
 

Adaptive Snapshot Routing Based on Space Debris 

Risk Perception in Satellite Optical Networks 

Zhuangzhuang Ma  

State Key Laboratory of 

Information Photonics and 

Optical Communications 

Beijing University of Posts and 

Telecommunications 

Beijing, China  

mzz@bupt.edu.cn 

Yongli Zhao 

State Key Laboratory of 

Information Photonics and 

Optical Communications 

Beijing University of Posts and 

Telecommunications 

Beijing, China 

yonglizhao@bupt.edu.cn 

Wei Wang 

State Key Laboratory of 

Information Photonics and 

Optical Communications 

Beijing University of Posts and 

Telecommunications 

Beijing, China 

weiw@bupt.edu.cn  

Xiangjun Xin 

State Key Laboratory of 

Information Photonics and 

Optical Communications 

Beijing University of Posts and 

Telecommunications 

Beijing, China 

xjxin@bupt.edu.cn

 

                                          

 

 

Jie Zhang 

State Key Laboratory of 

Information Photonics and 

Optical Communications 

Beijing University of Posts and 

Telecommunications 

Being, China 

Jie.zhang@bupt.edu.cn 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract—With the advantages of large transmission capacity, 

high data rate and good confidentiality, inter-satellite laser 

communication has become a promising alternative for satellite 

networks. However, with more and more satellite nodes being 

launched into the space, the number of space debris will increase 

rapidly. Due to the nature of linear transmission of laser links, 

space debris may cause the uncertain interruption of laser links, 

and further degrade the link survivability of satellite optical 

networks. In this paper, we design a risk perception model based 

on machine learning for inter-satellite laser links risk caused by 

space debris. Based on this model, we propose an adaptive 

snapshot routing strategy based on flexible granularity (ASRS-

FG), which can effectively avoid the risk of inter satellite link 

interruption caused by space debris. Finally, to verify the 

performance of the algorithm, we built a satellite optical networks 

simulation platform. The simulation results show that our model’s 

prediction accuracy on space debris risk reaches 95%. Compared 

with the equal-length snapshot routing strategy (ESRS), ASRS-FG 

effectively avoids the use of risky laser links and achieves higher 

service success ratio and fewer snapshot switching times.    

Keywords—Satellite optical networks, space debris, risk 

perception, machine learning, adaptive snapshot routing 

I. INTRODUCTION  

Space debris refers to the products of human space activities, 
including rocket bodies and satellite bodies that complete 
missions, rocket ejections, etc., and they are the main pollution 
sources of space environment. Since the launch of the first 
artificial satellite in 1957, more and more space activities have 
led to a rapid increasing in the number of spacecrafts in orbit A 
series of space collision accidents and anti-satellite tests have 
produced more and more space debris and thus caused more 
severe pollution to the space environment [1]. According to the 
statistics from North American Air Defense Command 
(NORAD), as of the beginning of 2020, there have been nearly 
30,000 space debris larger than 10 cm in diameter, and more 

than 900,000 dangerous space debris between 1 cm and 10 cm, 
with a total mass of more than 8,000 tons. Meanwhile,  
compared with microwave communication, laser 
communication has the advantages of high transmission rate, 
large transmission capacity, high speed, good confidentiality 
and low power consumption of terminal equipment , and thus it 
has become the inevitable option of future satellite networks [2-
3]. In order to cover the global earth, satellite optical networks 
will consist of tens of thousands of satellites in low earth orbit 
in the future, such as the Starlink project. The satellite nodes 
communicate with each other through point-to-point or point-to-
multipoint laser links [4] to achieve large-capacity transmission. 
Since a large amount of space debris is mainly concentrated in 
low earth orbit [5], there must be some debris moving over the 
linear links between two satellites, forming a three-point 
collinear phenomenon. Such case will lead to the interruption of 
the inter satellite link, and then reduce the quality of satellite 
communication service, as shown in Fig. 1. 

In addition, due to the existence of orbital descent and 
secondary collision named Kessler syndrome [6-7] of space 
debris, the trajectory of the debris is uncertain, and thus the risk 
of inter-satellite link interruption is uncertain as well in satellite 
optical networks. Machine learning is widely used in various 
network use cases [8], because a well-trained model is good at 
predicting future events. Space debris trajectory prediction and 
removal based on artificial intelligence has been studied. For 
example, reference [9] proposes a solution to actively remove 
multiple debris based on reinforcement learning, and reference 
[10] proposes a debris orbit prediction strategy based on 
supervised learning.  What’s more, a collision prediction method 
of space debris and LEO satellite based on machine learning is 
proposed in reference [11].  The existing works on space debris 
mainly focused on orbital observations, environmental 
modeling, spacecraft protection, and how to avoid collisions 
with spacecraft, etc. However, to the best of our knowledge, the 
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communication interruption problem that is caused by space 
debris, is not well studied yet. 

