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Abstract—This paper studies the effects of channel launch
power and topology parameters on performance for ultra-
wideband optical networks in the presence of stimulated Raman
scattering (SRS). Results exhibit significant throughput improve-
ments for optimised per-channel launch power allocation over
conventional uniform power allocation. Furthermore, the impact
of network structural features on performance is investigated
and a significant increase in throughput and a reduction in fibre
installation cost are achieved by optimising network topology for
two real world core networks.

Index Terms—parameter optimisation, stimulated Raman scat-
tering, network topology, launch power

I. INTRODUCTION

Performance optimisation for optical networks is an inter-
esting and challenging research topic. Several studies have
been conducted using exact [1]-[6] and intelligent [7]-[9]
methods considering different network parameters and perfor-
mance metrics. It is vital to understand the effects from each
parameter in order to improve the network performance given
the flexibility and costs associated with setting these param-
eters. In a novel flexible ultra-wideband scenario, individual
links can be populated with a variable number of channels
with variable characteristics, and the problem of fast network
reconfiguration and optimisation becomes critical.

Due to stimulated Raman scattering effects, the channel
power optimisation problem becomes non-convex in ultra-
wideband settings as presented in the work of Roberts et
al. [2]. Therefore, conventional convex optimisation methods
cannot be applied to this problem directly. Meta-heuristic opti-
misation methods such as Genetic Algorithms (GA) [10] have
been successfully applied to solve a wide range of non-linear
non-convex complex engineering optimisation problems [11],
[12]. In this paper, a GA based approach is proposed to solve
the network optimisation problem for a general real-world
optical network considering a comprehensive set of parame-
ters and performance metrics including throughput, resilience,
latency and cost. This study presents network performance
improvements by optimal setting of network parameters for
ultra-wideband networks. Recent studies [3], [5] have observed
improved network performance in C'+ L bands by optimising
uniform launch power allocation. We further extend this line
of research by performing per-channel non-uniform launch
power optimisation for SRS aware ultra-wideband networks.
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According to previous studies on C' band systems [1], [13]
only marginal throughput gains are achieved by per-channel
launch power allocation over the uniform power allocation
and therefore, optimising per-channel launch powers does not
seem cost-effective for C' band systems. This study exhibits
throughput improvements in the range of 10% — 13% for
optimised per-channel launch power allocation over uniform
power allocation in ultra-wideband networks under both uni-
form and non-uniform traffic suggesting the cost effectiveness
of optimised per-channel launch power allocation in ultra-
wideband networks.

Recent study by Bayvel et al. [9] suggests that the network
performance can be improved by generating network topol-
ogy considering optical parameters over traditional topology
generators that do not consider these parameters. Extending
this approach we generate optimal topology by evolving
existing topology using genetic algorithm considering optical
parameters. Significant increase in throughput is achieved in
the range of 39% — 65% by optimising network topology for
two real world networks and for three traffic models. Also, a
reduction in fibre installation cost is achieved in the range of
16% — 29%.

The organisation of the rest of the paper is as follows.
Section II discusses the state of the art of modelling SRS effect
in optical networks. In Section III, the proposed performance
optimisation framework is presented. Section IV describes
the launch power optimisation simulations for three traffic
matrices and for a real world network DTAG followed by
Section V describing the topology optimisation simulations for
two real world networks DTAG and GB. Finally, Section VI
concludes the paper.

II. STIMULATED RAMAN SCATTERING AWARE NETWORK
SIMULATION FOR ULTRA-WIDE BANDS

We employ GNPy, the Gaussian noise model based simu-
lator proposed by Ferrari et. al [14] for network simulation.
We extend GNPy with the closed form approximation for SRS
aware generalised Gaussian noise (GGN) model by Semrau et
al. [15]. Figure 1 depicts the GGN model outputs of nonlinear
noise powers for sample uniform channel launch powers. Both
fibre loss and inter-channel SRS gains are assumed to be
entirely compensated and ideally equalised by EDFAs after
each fibre span, respectively. Hence, the EDFA gain is defined
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Fig. 1: Nonlinear noise powers based on GGN model [15] for a
101 channel, 100 GHz spacing, 2000 km (80 km, 25 spans) link for
sample uniform launch powers 3 dBm, 4 dBm and 5 dBm with and
without SRS effect.

as Gepra (fx) = €Ul GRq (fr), with a(fy,) being the
fibre loss parameter corresponding to the centre frequency f
of each k—channel ', and L being the fibre span length. The
inverse gain due to SRS can be expressed as [16]

Sinhc (C; BW Leg (f1) Zp(fk)>

k
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where BW stands for the total WDM bandwidth, C,. is the
linear regression slope of the normalised (by the effective fibre
mode area A.g (fx)) polarisation-averaged Raman gain, Leg
is the fibre effective length, and the function Sinhc £ sinh(a)
Figure 2 describes the gain profiles due to the inter-channel
SRS assuming sample uniform launch powers, i.e., P (fx) =
const, Vk of a 101 channel system.

