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Abstract—The three-stage switching fabric of wavelength-
space-wavelength architecture for elastic optical switches is con-
sidered in the paper. It serves connections which can occupy
different spectrum width. The upper bound for rearrangeable
condition for such switching fabric which serves a limited
number of connection rates is derived and proved. The control
algorithm based on matrix decomposition is also proposed. For
the switching fabric of capacity 2×2 serving only two connection
rates, necessary and sufficient conditions are derived and proved.
The required number of frequency slot units in interstage links
is much lower than in the strict-sense nonblocking switching
fabrics.

Index Terms—Elastic optical networks, elastic optical switch-
ing nodes, interconnection networks, rearrangeable nonblocking
conditions.

I. INTRODUCTION

The Elastic Optical Network (EON), called also the flexible

optical networks, is a new kind of telecommunication network

which is considered as a promising alternative approach for

future high-speed network design [1]–[3]. With the growth of

Internet traffic, efficient and cost-effective bandwidth usage is

now an important issue. It becomes even more important when

traffic in networks changes from static to dynamic, where con-

nections are often set up and disconnected. In EON, spectrum

is allocated to a lightpath according to bandwidth requirements

of a client. This allows a flexible and efficient use of spectrum

resources. Bandwidth assigned to an optical channel depends

on the required transmission data rate, distance to be covered,

path quality, wavelength spacing between channels, and/or

the modulation scheme used [2]–[5]. To allocate bandwidth

efficiently, the whole optical spectrum is divided into narrow

slots and a different number of slots are assigned to optical

connections. The minimum portion of spectrum is often called

a frequency slot unit (FSU). A spectrum assigned to one

connection is called a frequency slot and may use m FSUs.

One important constrain is that the allocated FSUs must be

adjacent. A connection which uses such m FSUs is called an

m-slot connection.

Connections served in EON must be also served by switch-

ing nodes. Several architectures of elastic optical switching

nodes were proposed in literature [6]–[9], short survey can be

found in [10]. One of these switching fabric architectures is

the W-S-W (wavelength-space-wavelength) switching fabric,

considered in [11], which is called WSW1 [9]. This architec-

ture will be considered further in this paper.

Up till now, strict-sense nonblocking (SSNB) conditions

(necessary and sufficient) for WSW1 have been provided and

proved in [11]. In SSNB switching fabrics, we can establish

a connection from an idle set of FSUs in any input fiber to

an idle set of FSUs in a requested output fiber regardless of

how other connections are established. The problem is that

such SSNB switching fabrics requires huge number of FSUs

in interstage links, especially when the maximum number of

FSUs which may be used by one connection is high.

Usually, SSNB switching fabrics require a large number

of switching elements (crosspoints, centers stage switches,

etc.). This number can be reduced by using rearrangements. In

rearrangeably nonblocking (RNB) switching fabrics, we can

also connect any pair of idle input and output, however, it

may be necessary to move existing connections to alternate

connecting paths [12], [13]. RNB switching fabrics are mostly

used in packet switching, where packets in synchronously op-

erated (slotted) networks arrive at all inputs at the same time.

A model describing such requests is called a simultaneous

connection model. RNB conditions for space-division three-

stage Clos switching fabrics [14] were derived in [12], [15].

In [16], RNB conditions in time-division switching networks

with single-rate connections were considered. In [17], RNB

conditions for switching networks with multirate connections

were given.

In this paper, we extend the RNB concept to elastic optical

switching fabrics. We propose the matrix model for state

representation and derive the RNB conditions for switching

fabrics serving connections with two rates. We also propose

the control algorithm, based on matrix decomposition, which

allows to set up a set of compatible connections.

The rest of the paper is organized as follows. In Section

II, the switching fabirc is presented and the problem is

described in more detail. In Section III, the model used in

the paper is reported. In Section IV, the control algorithm

proposed in the paper is described. In Section V, sufficient

conditions for rearrangeability of WSW1 switching fabrics

are given, and in case of 2 × 2 networks serving two-rate

connections necessary and sufficient conditions are derived

and proved. Short comparison with SSNB switching fabrics

is also provided. The paper ends with Conclusions.
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Fig. 1. The WSW1 switching fabric architecture.