What’s more, in order to save the limited satellite storage 
space and to reduce signaling overhead caused by topology 
information exchange, satellite optical networks usually adopt 
virtual topology routing strategy [12], such as equal-length 
snapshot routing strategy (ESRS). However, ESRS lacks the 
flexibility of snapshot division and cannot adjust the length of 
the snapshot according to the distribution of link risks caused by 
debris. Meanwhile, the current routing algorithm does not 
consider the impact of space debris on the link, and cannot 
effectively avoid the use of risky links. 

 

Fig. 1. Laser link risk caused by space debris 

II. LINK RISK PREDICTION MODEL CAUSED BY SPACE 

DEBRIS 

In this section, we introduce the physical model of laser link 
interruption caused by space debris , and analyze the duration of 
link interruption caused by space debris with different sizes and 
trajectories. In the following sub-section, we propose a space 
debris risk perception model, and analyze the performance of 
this model. 

A. Physical Model of  Laser Link Interruption Caused by 

Space Debris 

Hundreds of millions of debris are active in space, and are 
mainly concentrated near low earth orbit. These debris have 
different trajectories, sizes and speeds, which leads to different 
inter-satellite laser links interruption time. For example, when 
debris of the same size and speed intersect the inter-satellite link 
along different trajectories, the interruption time of the link will 
show a great difference. In view of the different link interruption 
scenarios of the low-orbit satellite optical networks, we grasp 
the main influencing factors such as debris speed, size, trajectory, 
and intersection method, and construct the corresponding 
physical model. Taking into account the spatial position 
relationship, the critical value of the interruption of the inter-
satellite laser link caused by the debris is divided into the 
following three cases: case 1 of the debris trajectory intersects 

the link vertically, case 2 of generally intersects, and case 3 of 
special tangent. As shown in Fig. 2, case 1  depicts the physical 
model of vertical intersection, since the size of the debris is 
much smaller than the semi-major axis of the debris trajectory, 
the debris trajectory can be approximated as a line segment 
during the interruption. Under the premise of the intersection, 
this situation represents the minimum interruption time caused 
by debris of the same size to the link. 2. The function of link 
interruption time caused by different size debris in case 1 is 
given by the following expression, and the calculation results are 
as shown in Table I. 

t =  
𝑑+𝑤

𝑣
                                         () 

Where t is the interruption time caused by debris, d is the size of 
the debris, the typical value of v is 8 km/s, which represents the 
debris velocity, and the typical value of w is 10 mm, which 
represents the laser beam width. 

 

Fig. 2. Physical model of vertical intersection 

TABLE I.  INTERRUPTION TIME IN CASE 1 

Size(mm) 1 10 50 100 

Time(ms) 0.0025 0.0138 0.0638 0.1263 

As shown in Fig. 3, case 2 describes the general physical 
model of the intersection between the debris track and the link. 
When the link distance is long, it is more likely to have two 
intersections, as shown in Fig. 3 (a). If the link distance is short, 
it is more likely to have a single intersection, as shown in Fig. 3 
(b). The function of link interruption time caused by different 
size debris in case 2 is given by the following expression, and 
the calculation results are as shown in Table II. 

t =  
2𝑑

𝑣𝑠𝑖𝑛𝛽
                                              () 

Where t is the interruption time caused by debris, d is the size of 
the debris, the typical value of v is 8 km/s, which represents the 
debris velocity, and 0<β<90°. 



 

Fig. 3. Physical model of general intersection 

TABLE II.  INTERRUPTION TIME IN CASE 2 

Size/mm 1 10 50 100 

Time/ms 0.125/8sinβ 1.25/sinβ 6.25/sinβ 12.5/sinβ 

As shown in Fig. 4, case 3 depicts the physical model of the 
debris trajectory exactly crosses the link and is tangent to it, 
which represents the maximum interruption time that debris of 
the same size and speed can reach. The function of link 
interruption time caused by different size debris in case 3 is 
given by the following expression, and the calculation results are 
as shown in Table III. 

