
Software Metrics Reduction for Fault-proneness 
Prediction of Software Modules 

Yunfeng Luo1, Kerong Ben1, Lei Mi1 
 

1 Department of Computer Engineering Navy University of Engineering 
Wuhan, China  

hehelyf@gmail.com, benkerong08@21cn.com, milei1981@126.com 

Abstract. It would be valuable to use metrics to identify the fault-proneness of 
software modules. However, few research works are on how to select 
appropriate metrics for fault-proneness prediction currently. We conduct a 
large-scale comparative experiment of nine different software metrics reduction 
methods over eleven public-domain data sets from the NASA metrics data 
repository. The Naive Bayes data miner, with a log-filtering preprocessor on the 
numeric data, is utilized to construct the prediction model. Comparisons are 
based on the analysis of variance. Our conclusion is that, reduction methods of 
software metrics are important to build adaptable and robust software fault-
proneness prediction models. Given our results on Naive Bayes and log-
filtering, discrete wavelet transformation outperforms other reduction methods, 
and correlation-based feature selection with genetic search algorithm and 
information gain can also obtain better predicted performance. 
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1   Introduction 

Software fault static prediction technologies are defined as the methods which predict 
the amount or distribution of the software faults based on the software metrics [1]. In 
general, it aims at answering one or several of the following questions [2]: 1) Which 
metrics that are easy to be collected are good fault predictors? 2) Which models, 
quantitative, qualitative, hybrid, etc., should be used for fault prediction? 3) How 
accurate are those models? Software metric is a measure of some property of a piece 
of software or its specifications. It is very common nowadays for an organization to 
maintain several software metrics repositories for each undertaken project [3]. The 
metrics which are appropriate for predicting software fault-proneness have product 
and process categories [4]. The datasets comes from the NASA Metrics Data (MDP) 
repository involves more than 40 method-level metrics, and 8 class-level metrics [5]. 
Menzies proposed that mining static code attributes to learn fault predictors was 
useful, but he suggested not seeking “best” subsets of static code attributes, and 
building fault predictors using all available attributes metrics, followed by finding the 
most appropriate particular subset for a particular domain[6]. It is evident that the set 
of metrics should be reduced to the minimum set of representative parameters in order 



to avoid metrics which are not useful in the analysis or which introduce noise in the 
evaluation of data [7]. We organize a large-scale comparative experiment of nine 
different software metrics reduction methods over eleven public-domain data sets 
from the NASA MDP. We utilize Naive Bayes data miner with a log-filtering 
preprocessor on the numeric data to construct the prediction model [6]. Comparisons 
are based on the analysis of variance (ANOVA), which is a statistical technique of 
examining whether independent groups or populations are significantly different from 
one another. In our study, the one-way ANOVA is selected to analyze the 
performances of nine reduction methods of metrics.  

2   Related Work 

Since some independent variables might be highly correlated, i.e. multicollinearity, 
and serious multicollinearity problem will affect the stability of the results of 
regression analysis. Some methods are proposed to overcome the multicollinearity 
problem. Nagappan utilized principal component analysis (PCA) to reduce the 
software metrics [8]. Shatnawi analyzed the multicollinearity through three tests [9]: 
the Spearman correlation analysis, the Variance inflation factor (VIF) analysis, and 
the condition number analysis (use 30 as the cutoff value). The Spearman correlation 
in the metrics group was calculated first. After the high correlations were noted, they 
calculated the condition number and the VIFs for the group. If the condition number 
was greater than 30, the metrics that had the highest VIF value was dropped, and the 
condition number was recalculated; this process continued until the condition number 
was below 30; the remaining metrics were candidates to enter the MLR models. A 
correlation-based feature selection technique (CFS) was applied to down-select the 
best predictors out of the 21 independent variables in the datasets [10]. This involves 
searching through all possible combinations of variables in the dataset to find which 
subset of variables works best for prediction.  

