediction error every 20 epochs.

IV. LEARNING RESULT

Fig. 6 shows the comparisons of the testing MSE under the
FC, CNN and GCN. The figure shows that for both the latency
and throughput, the GCN converges well and achieves the
lowest MSE. The CNN can converge but with some oscillation.
The FC exhibits heavy oscillation and obtains unacceptably
high errors. We also used different percentages of training
data to test the model performance, as shown in Table I.
The MSE is still acceptable when 50% of the training data
are available. In addition, to show the prediction effects, we
visualized the true value and the predicted values of the latency
and throughput in Fig. 7 and Fig. 8, respectively. The figures
show that the two network evaluation terms are sensitive to the

0.15-]
> -
g]
g] s
— 7 =
0.10- 2
e z
L - [e)
S - w
i on
0.05 =
2 -
| [

\ \
200 400

Epoch
(a)

o

Fig. 6. MSE of (a) average end-to-end (E2E) latency and (b) (relative) network
throughput in testing under a GCN, CNN and FC.

o True Avg. E2E Latency

! et n e e e o
R

0 50 100 150 200 250 300 350 400 450 500
Test Item

o Predicted Avg. E2E Latency

N
|

L

[N}
|

o

Avg. End-to-end Latency

Fig. 7. Visualization of true and predicted average end-to-end (E2E) latency
using the GCN.

e True Relative Throughput e Predicted Relative Throughput

20.2; (e}
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

0 50 100 150 200 250 300 350 400 450 500
Test ltem

Fig. 8. Visualization of true and predicted (relative) network throughput using
a GCN. (Note that the order of test items in this figure is different from that
in Fig. 7 because we used “shuffle” when loading test data in two dependent
learning processes.)

MSE. Even though the MSE of the throughput is lower than
that of the latency, we can see that the fitting of the latency
is better than that of the throughput.

The time consumption of the GCN (training) is 358.1 s on
average. However, the time consumption of the method (i.e.,
the LP in Section II-B) to the calculate throughput ranges
from 1672 s to 16982 s. This statistic suggests that our GCN
is much faster than the traditional evaluation method.

CONCLUSION

We proposed a GCN-based, fast and effective network
performance (average end-to-end latency and relative network

throughput) evaluation model for a large-scale (optical) net-
work with topological flexibility. The learning results verify
that our GCN outperforms the basic CNN and FC in the
learning MSE. Because the network performance terms are
sensitive to the MSE, our GCN can achieve the best prediction
effect. In addition, the time consumption statistic shows that
our GCN can efficiently accelerate the evaluation compared to
the LP-based throughput calculation. This work can benefit the
topological reconfiguration algorithm and network planning.

REFERENCES

[1] D. Zhang, H. Guo, T. Yang and J. Wu, J. “Optical switching based
small-world data center network,” in Computer Communications, 2017,
vol. 103, pp. 153-164.

[2] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang and T. E. Ng,
“A tale of two topologies: Exploring convertible data center network
architectures with flat-tree,” in Proceedings of SIGCOMM, August 2017,
pp. 295-308.

[3] C. Wang, Y. Zhu, N. Yoshikane and T. Tsuritani, “Low earth orbit satel-
lite network architecture with optical inter satellite links,” in iPOP2020,
Japan.

[4] M. Cantono and C. Vittorio, “Identifying and unlocking topological bot-
tlenecks using SNAP and SDM solutions,” in Proceedings of 2017 19th
International Conference on Transparent Optical Networks (ICTON),
IEEE, 2017, pp. 1-4.

[5] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen and J. Zhu,
“Neural network meets dcn: traffic-driven topology adaptation with deep
learning,” in Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 2 no. 2, 2018, pp.1-25.

[6] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” in Nature, vol.393 no. 6684, 1998, pp. 440-442.

[7]1 T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of International Conference on
Learning Representations (ICLR), 2017.

[8] A. Erramilli, O. Narayan, and W. Willinger, “Experimental queueing
analysis with long-range dependent packet traffic,” in IEEE/ACM Trans-
actions on Networking, vol. 4 no.2, 1996, pp. 209-223.

[9] S. A. Jyothi, A. Singla, P. B. Godfrey and A. Kolla, “Measuring and
understanding throughput of network topologies,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2016, IEEE, pp. 761-772.

[10] https://github.com/ankitsingla/topobench/blob/master/README.