II. PROBLEM STATEMENT

An architecture of the WSW1 switching fabric is shown

in Fig. 1 [11]. It consists of r bandwidth-variable spectrum

converting switches (BV-WSs) in the first and third stages, and

one bandwidth-variable wavelength selective space switches

(BV-SSs) of capacity r × r in the second stage. Each BV-

WS in the first stage has one input fiber with n FSUs and one

output fiber with k FSUs, while each BV-WS in the third stage

has one input fiber with k FSUs and one output fiber with n
FSUs. The internal architecture of BV-WSs and BV-SS can

be found in [11]. BV-WSs in each stage are numbered from

1 to r, FSUs in input/output fibers – from 1 to n, and FSUs

in interstage fibers – from 1 to k (see Fig. 1).

The WSW1 switching fabric serves m-slot connections.

Usually, m is limited to a maximum value mmax, i.e., not more

than mmax FSUs can be occupied by a single connection. We

assume that BV-WSs have full range conversion capability, i.e.,

an m-slot connection which uses a set of m adjacent FSUs in

the input fiber can be switched to a set of any other m adjacent

FSUs in the output fiber. Let us denote an m-slot connection

from the input fiber of switch Ii to the output fiber of switch

Oj by (Ii, Oj , m). When it is important which FSUs are

assigned to a connection, the number of the first FSU will be

also provided. For instance, (I1[1], Or[n−m+1], m) denotes

an m-slot connection from the input fiber of switch I1 to the

output fiber of switch Or, and it uses FSUs numbered from 1

to m in switch I1 and from n−m+ 1 to n in switch Or.

When a new connection (Ii, Oj , m) arrives to the switch-

ing fabric, a control algorithm must find a set of m adjacent

FSUs in interstage links which can be used for this connection,

and these must be FSUs with the same numbers in the inter-

stage links from Ii and to Oj , since BV-SS has no spectrum

conversion capabilities. When connection requests arrive to

the switching fabric sequentially (one-at-a-time connection

model), SSNB conditions were derived and proved in [11]. In

this paper, the simultaneous connection model is considered.

We assume that we have a set of compatible connection

requests, i.e., connection requests occupy all FSUs in input

and output fibers. Such set of connections is denoted by C,

and example of such set in 2×2 switching fabric with n = 10
is shown in Fig. 2. Nine connections of three types are to be

set up: two 5-slot connections, three 2-slot connections, and

four 1-slot connections. The problem now is, which FSUs in

interstage links should be used by these connections, and how

many FSUs are needed to set up all these connections, i.e.,

when the switching fabric is RNB. For instance, connections

(I1[1], O2[1], 5) and (I2[3], O1[6], 5) are directed from

different input switches to different output switches, so they
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Fig. 2. The 2× 2 WSW1 switching fabric with C = {(I1[1], O2[1], 5);
(I1[6], O1[4], 2); (I1[8], O2[9], 2); (I1[10], O1[1], 1); (I2[1], O1[2], 1);
(I2[2], O2[6], 1); (I2[3], O1[6], 5); (I2[8], O1[3], 1); (I2[9], O2[7], 2)}.

are not in conflict in the BV-SS and they can be set up using

the same FSUs numbered from 1 to 5 in interstage links (what

is also shown in Fig. 2).

The problem of routing C is in some sense similar to the

routing problem in the three-stage Clos network, however, the

main differences are:

1) instead of finding connections which can be set up

though one center stage switch, we have to find connec-

tions which can be set up using the same set of FSUs

in interstage link,

2) connections occupy different number of FSUs which

must be adjacent.

For these reasons, algorithms and solutions used for Clos

networks cannot be directly used in the considered switch-

ing fabric. Proposition of the model which can be used in

the WSW1 switching fabrics, a control algorithm, and RNB

conditions are the subject of this paper.

III. MODEL DESCRIPTION

Let C is to be set up in the WSW1 switching fabric. Let

also the number of connection rates be limited by z, i.e., there

are only mx-slot connections, 1 � x � z. For instance, in

the set of connection requests presented in Fig. 2, z = 3,

m1 = 1, m2 = 2, and m3 = 5. In contrary to the space-

division three-stage Clos networks, for which one connection

matrix was used to represent a set of connection requests,

we use z connection matrices, denoted by Hmx , each matrix

represents connection requests of one connection rate. Matrix

Hmx represents mx-slot connection requests and it is defined

as follows:

Hmx =

⎡
⎢⎢⎢⎣
hmx
11 hmx

12 . . . hmx
1r

hmx
21 hmx

22 . . . hmx
2r

...
...