Olague utilized simple correlation calculation to ascertain whether the currently 
available metrics can predict the initial quality of a software system [11]. Zhou 
utilized univariate regression analysis to examine the effect of each metric separately, 
identifying the metrics which are significantly related to fault-proneness of classes 
and identifying potential fault-proneness predictors to be used in multivariate analysis 
[12]. Vandecruys went through an input selection procedure using a 2χ  -based filter 

[13]. First, the observed frequencies of all possible combinations of values for class 
and variable are measured. Based on this, the theoretical frequencies, assuming 
complete independence between the variable and the class, are calculated. The 
hypothesis of equal odds provides a 2χ test statistic; higher values allow one to reject 

the null hypothesis of equal odds more confidently; hence, these values allow one to 
rank the variables according to predictive power. 

Menzies ranked the attributes using the information gain [6]. If A is a metric and C 
is the class, n(c) is the examples amount of every class, ∑ ∈

=
Cc

cnN )( , p(c)=n(c)/N, 

and p(c/a) is the probability of the metric a belongs to class c. Eq.1 gives the entropy 
of the class before and after observing the metric. 
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Each metric Ai is assigned a score based on the information gain between itself and 
the class: 
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3   Proposed Methods 

In this section, we introduce the data reduction techniques firstly, which include nine 
data reduction methods. The Naive Bayes data miner, with a log-filtering 
preprocessor on the numeric data, is utilized to construct the prediction model. Finally, 
we describe our model evaluation criteria and the analysis of variance. 

3.1   Data Reduction Techniques 

Feature extraction and feature selection are two different approaches for the reduction 
of dimensionality. Feature extraction involves linear or nonlinear transformation from 
the original feature space to a new one of lower dimensionality. Although it does 
reduce the dimensionality of the vectors fed to the classifier, the number of features 
that must be measured remains the same. Feature selection, on the other hand, directly 
reduces the number of original features by selecting a subset of them that still retains 
sufficient information for classification. In general, feature selection approaches can 
be grouped into two categories: filter methods and wrapper methods [14]. Acquiring 
no feedback from classifiers, the filter methods estimate the classification 
performance by some indirect assessments, such as distance measures which reflect 
how well the classes separate from each other. The wrapper methods, on the contrary, 
are classifier-dependent. Based on the classification accuracy, the methods evaluate 
the “goodness” of the selected feature subset directly, which should intuitively yield 
better performance. In spite of the good performance, the wrapper methods have 
limited applications due to the high computational complexity involved. Filters and 
wrappers hava the similar search approach. One popular filter metrics for 
classification problems are correlation. We choose CFS as our filter method. For 
wrapper method, we choose J48 as the classifier. Two search approaches, best first 
and genetic algorithm, are choosed for subset selection. 

For feature extraction, we focus on two popular and effective methods of lossy 
dimensionality reduction [15]: principal component analysis (PCA) and discrete 
wavelet transformation (DWT). PCA searches for k n-dimensional orthogonal vectors 
that can best be used to represent the data, where nk ≤ . The original data are thus 
projected onto a much smaller space, resulting in dimensionality reduction. Unlike 
feature subset selection, which reduces the metric set size by retaining a subset of the 
initial set of metrics, PCA combines the essence of metrics by creating an alternative, 
smaller set of variables. Then the initial data can be projected onto this smaller set. 



PCA often reveals relationships that are not previously suspected and thereby allows 
interpretations that would not ordinarily result. DWT is a linear signal processing 
technique that, that is applied to transform a data vector X  to a numerically 
different vector 'X  of wavelet coefficients. The two vectors are of the same length. 
The usefulness lies in the fact that the wavelet transformed data can be truncated. A 
compressed approximation of the data can be retained by storing only a small fraction 
of the strongest of the wavelet coefficients. 

A particular reduction method evaluated features based on information gain, which 
evaluates the worth of a metric by measuring the information gain with respect to the 
class. Menzies ranked the attributes using the information gain [6]. In our study, we 
got a metrics queue based the value of information gain, and choose top 3, 4 and 5 
metrics respectively to enter the prediction model. 