Gans (fr) = .

III. FRAMEWORK FOR PERFORMANCE OPTIMISATION IN
OPTICAL NETWORKS

A. Optimisation Problem
The variables of the optimisation problem are the considered
network parameters. We consider channel launch powers and

topology parameters in this study. The objective function for
the throughput optimisation can be formulated as follows:

Find: X = [z1,29,...,2,], (2a)
Maximise: X)= Z Ty, (2b)
§=0

In the above equation, X is a vector of decision variables
containing the parameters for a network, n is the number of

'k being the channel index relative to the centre bandwidth channel for
which k =0
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Fig. 2: SRS gain (Formula 1) for 3 dBm, 4 dBm and 5 dBm launch
powers for a 2000 km link of 25, 80 km spans and for 101 channels
and 100 GHz spacing.

parameters, m is the number of light-paths, C () represents
the performance metric throughput T within the network for all
the light-paths p; for which the individual throughput for each
light-path is represented by T,,.. The per light-path throughput
T, is defined as follows:

T, =20 Y log, (14 SNR[p0w)] ) [Thpsl, @)
k

where k denotes the channel index in the light-path p, Rg
is the symbol rate, and SNR|p()\x)] stands for the signal-
to-noise ratio [2] at the receiver at the end of path p of the
channel with \; channel centre wavelength.

B. Optimisation Algorithm

Algorithm 1: (1 + )\)-EA: Evolutionary Algorithm

1) Initialise the population
P = {Xl,XQ, C an—hXjan—i-l) e 7XH} with 7
optical network parameter setting individuals

X; =[z1,22,...,%i—1,Ti, Tit1,. .., Ly, L.6., a vector of
optical network parameters x;.

2) Select O C P, where |O] = A.

3) For each {I1,I5} € O, produce offspring I; I} by
crossover and mutation. Add each offspring to P.

4) Fitness evaluation of all I € P.

5) Select S C P where |S| = p

6) P:=S.

7) Repeat step 2 to 6 until termination criterion is
reached.

The population P = {Xl,XQ, . 7Xj_1,Xj,Xj+1, . ’XH}
consists of a candidate solution named a GA individual.
Such an individual is represented by a real valued vector
X; = |[x1,®2,...,%i—1,%i Tit1,...,2,), where each
GA gene [10] represents a network parameter x; (1).
Genetic operators crossover and mutation are applied on the



TABLE I: System parameters

Parameter Value Units
Carrier wavelength 1550 nm
Symbol rate (Rg) 100 GBd

Channel spacing 100 GHz
Number of channels 101 —
EDFA noise figure 4.5 dB
Roll-off factor 0.001 %
Attenuation coefficient () 0.2 dB/km
CD coefficient 17 ps/nm/km
CD slope coefficient 0.067 | ps/nm?/km
Nonlinear coefficient 1.2 /W /km
Raman gain slope (C') 0.028 | /W/km/THz

selected (2) GA individuals to create offsprings (3). The
state-of-the-art uniform crossover and perturbation mutation
operators [10] are employed. Each generation is ‘“fitness
tested” (4) to see whether its members are better or worse
than the preceding, with the best going forward for the next
generation (5). Algorithm 1 outlines the Genetic Algorithm
(GA) optimisation process.

1) Fitness Function: The fitness value for throughput as
described in Formula 2 is retrieved from the GNPy simula-
tion [14] for a optical network parameter setting represented by
a GA individual. We employ k shortest path routing [17] with
the Dijkstra algorithm [18] to find the shortest paths, and the
well-known first fit spectral assignment (FFSA) strategy [19]
for spectral assignment. The considered simulation set-up and
the traffic matrices are described in the Section IV-A.