. . .
...

hmx
r1 hmx

r2 . . . hmx
rr

⎤
⎥⎥⎥⎦ (1)

where hmx
ij is equal to the number of mx-slot connection

requests from switch Ii to switch Oj . For instance, connection

matrices for the set of connection requests in Fig. 2 are as

follows:

Hm1 =

[
1 0
2 1

]
, Hm2 =

[
1 1
0 1

]
, Hm3 =

[
0 1
1 0

]
. (2)

The set of matrices Hmx has the following properties: for

each row i
r∑

j=1

{ z∑
x=1

(
hmx
ij ·mx

)}
= n, (3)
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and for each column j
r∑

i=1

{ z∑
x=1

(
hmx
ij ·mx

)}
= n. (4)

Equation (3) says, that the sum of FSUs used by all connection

requests from one input fiber are equal to n. This is true

since in a set of compatible connection requests all FSUs

in each input fiber are occupied. Equation (4) provide the

same condition for the output fiber. It says that FSUs used

by connection requests to one output fiber must be also equal

to n, which is also true for the set of compatible connection

requests.

IV. CONTROL ALGORITHM

The problem of assigning FSUs to a particular connection

requests will be solved by using the matrix decomposition

algorithm. It is known that the square matrix H can be

decomposed into n permutation matrices when the sum of

elements in each row and each column is equal to n [12],

[15]. In our case, however, this condition is not true. Therefore,

some modifications are needed. Let us introduce some more

terms and notation:

• amx
i denotes the number of mx-slot connection requests

at input i: amx
i =

∑r
j=1 h

mx
ij ,

• bmx
j denotes the number of mx-slot connection requests

at output j: bmx
j =

∑r
i=1 h

mx
ij ,

• amx
max denotes the maximum number of mx-slot connec-

tion requests at one input: amx
max = max

1�i�r
{amx

i },

• amx

min denotes the minimum number of mx-slot connection

requests at one input: amx

min = min
1�i�r

{amx
i }

• bmx
max denotes the maximum number of mx-slot connec-

tion requests at one output: bmx
max = max

1�j�r

{
bmx
j

}
• bmx

min denotes the minimum number of mx-slot connection

requests at one output: bmx

min = min
1�j�r

{
bmx
j

}
• cmx

max = max {amx
max; b

mx
max}

• cmx

min = min {amx

min; b
mx

min}
The decomposition algorithm is presented in Algorithm 1.

Decomposition of each matrix can be executed separately

one after another, or may be run in parallel. The number of

connection rates and the number of FSUs in each connection

rate are the network parameters and they should be known at

the stage of switching fabric design. The set of compatible

connection requests is the input data for the algorithm. For

each connection rate, Hmx is calculated in the first step.

In the next step, amx
i and bmx

j are calculated for each row

and column, respectively, and if these values are equal, the

algorithm starts the decomposition process. If these numbers

are not equal, ”dummy“ connection requests are added such

that these sums will be equal to max{amx ; bmx}. Matrix

Hmx is then decomposed into max{amx ; bmx} permutation

matrices Pmx using any of known algorithms [18]–[20], and

finally, from some matrices elements representing ”dummy“

connection requests have to be removed. Decomposition of one

matrix is realized in O(nr4) time [12], so the time complexity

of the proposed algorithm is not greater than O(znr4) – we

have to decompose z matrices.

Algorithm 1: Decomposition algorithm

Data: C
Result: a set of permutation matrices

1 for x = 1 to z do
2 Calculate Hmx ;

3 In Hmx , add ”dummy“ connection requests such that

amx
i = bmx

i = max{amx ; bmx};

4 Decompose Hmx matrix into max{amx ; bmx}
permutation matrices Pmx

i ;

5 Remove ”dummy“ connection requests from Pmx
i ;

6 end

How the algorithm works we show using example from

Fig. 2. Matrices Hmx are given by equations (2). For Hm3

we have am3
1 = am3

2 = bm3
1 = bm3

2 = 1, and Hm3 is Pm3
1 ,

i.e.,

Hm3 = Pm3
1 =

[
0 1
1 0

]
. (5)