The No-Reduction method, which does not reduce metrics and allows all metrics to 
enter the prediction model, is used as a baseline method to compare against the 
investigated metrics reduction methods. With these comparisons, we can determine 
whether some (or even all) of the metrics reduction methods are better than No-
Reduction method in terms of their predictive accuracy on faults or vice versa. 

These reduction methods are summarized in Table 1. These methods are 
implemented in the WEKA data mining tool [16]. 

Table 1.  Software metrics reduction methods 

No. Reduction methods Description 

1 CfsSubsetEval+ BestFirst Evaluates the worth of a subset of attributes by considering the 
individual predictive ability of each feature along with the 
degree of redundancy between them. The search approach is 
greedy hill-climbing augmented with a backtracking facility. 

2 CfsSubsetEval+ GeneticSearch Performs a search using the simple genetic algorithm described 
in Goldberg 

3 InfoGainAttributeEval (top 3) Evaluates the worth of an attribute by measuring the 
information gain with respect to the class. Choose top 3 
features in the features rank. 

4 InfoGainAttributeEval (top 4) Choose top 4 features in the features rank. 

5 InfoGainAttributeEval (top 5) Choose top 5 features in the features rank. 

6 WrapperSubsetEval+J48+Best
First 

Evaluates attribute sets by using a learning scheme. Cross 
validation is used to estimate the accuracy of the learning 
scheme (we choose J48 ) for a set of attributes. The search 
method is BestFirst. 

7 WrapperSubsetEval+J48+ 
GeneticSearch 

The search method is GeneticSearch 

8 DWT A filter for wavelet transformation. 
9 PCA Performs a principal components analysis and transformation 

of the data. Dimensionality reduction is accomplished by 
choosing enough eigenvectors to account for some percentage 
of the variance in the original data -- default 0.95 (95%). 

10 No-Reduction Allow all metrics to enter the prediction model, which is used 
as a baseline method. 



3.2   Classification Technique and Evaluation Strategy 

We use Naïve Bayes classifiers as our prediction model to evaluate the metrics 
reduction methods [6]. Naïve Bayes classifier is based on Bayes’ Theorem. Formally, 
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that is, given fragments of evidence Ei and a prior probability for a class P(H), the 
posteriori probability P(H|E) is calculated. The predicted variable is whether one or 
more faults exist in the given module.  

We use the following set of evaluation measures. The Probability of Detection (pd) 
is defined as the probability of the correct classification of a module that contains a 
fault: (Note that pd is also called recall). The Probability of False alarm (pf) is defined 
as the ratio of false positives to all non-defect modules.For convenience, we say that 
notpf is the complement of pf: notpf=1-pf. In practice, engineers balance between pf 
and pd. To operationalize this notion of balance, bal is defined to be the Euclidean 
distance from the sweet spot pf=0, pd=1 to a pair of (pf, pd).  
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Hence, better and higher balances fall closer to the desired sweet spot of pf=0, 
pd=1. 

3.3   Analysis of variance 

In our study, the one-way ANOVA design is selected to analyze the performances of 
the nine metrics reduction methods. In this design, a reduction method corresponds to 
a group. 

Let 
jnj j

YY ,,1 
 represent a random sample of 

jn  observations taken from the 

population of group j. In our experiment, ten different data mining algorithms are 
used. In addition, eleven datasets are available and the dependent variable is known 
for all the datasets. Yij, the ith observation in group j (where i = 1,2,…,11 and j = 
1,2,…,10), can be represented by the following model 

ijjijY εδµ ++=                     (5) 

where µ  is the overall effect to all the observations; µµδ −= jj is the treatment 

effect related to the jth group; 
jijij Y µε −=  is the experimental error associated with 

the ith observation in group j; 
j

µ is the true mean of the jth group. The F statistic 

validates whether the 10 population means are equal. In one way ANOVA, between 
group variance is denoted by 2

bS , and with group variance is denoted by 2
wS , the 

following equation shows how the F-test is calculated in our experiment. 
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4   Empirical Evaluation 

4.1   Data 

Eleven data sets are available in MDP, as shown in Table 2. Each module of each 
datasets describes the metrics of corresponding module, plus the number of defects 
known for that module. The error count column was converted into a Boolean metrics 
called fault- proneness? as follows:  

)1 (?- ≥= counterrorpronenessFault  

Finally, the error density column is removed (since it can be derived from line 
counts and error count). The preprocessed data sets have two categories: 38 attributes 
and 22 attributes, plus one target attribute (fault-proneness?), and include Halstead, 
McCabe, lines of code, and other miscellaneous metrics [6]. The difference of two 
categories is that one includes the miscellaneous metrics and the other doesn’t. 