θ = cos−1(1 −
𝑑

𝑎
)                              () 

t =  
2𝜃𝐿

360𝑣
                                        (4) 

Where t is the interruption time caused by debris, d is the size of 
the debris, the typical value of a is 7158 km, which represents 
the orbit radius of debris, the typical  value of v is 8 km/s, which 
represents the debris velocity, and 0<θ<90°. 

 

Fig. 4. Physical model of special tangent 

TABLE III.  INTERRUPTION TIME IN CASE 3 

Size(mm) 1 10 50 100 

Time(ms) 93.875 296.858 663.796 938.749 

According to the above results, the longest inter satellite laser 
link interruption time caused by debris reaches 938.749 ms, 
while the transmission delay of single hop low orbit inter 
satellite laser link is only about 10 ms and he tolerable delay of 

voice communication is about 150 ms, which also seriously 
affects the quality of service in satellite optical networks. Links 
with an interruption time of less than 10 ms are classified as 
zero-risk links, which of  between 10 ms and 150 ms are 
classified as low-risk links, and which of greater than 150 ms are 
classified as high-risk links. 

B. Space Debris Risk Perception Model 

According to the physical model in the previous part, it can 
be seen that the length of the link interruption time is closely 
related to the debris trajectory, speed and other factors. The K-
Means algorithm is used to cluster 4096 sets of the Two Line 
Elements (TLE) of space debris from NORAD. These data 
include the debris orbital inclination, the ascension of the 
ascending node, the number of circles per day, the position 
versus time, etc. Machine learning has high accuracy in 
predicting future events and classification. We take a number of 
different K values, and find that the data set obtained when k = 
3 is consistent with analysis results of link interruption time in 
the above sub-section. Then we label the three types of data sets 
obtained by clustering as zero-risk, low-risk and high-risk 
respectively. We train the classification model by using these 
three data sets, and filter the zero-risk data set. We can get the 
orbit data of debris of low and high-risk debris sets from relevant 
testing institutions ,such as Space Debris Monitoring and 
Application Center.  Then we use the low and high-risk debris 
orbit data and satellite orbit data as the input, and use three-point 
collinear relationship in space and expression (1) - (4) as the 
judgment basis to get the risky link ID and link interruption start 
and end time. When training the debris data classification model, 
the ReLU excitation function, Cross-Entropy loss function, and 
stochastic gradient descent (SGD) optimizer are used, and the 
hidden layer contains 10 nerves. The accuracy curve and 
training time for debris risk classification are shown in Fig. 5. 
Since only 4096 sets of data are trained, the training time is 
basically about 10s. It can be seen that as the learning rate 
increases, the accuracy first increases and then decreases, when 
the learning rate is 0.02, the prediction accuracy rate is up to 
95%. And when the learning rate is over 0.02, as the learning 
rate increases, the training time decreases, but the accuracy rate 
also decreases, because when the learning rate is large, the step 
of gradient descent is too large, it may cross the optimal value, 
and the model has an underfitting problem. 

 

Fig. 5. Debris classification accuracy and training time 



III. ADAPTIVE SNAPSHOT ROUTING STRATEGY BASED ON 

FLEXIBLE GRANULARITY 

In the previous section, the space debris risk perception 
model outputs the ID of the link affected by the debris and the 
start and end time of the link interruption. Avoiding the use of 
risky links can improve the service transmission success rate. 
Meanwhile, Reducing the number of snapshot switching can 
also improve the service success rate. In order to make full use 
of inter satellite link resources and improve routing and 
transmission performance, we propose an adaptive snapshot 
routing strategy based on flexible granularity (ASRS-FG). As 
shown in Fig. 6, because the dynamic changes of satellite optical 
networks topology are predictable , we divide the network 
topology in a constellation period into multiple minimum 
snapshot granularity  (MSG), all MSGs are equal in length and 
are the basic unit of snapshot. We allocate the MSGs affected by 
space debris into a single snapshot, which can solve the problem 
that a high-risk link for only a few seconds cannot be used within 
a few minutes of snapshots. This problem reduces the utilization 
rate of inter-satellite links, and also affects the routing and 
transmission performance. However, when it solves the problem 
of snapshot flexibility and the availability time ratio of link 
resources, due to the short snapshot granularity and the short 
interval of high-risk link occurrence time, the topology snapshot 
length is too short. In other words, the number of snapshots is 
too large, the snapshot switching is too frequent, the stability of 
satellite optical networks is poor, and it takes up too much 
satellite storage space. 