IV. LAUNCH POWER OPTIMISATION

A. Simulation Set-up

The objective and the constraints for the optimisation simu-
lations are as defined in Section III-A. The optical parameters
are kept fixed as presented in Table I for the simulation. TRx
noise is assumed to be set to zero and system margins can be
deemed entirely neglected.

1) Optimiser set-up: The GA hyper-parameters for the
optimisation are chosen as follows: the population size of
10, the crossover and mutation probabilities of 0.8 and 0.1,
respectively. The number of generations is set to 2000 or until
the convergence is observed.

2) Demand simulation: Three traffic demand matrices
based on state-of-the -art [1], [3], [20]-[24] are considered
within this study: Ty and T representing non uniform traffic
generated from a Pareto distribution [21], [24] representing
traffic bursts and Poison distribution [20], [23] representing
smoother traffic respectively, and T representing uniform all-
to-all traffic: a matrix considered in the state-of-the-art [1],
[3], [22]. For simplicity, we consider static traffic simulation
similar to the studies of Ives et al. [22] and Virgillito et al. [3].
Let us consider a network graph ¥ = (V,€) with a set of
nodes V = {vy,vs,...,v,} and set of edges &, traffic matrix
T, source nodes v;, destination nodes v; and 7 # j. Let us
define the traffic demand as follows:

>
>

T, : V{v,v;} €V, T;; =X ~ Pareto(z,,,a). (4a)
TQ : V{’Ui, Uj} S V, Aij = X ~ Pois ()\) . (4b)
~ ~ C

Ts : V{Ui,’Uj} eV, ij = 7n (n — 1) (4c)

and Tu = 0 for the case of 7 = j. Figure 3 describes the
respective traffic demand matrices for DTAG network with
the number of nodes n = 14, the lower bound for the Pareto
distribution Eq. (4a) z,, = 250, the shape parameter o =
2, the expectation of the Poisson distribution A = 500 (see,
Eq. (4b)), and finally the constant ¢ = 91000 in the case of the
uniform matrix Eq. (4c). These scaling parameters are chosen
to have the same expected value E [X] for the three traffic
demand distributions.

B. Results

The optimisation simulation is performed for an ultra-
wideband system with 101 channels considering the system
parameters presented in Table 1. Figure 4 presents the op-
timised launch powers obtained for traffic matrices Tl, Tg,
and Tg,. For traffic matrix 7 1, the optimal non-uniform launch
powers resulted in 63.1 Tbps, achieving a 12.7% gain over
uniform launch powers. For traffic matrix Tg, the resultant
throughput is 65.3 Tbps achieving a 11.2% gain over uniform
launch powers. Similar results are observed for traffic matrix
T, with a throughput of 66.6 Tbps and a throughput gain of
10.1% over uniform launch powers.

We further consider the performance for traffic matrices and
networks with different graph densities in order understand the
inter-dependencies between launch powers, traffic and network
structure and their effects on throughput. Density D of graph
¢ = (V,&) with a set of nodes V and a set of edges & is
defined as follows [25]:

21€]
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where |-| denotes the cardinality of a set.

In order to understand the sensitivity of throughput based
on graph density, launch powers and traffic, 3 different density
levels are considered for simulations. The density of the
original graph of the DTAG network, a 25% reduction of
the density and a 25% increase of the density. The original
topology is modified by adding or deleting edges uniformly at
random, adhering to a resilience constraint of minimum node
degree of 2. Throughput is optimised for each topology by
optimising channel launch powers. As observed in Figure 5
throughput is positively correlated with graph density. How-
ever, the amount of improvement seems to be affected by the
underlying traffic matrix. This sheds light into the impact of
network traffic and topology on network performance. Hence,
we further investigate topology optimisation considering the
traffic in the next section.
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Fig. 5: Throughput variation over graph density (Formula 5) for
101 channels for DTAG network with traffic matrices 71, T and T
(Formula 4).

V. TOPOLOGY OPTIMISATION

To understand the importance of the topology parameters
on network optimisation, we conduct simulations. In practice,

topology may be constrained by several real world constraints.
Different from the previous optimisation, the standard genetic
operators used for real valued vector of parameters cannot
be applied to the new genetic individuals represented by a
network topology. Therefore, we modify the optimisation algo-
rithm discussed in Section III-B by introducing new mutation
and crossover operators and new constraints.