As a result, connections (I1[1], O2[1], 5) and

(I2[3], O1[6], 5) will be realized through FSUs from 1

to 5 of interstage links. For Hm2 we have: am2
1 = bm2

2 = 2
and am2

2 = bm2
1 = 1 (see equation (2)). In order to decompose

this matrix, we added one ”dummy“ connection in position

hm2
21 (positions, where such connections are added, are

marked by a gray circle), so we get:

Hm2 =

[
1 1

1 1

]
. (6)

This matrix can be decomposed into two permutation matrices:

Pm2
1 =

[
1 0
0 1

]
, Pm2

2 =

[
0 1

1 0

]
=⇒

[
0 1
0 0

]
, (7)

and in Pm2
2 we have to remove the ”dummy“ connection. As

the result, Pm2
1 corresponds to connections (I1[6], O1[4], 2)

and (I2[9], O2[7], 2) which will be set up through FSUs 6 and

7, and Pm2
2 – to connection (I1[8], O2[9], 2) with assigned

FSUs 8 and 9. Finally, in Hm1 we have: am1
1 = bm1

2 = 1 and

am1
2 = bm1

1 = 3. This time we have to add two ”dummy“

connections in position hm1
12 and we have:

Hm1 =

[
1 2

2 1

]
, (8)

and this matrix can be decomposed into three permutation

matrices:

Pm1
1 =

[
1 0
0 1

]
, Pm1

2 = Pm1
3 =

[
0 1

1 0

]
. (9)

This means that connections (I1[10], O1[1], 1) and

(I2[2], O2[6], 1) will be set up using FSU 10 in interstage

links, connection (I2[1], O1[2], 1) – using FSU 11 in inter-

stage links, and connection (I2[8], O1[3], 1) – using FSU 12

in interstage links. The switching fabric of Fig. 2 with marked

connections is shown in Fig. 3.
In the considered example, the required number of FSUs in

interstage links is 12 (k = 12). How many FSUs are sufficient

to have WSW1 switching fabric rearrangeably nonblocking

will be derived in the next Section.
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Fig. 3. The 2× 2 WSW1 switching fabric of Fig. 2 with C set up through
12 FSUs according to Algorithm 1.

V. REARRANGEABLE CONDITIONS

First, we prove the sufficient condition for RNB of WSW1

in case m ∈ {mx}, 1 � x � z and r � 2.

Theorem 1: The WSW1 switching fabric presented in Fig. 1

is RNB for m-slot connections, m ∈ {mx} and 1 � x � z,

if:

k �
z∑

x=1

(⌊
n

mx

⌋
·mx

)
. (10)

Proof: Let C denote a set of compatible connections. We

have z connection rates, 1 � x � z, ordered in the ascending

order: m1 < m2 < . . . < mz . A set of mx-slot connections

in C is represented by Hmx . According to Algorithm 1, Hmx

can be decomposed into cmx
max permutation matrices Pmx

i . One

Pmx
i represents a set of mx-slot connections which can be

set up using the same mx FSUs in interstage links. The total

number of FSUs occupied by these connections is equal to

mx · cmx
max. This means that the upper bound for the required

number of FSUs in each interstage link is:

k �
z∑

x=1

(mx · cmx
max) . (11)

The value of cmx
max differs in different Cs. Since it represents

the maximum number of mx-slot connections in one of

inputs or outputs, and the number of such connections in

one input/output will never be greater than �n/mx�, we can

conclude that the following inequality is true:

cmx
max �

⌊
n

mx

⌋
. (12)

From (11) and (12) we have:

k �
z∑

x=1

(mx · cmx
max) �

z∑
x=1

(⌊
n

mx

⌋
·mx

)
. (13)

The condition presented in Theorem 1 is the upper bound.

The lower bound is at least k � n, since we need at least

n FSUs in interstage links to set connections which occupy

n FSUs in input fibers. The upper bound assumes, that each

set of mx-slot connections is set up through separate FSUs in

interstage links. This upper bound can be reduced when some

of FSUs assigned for connections of one size, say mx1
, can be

used by connections of another rate, say mx2
, mx2

< mx1
.