In order to resolve the contradiction between the number of 
snapshots and the average link available time, occupy less on-
board storage space, and improve service success ratio, the 
division of snapshot intervals needs to meet certain constraints. 
Specifically, we use L minutes as the MSG, and all the snapshot 
lengths are integer multiples of this granularity, that is n*L, 
where n is a positive integer. For multiple adjacent granularities 
without link risk caused by debris, the snapshot length is T 
minutes [13-14], that is, the snapshot contains T/L MSGs. If the 
MSGs containing link risks are adjacent, they are divided into 
the same snapshot. In addition, the link risk interval does not 
span two snapshots, that is, if a certain link risk interval happens 
to be at the demarcation point of the basic granularity, the two 
MSGs belong to the same snapshot. As shown in Fig. 6, the 
adjacent black line interval is a MSG, and multiple MSGs in a 
bracket forms a snapshot. The green range represents the time 
period without debris risk, and the red range represents the 
period with debris risk. Fig. 6 shows that T takes 5 minutes and 
L takes 1, 1.25, and 2.5 minutes respectively. This strategy only 
pays a small amount of link average available time to achieve a 
significant reduction in snapshot switching times. 

 

Fig. 6. Adaptive snapshot partition based on flexible granularity 

Within each snapshot, we propose a shortest path algorithm 
to avoid the use of risky links. We can get the interruption start 
and end time and risk type of the link in Section II. Then we 
define that R represents the risk situation of the link, which is 
regarded as an important link weight influence factor., The value 
of R of high-risk links is infinite, that of low-risk links is 
constant A, and that of zero-risk links  is 1. Specifically, we 
consider that the link weight is LW = αRD/B, then the total 

weight of the path is ∑ 𝐿𝑊𝑖
𝑖
1 , Where i is the number of links on 

the path, D is the link distance, B is the percentage of residual 
bandwidth, and α is the power loss. Finally, the shortest path 
algorithm is used for routing calculation, which effectively 
avoids the use of risky links and improves the service success 
ratio.  The logic code of the ASRS-FG algorithm is as follows, 
the time complexity is O (n), and n is the number of MSGs. 

Algorithm: Adaptive snapshot routing algorithm based on flexible 

granularity (ASRA-FG) 

Input: L : length of minimum snapshot granularity (MSG); T : maximum length 
of a snapshot; i : serial number of MSG; S : risk link set; C : topology cycle; M : 
set of snapshots with no-risk MSGs which are not risky; N : set of snapshots with 
risky MSGs. 

Output: service path P. 

1. Divide a periodic network topology into C/L MSGs ; 

2. Map the time period of S to the corresponding MSG, and mark these MSGs 
as risky; 

3. For (i = 1; i <= C/L; i++) 

        If k consecutive MSGs are not risky, and k <= T/L, then 

divide these k MSGs into a snapshot of M; 

    If k consecutive MSGs are not risky, and k > T/L, then 

divide T/L MSGs into a snapshot of M; 

divide the remaining less than T/L MSGs into another snapshot of M; 

If MSG i is risky, and adjacent MSGs are not risky, then 

divide MSG i into a snapshot of N; 

If k consecutive MSGs are risky, and k <= T/L, then 

divide these k MSGs into a snapshot of N; 

If k consecutive MSGs are risky, and k > T/L, then 

divide T/L MSGs into a snapshot of N; 

divide the remaining less than T/L MSGs into other snapshot of N; 

9. The high-risk link weight influence factor R=∞ in snapshots of N, the low-

risk link R = A, A is the constant; 

10. Use Depth First Search (DFS) to calculate all paths between source and sink 
nodes; 

11. Calculate the weights of all paths and select the path with the smallest weight 
as the service path P; 

12. Return service path P. 

IV. SIMULATION SETTINGS AND RESULTS 

A. Simulation Settings 

In order to verify the performance of the adaptive snapshot 
routing strategy based on spatial risk perception, we built a 
single-layer Iridium-like network simulation platform 
composed of an ONOS-based SDN controller and Mininet 
nodes. Each satellite has four inter satellite links, two of which 
are intra orbit links and two are inter orbital links. There is no 



link connection between tracks 1 and 6 due to the reverse gap, 
and the satellite optical networks topology is shown in Fig. 7. 
The specific track parameters are shown in Table IV. 