A. Genetic Operators for Topology Generation

The network topology is represented by the respective
adjacency matrix of the network graph. A GA individual is
extended by a bit-wise vector representing the adjacencies.
Bit-wise variation operators are employed including inversion
mutation, where bit 1 is flipped to bit 0 and vise versa and the
crossover operators inspired by bit-wise operators OR, AND and
XOR as explained in the work by Lima et al. [26]. Moreover, we
consider a problem specific mutation operator to speed up the
optimisation process called 2-Opt mutation where two edges
are deleted and two edges are added following the well-known
2-Opt operator [27] in the local search domain.
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Fig. 6: Topology optimisation results showing original and optimised
throughput values for DTAG network under 3 traffic matrices (For-
mula 4). System parameters are as defined in Table I and optimisation
set up is as described in Section V-B.

B. Simulation Set-up

The simulation set-up is as described in Section IV-Al
except for the mutation and crossover probabilities and the
topology specific constraints. Here, we consider a lower
crossover probability of 0.5 to compensate the effects from
higher diversity introduced by the bit-wise crossover operators.
Moreover, we consider a higher mutation probability of 0.5 to
allow both mutation operators to contribute effectively. Within
each mutation, either inversion mutation or 2-Opt mutation is
chosen uniformly at random. The network physical parameters
are kept fixed during the topology optimisation as described
in Table I and launch power is kept fixed at the optimised
values in Section IV. We consider additional constraints on
the maximum total fibre length to be 80% of the complete
mesh graph and the minimum node degree of 2 as a resilience
constraint.

C. Results

Simulation results for DTAG network under the 3 traffic
matrices Tl, Tg, and Tg are presented in Figure 6. For all three
cases, significant throughput gains are observed in the range of
60% — 65%. The simulation is repeated for another benchmark
core network namely GB and the results are presented in
Figure 7. Significant throughput gains are observed for the
three traffic matrices in the range of 39% — 40%. However,
this performance gain comes at a cost of increased expenses
due to fibre installation.

Moreover, the topology is optimised minimising the fibre
installation cost as the objective with a specified minimum
throughput constraint under traffic matrix Ts. A 16% (64080
to 53800 km) reduction in the fibre installation cost is observed
for GB ( Figure 9) allowing a minimum throughput constraint
of 51 Tbps. For DTAG, a cost reduction of 29.3% (5520
to 4240km) is achieved maintaining a 66 Tbps minimum
throughput constraint respectively (Figure 8).
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Fig. 7: Topology optimisation results showing original and optimised
throughput values for GB network under 3 traffic matrices (For-
mula 4). System parameters are as defined in Table I and optimisation
set up is as described in Section V-B.

320

(a) Original DTAG topology  (b) Optimised DTAG topology

Fig. 8: The topology before (a) and after (b) the optimisation
achieving 29.3% reduction in the fibre installation cost for the DTAG
network for a 66 Tbps throughput constraint. The edge weights of
the graphs correspond to the distances in km.

VI. CONCLUSION AND FUTURE WORK

The effects of optimised channel launch powers and network
topology are studied for ultra-wideband optical networks in the
presence of SRS effect. Significant improvements in through-
put in the range of 10% —13% are achieved by optimising per-
channel launch powers in ultra-wideband systems compared to
the marginal gain shown in the literature for C band systems.
Considering the cost of optimising per-channel launch powers,
it can still be cost effective for ultra-wideband systems. The
impacts of traffic is investigated and the optimal launch powers
exhibit dependency to the underlying traffic. Hence, in prac-
tice, re-optimising the launch powers at network operational
stage is desirable with the changing network traffic. Further-
more, the throughput dependency on graph density is observed
and therefore, optimisation is carried out to generate optimal
topology. Significant performance improvements are achieved
by optimising the topology in terms of throughput (in the range
of 39% — 65%) and fibre installation cost (in the range of
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Fig. 9: The topology before (a) and after (b) the optimisation achieving 16% reduction in the fibre installation cost for the GB network for
a 51 Tbps throughput constraint. The edge weights of the graphs correspond to the distances in km.

16% — 29%) for the considered core networks DTAG and GB
and for the three considered traffic matrices highlighting the
effects of network structural parameters on performance and
the benefits of simulation based optimisation at network design
and re-design stages. Future work will extend this approach
to multi objective optimisation to generate network topology
optimising throughput and cost simultaneously and dynamic
launch power re-optimisation under dynamic traffic.
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