For instance, in the example presented in Fig. 3 connection

(I1[8], O2[9], 2) which is represented by matrix Pm2
2 uses

FSUs 8 and 9 in interstage links. This means that these FSUs

are occupied in the interstage link from switch I1 and to switch

O2, and these FSUs can be used by connections from switch
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1
777777666666 888888888888 999999

BV-SS

771111 2222 33 5544

2
66 88888888 999

1111 2222 33333333 4444 5555 666666 444444 777777776666555555 8888 9999

1
3333331111111 222222

1111 2222 3333 55554444 7777776666 888 999

2

777777 88888888 999999991111 22222222 33333333 44444444 5555555 666666 77777777777 888888 99999

11 22 33 44 55 666 777777 8888 9999 1111 2222 33333333 4444 5555 666 777 888 999

BV-WSBV-WS

Fig. 4. The 2× 2 WSW1 switching fabric of Fig. 2 with C set up through
10 FSUs.

I2 to switch O1 (in Pm2
2 , hm2

21 = 0). We can use these FSUs

for setting up 1-slot connections represented by permutation

matrices Pm1
2 and Pm1

3 . The final FSUs assignment after the

before mentioned changes is presented in Fig. 4. The total

number of FSUs in interstage links is now reduced from 12
to 10 in interstage links.

The number of permutation matrices which, in general case,

can be merged together, and connections represented by them

can be set up using the same FSUs, is currently unknown.

We will investigate this problem in the future. Up till now we

were able to reduce the upper bound only for the special case,

when r = z = 2, and n
m1

, n
m2

, and m2

m1
are integers.

Theorem 2: The WSW1 switching fabric presented in

Fig. 1 with r = 2 is rearangeably nonblocking for m-slot

connections, where m ∈ {m1;m2}, m1 < m2, n
m1

, n
m2

, and
m2

m1
are integers, is RNB if and only if:

k � n. (14)

Proof: Necessity is obvious, since we need at least n
FSUs in interstage links to serve all connections which occupy

n FSUs in each input fiber. The sufficiency can be proved by

showing, that no such C exists which requires more than n
FSUs. In general, C is represented by connection matrices:

Hm1 =

[
a b
c d

]
, Hm2 =

[
e f
g h

]
. (15)

From properties (3) and (4) we receive following equations:

(a+ b) ·m1 + (e+ f) ·m2 = n, (16)

(c+ d) ·m1 + (g + h) ·m2 = n, (17)

(a+ c) ·m1 + (e+ g) ·m2 = n, (18)

(b+ d) ·m1 + (f + h) ·m2 = n. (19)

The number of permutation matrices representing connections

of one connection rate, which cannot be set up through the

same FSUs in interstage links with connections of another

connection rate (i.e., they will contains, exactly one element 1
in each row and each column), is equal to cmx

min. Let us assume

that cm1

min = (a + b). This means that (a + b) � (c + d) and,

from equations (16) and (17), we have (g+h) � (e+ f), i.e.,

cm2

min = (g+h). As the result, Hm1 can be divided into (a+b)
permutation matrices and Hm2 into (g + h) such matrices.

After these decomposition, we get:

Hm1
1 = Hm1 −

a+b∑
i=1

Pm1
i =

[
0 0
c′ d′

]
(20)
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Hm2
1 = Hm2 −

g+h∑
i=1

Pm2
i =

[
e′ f ′

0 0

]
, (21)

where (c′ + d′) = (c+ d)− (a+ b) and (e′ + f ′) = (e+ f)−
(g + h). The same relationships are true if sum of any other

row or column is the minimum. It also means, that there is

no situation when the minimum value in one matrix is for a

row and in another matrix for a column. In general, we may

have four cases after first part of decomposition, depending on

which sum of elements, in row or column, is the minimum:

case 1:

[
0 0
c′ d′

] [
e′ f ′

0 0

]
, case 2:

[
a′ b′

0 0

] [
0 0
g′ h′

]
,

case 3:

[
0 b′

0 d′

] [
e′ 0
g′ 0

]
, case 4:

[
a′ 0
c′ 0

] [
0 f ′

0 h′

]
.