 

Fig. 7. Iridium-like network topology 

TABLE IV.   SATELLITE ORBIT PARAMETERS 

Orbit Type LEO 

Orbital Height (km) 758 

Orbital Inclination (°) 86 

Number of Satellites 66 

Number of Orbital Planes 6 

Number of Satellites per Orbit 11 

Phase Factor 0 

B. Simulation Results 

Since snapshot switching will cause short-term transmission 
interruption and routing instability, the fewer snapshot 
switching times, the better. However, if the snapshot duration is 
too long, each snapshot cannot effectively reflect network 
topology changes. Therefore, the selection of the appropriate 
minimum snapshot granularity and the division of snapshots 
have an important impact on the performance of satellite optical 
networks routing and transmission. In order to verify the 
performance of ASRS, we conducted simulations from three 
aspects: snapshot switching times, service success ratio and 
average link available time. In this simulation, for ASRS-FG, 
the snapshot duration T under risk-free conditions is 5 minutes, 
and the MSG duration t is 1, 1.25, and 2.5 minutes, respectively. 
For ESS, the snapshot duration is 1, 1.25, 2.5, and 5 minutes 
respectively. 

First, as shown in Fig. 8, we compare snapshots switching 
times in a cycle between ASRS-FG and ESRS under different 
MSG conditions. The abscissa is the ratio of the time of space 
debris causing risk to the link in a cycle time, which is called the 
percentage of debris risk time (PDRT). For example, PDRT = 
25% means that there are inter-satellite links affected by space 
debris in 25% of a topology cycle time. It can be seen that for 
ASRS-FG, under the same MSG, the number of snapshots 
increases with the increase of PDRT, and the smaller the BSG, 
the more snapshot switching. In addition, it can be clearly seen 
that in a cycle, under the same MSG condition, snapshots 
switching times of ASRS-FG is much smaller than that of ESRS. 

Compared to ESRS, snapshot switching times of ASRS-FG is 
reduced by an average of 54.88%, that is, fewer snapshots are 
stored on the satellite, which greatly saves the more storage 
space on the satellite, and reduces the on-board processing 
burden. 

 

Fig. 8. Snapshot switching  

Fig.9 shows that for different MSG, with the increase of the 
percentage of debris risk time (PDRT), the service success ratio 
all decreases, because the more risk is, the more unusable links 
will be, the lower the routing and transmission performance will 
be.  In addition, under the same PDRT condition, the smaller the 
MSG is, the higher the service success ratio will be. Because the 
smaller the MSG, the less time the snapshot affected by risk 
takes is, and the better routing performance will be. When PDRT 
is 0, since the snapshots divided by ASRS and ESRS are the 
same, they have the same success rate. Under the same MSG 
and PDRT conditions, the service success rate of ASRS-FG is 
about 5% higher than the equal-length snapshot routing strategy 
(ESRS), because the ASRS-FG can effectively avoid the use of 
risky links, at the same time greatly reduce snapshot switching 
times, thus reducing the service failure caused by snapshot 
switching. 

 

Fig. 9. Service success ratio 

Finally, we define the proportion of average link available 
time (PALAT), which represents the ratio of average available 
time of all the links to the total length of a cycle. The higher the 



PALAT is, the longer the link can be used in a cycle will be. As 
shown in Fig. 10, when the percentage of debris risk time is 0%, 
the proportion of average link available time is less than 100% 
because some links will be disconnected in the polar region for 
Iridium constellation. In the same MSG case, with the increase 
of the proportion of debris risk time, the PALAT decreases. This 
is because the number of links affected by debris is more. In 
addition, under the same proportion of debris risk time, the 
smaller the MSG is, the higher the average available time of the 
links  will be. This is because the snapshot duration of the link 
affected by debris is shorter, and the link can be used for a longer 
time. Under the same MSG and PDRT, compared with ESRS, 
the PALAT of ASRS-FG is about 2% lower than ESRS, because 
longer snapshot duration causes the risky link to be unusable for 
longer. 

 

Fig. 10. Proportion of average link available time (PALAT) 

V. CONCLUSIONS 

In this paper, we construct a physical model of inter-satellite 
laser link interruption caused by space debris, and propose a 
space debris risk perception model based on machine learning. 
The results show that the accuracy of the model reaches 95%. In 
addition, we propose an adaptive snapshot routing strategy 
based on flexible granularity (ASRS-FG), which can effectively 
avoid the use of risky links. Finally, we built a satellite optical 
networks simulation platform based on ONOS. Compared with 
the equal-length snapshot routing strategy (ESRS), the service 
success rate of ASRS-FG increases by about 5%, and the 
snapshot switching times decrease by 54.88% on average. 
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