Matrices Pm1
i and Pm2

i determines which FSUs will be used

for setting up a + b m1-slot connections and g + h m2-slot

connections, respectively, and in matrices Hm1
1 and Hm2

1 there

are only connections not set up yet. These connections will

use n − (a + b) ·m1 − (g + h) ·m2 FSUs, and according to

properties (3) and (4), for matrices Hm1
1 and Hm2

1 we have:

(e′ + f ′) ·m2 = n− (a+ b) ·m1 − (g + h) ·m2, (22)

(c′ + d′) ·m1 = n− (a+ b) ·m1 − (g + h) ·m2, (23)

c′ ·m1 + e′ ·m2 = n− (a+ b) ·m1 − (g + h) ·m2, (24)

d′ ·m1 + f ′ ·m2 = n− (a+ b) ·m1 − (g + h) ·m2. (25)

From equations (22) and (23) we get:

(c′ + d′) ·m1 = (e′ + f ′) ·m2, (26)

and from equations (24) and (25) we get:

(c′ − d′) ·m1 = (f ′ − e′) ·m2. (27)

After some operations on equations (26) and (27) we come to

the following dependencies:

c′ = f ′ · m2

m1
, (28)

d′ = e′ · m2

m1
. (29)

From equations (28) and (29), we can conclude that to each

matrix Pm2
i obtained by decomposing Hm2

1 we can find m2

m1

matrices Pm1
i such that a connection corresponding to Pm2

i

and connections corresponding to Pm1
i can be set up through

the same FSUs of different interstage links. We say that matrix

Pm2
i can be merged with matrices Pm1

i . For instance, let

Pm2

g+h+1 =

[
0 1
0 0

]
(30)

which corresponds to (I1, O2, m2). This matrix can be

merged with m2

m1
matrices

Pm1

a+b+1 = · · · = Pm1

a+b+
m2
m1

=

[
0 0
1 0

]
, (31)

which correspond to m2

m1
connections (I2, O1, m1), and

all these connections can use the same FSUs in inter-

stage links. After the merging operation we will have

(c′ + d′) = m2

m1
· (e′ + f ′) permutation matrices, each using

m1 FSUs. In total, connections represented by all permutation

matrices use not more than:

(a+ b) ·m1 + (g + h) ·m2 + (c′ + d′) ·m1 = n (32)

FSUs, i.e., k � n is sufficient to set up any C, i.e., the

switching fabric is RNB.

Example 1. As an example, let us consider the 2 × 2
WSW1 switching fabric with n = 16 , z = 2, m1 = 1,

m2 = 3, and C = {(I1[1], O1[1], 1); (I1[2], O1[2], 1);
(I1[3], O1[3], 1); (I1[4], O2[1], 3); (I1[7], O2[4], 1);
(I1[8], O2[5], 3); (I1[11], O2[8], 3); (I1[14], O2[11], 3);
(I2[1], O1[7], 1); (I2[2], O1[8], 1); (I2[3], O1[9], 1);
(I2[4], O1[10], 1); (I2[5], O1[11], 1); (I2[6], O1[12], 1);
(I2[7], O1[13], 1); (I2[8], O1[4], 3); (I2[11], O1[14], 3);
(I2[14], O2[14], 3)}. C is represented by matrices

Hm1 =

[
3 1
7 0

]
and Hm2 =

[
0 4
2 1

]
.

The number of permutation matrices for Hm1 , which after

decomposition cannot be merged with other matrices, is equal

to cm1

min = (b + d) = 1. This means that (b + d) �
(a + c), and because of equations (18) and (19), we have

(e + g) � (f + h), so cm2

min = (e + g), and such is in

this example, since cm2

min = (e + g) = 2. Matrix Hm1

can be divided into (b + d) = 1 permutation matrix and

Hm2 – into (e + g) = 2 permutation matrices. For Hm1 ,

Pm1
1 =

[
0 1
1 0

]
, we get Hm1

1 = Hm1 − Pm1
1 =

[
3 0
6 0

]
. For

Hm2 the permutation matrices are Pm2
1 = Pm2

2 =

[
0 1
1 0

]
,

and we get Hm2
1 = Hm2 − Pm2

1 − Pm2
2 =

[
0 2
0 1

]
. We can

notice that Hm1 and Hm2 correspond to case 4, i.e., matrices[
a′ 0
c′ 0

]
and

[
0 f ′

0 h′

]
. We have c′ = 6 and f ′ = 2 so equation

(28) is true, and similarly, since d′ = 3 and e′ = 1, equation

(29) is also true. Matrix Hm2
1 can be further decomposed into

matrices Pm2
3 =

[
0 1
0 0

]
, Pm2

4 =

[
0 1
0 0

]
, and Pm2

5 =

[
0 0
0 1

]
,

and Hm1
1 – into matrices Pm1

2 = Pm1
3 = Pm1

4 =

[
1 0
0 0

]
,

Pm1
5 = Pm1

6 = Pm1
7 =

[
0 0
1 0

]
, and Pm1

8 = Pm1
9 = Pm1

10 =[
0 0
1 0

]
. Matrix Pm2

3 , which corresponds to one 3-slot connec-

tion, can be merged with m2

m1
= 3 matrices (they correspond to

three 1-slot connections represented in Hm1
1 ), and these may be

matrices Pm1
5 , Pm1

6 , and Pm1
7 . Similarly, Pm2

4 can be merged

with Pm1
8 , Pm1

9 , and Pm1
10 , while Pm2

5 – with Pm1
2 , Pm1

3 , and

Pm1
4 . All connections represented by merged matrices can used

the same FSUs in interstage links. After merging, connections

will use (c+ d) ·m1 + (e+ g) ·m2 + (a′ + c′) ·m1 = n = 16
in total, and not more FSUs will be needed. All permutation

matrices, connections they represent, and assigned FSUs in

interstage links, are listed in Tab. I.

From Theorem 1 we can see that the upper bound for the

number of FSUs in interstage links k depends on z, n, mx,

and do not depend on the number of input/output fibers r. To
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TABLE I
ASSIGNMENT OF FSUS FOR CONNECTIONS IN EXAMPLE 1.

Perm. Merged Merged Assigned
matrix perm. Connection Connection FSUs

matr.

P
m1
1 — (I1[7], O2[4], 1) — 1

— (I2[1], O1[7], 1)

P
m2
1 — (I1[4], O2[1], 3) — 2—4

— (I2[8], O1[4], 3)

P
m2
2 — (I1[8], O2[5], 3) — 5—7

— (I2[11], O1[14], 3)

P
m2
3 (I1[11], O2[8], 3) 8—10

P
m1
5 (I2[2], O1[8], 1) 8

P
m1
6 (I2[3], O1[9], 1) 9

P
m1
7 (I2[4], O1[10], 1) 10

P
m2
4 (I1[14], O2[11], 3) 11—13

P
m1
8 (I2[5], O1[11], 1) 11

P
m1
9 (I2[6], O1[12], 1) 12

P
m1
10 (I2[7], O1[13], 1) 13

P
m2
5 (I2[14], O2[14], 3) 14—16

P
m1
2 (I1[1], O1[1], 1) 14

P
m1
3 (I1[2], O1[2], 1) 15

P
m1
4 (I1[3], O1[3], 1) 16
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Fig. 5. Number of FSUs k versus mmax for selected n in SSNB and RNB
WSW1 switching fabrics.

compare k in RNB and SSNB switching fabrics, we should

use the same parameters in both networks, however, in SSNB,

conditions are derived for m limited to certain value mmax

and in RNB, we have a number of connection rates z. Only

for z = mmax we have the same set of connection rates, i.e.

m1 = 1,m2 = 2, . . . ,mz = mmax, and we can compare

RNB with SSNB. In our comparison, we also limit mmax to

not more than n/2, since when any mx in RNB is greater than

n/2, in each input link we may have only one such connection,

which correspond to the space-division switching case, and

all connections with mx > n/2 can be represented by one

connection matrix. Charts presenting the relationship between

SSNB and RNB for selected values of n and mmax � 20 are

plotted in Fig. 5. When mmax grows, k also grows in both kind

of switching fabrics, however, this number is always smaller

in RNB for about 50%.

VI. CONCLUSIONS

We considered WSW1 switching fabrics for elastic optical

switching nodes. For switching fabrics of capacities r > 2
we derived the upper bound for rearrangeablility. This upper

bound may be improved, but for now we only did it for the

case r = 2. For WSW1 with r = 2 k = n is necessary and

sufficient for the network to be RNB. When r > 2, we are

able to show (this is not included in the paper), that at least

n + 1 FSUs in interstage links are needed. The better upper

bound in this case are the subject of future work.
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