Menzies found that these values in the data sets formed an exponential distribution 
with many small values and a few much larger values. So they suggested that a 
logarithmic filter on all numeric values might improve predictor performance [17]. 
Such a filter replaces all numerics n with their logarithms, Ln(n). In our experiment, 
we applied a logarithmic filter on all numeric values, and added all numbers in the 
datasets with 0.00001 to avoid numerical errors with ln(0). 

Table 2.  Datasets used in this study 

Data set language  Total LOC #modules %fault-proneness 
CM1 C  20K  505 16.04  
JM1 C  315K  10878 19.32  
KC1 C++  43 K  2107 13.91  
KC3 java  18K  458 6.33  
KC4 Perl  25 K  125 48  
MC1 C&C++  63K  9466 0.64  
MW1 C  8K  403 6.70  
PC1 C  40K  1107 6.59  
PC2 C  26K  5589 0.39  
PC3 C  40K  1563 10.24  
PC4 C  36K  1458 12.21  

4.2   Experimental Result 

We applied nine different software metrics reduction methods shown in Table 1 in 
addition to No-Reduction, over eleven public-domain data sets in Table 2. The 
metrics subsets, chosen by reduction method 6 over datasets KC3, PC2 and PC3, and 
chosen by reduction method 7 over dataset PC2 respectively, are null sets. Reduction 
method 9 classified all modules in MC1 as no fault-proneness. Therefore, the values 
of pd, notpf and bal calculated by these reduction methods over corresponding 
datasets are null. The detailed predicted results are shown in Table 3 - Table 5. 



Table 3. The predicted results for pd 

Reduction 
Methods CM1 JM1 KC1 KC3 KC4 MC1 MW1 PC1 PC2 PC3 PC4 

1 0.679  0.419  0.768  0.552  0.833  0.295  0.630  0.685  0.318  0.819  0.860  
2 0.728  0.423  0.768  0.552  0.783  0.328  0.667  0.822  0.682  0.869  0.899  
3 0.210  0.199  0.741  0.448  0.817   0.593  0.342  0.773  0.775  0.978  
4 0.370  0.222  0.853  0.483  0.867  0.033  0.593  0.767  0.773  0.863  0.972  
5 0.469  0.221  0.860  0.586  0.833  0.426  0.704  0.849  0.773  0.856  0.916  
6 0.222  0.346  0.379   0.867  0.262  0.222  0.616    0.910  
7 0.457  0.330  0.696  0.862  0.700  0.459  0.704  0.753   0.844  0.848  
8 0.617  0.655  0.846  0.828  0.783  0.902  0.704  0.712  0.727  0.813  0.876  
9 0.222  0.254  0.556  0.517  0.583   0.037  0.342  0.318  0.556  0.826  

10 0.679  0.475  0.846  0.862  0.700  0.754  0.704  0.822  0.727  0.881  0.910  

Table 4.  The predicted results for notpf 

Reduction 
Methods CM1 JM1 KC1 KC3 KC4 MC1 MW1 PC1 PC2 PC3 PC4 

1 0.613  0.831  0.641  0.928  0.692  0.950  0.803  0.788  0.969  0.623  0.784  
2 0.590  0.829  0.641  0.907  0.723  0.939  0.803  0.638  0.884  0.556  0.765  
3 0.950  0.929  0.698  0.862  0.677   0.875  0.900  0.866  0.678  0.709  
4 0.894  0.884  0.596  0.823  0.631  0.979  0.840  0.680  0.880  0.588  0.709  
5 0.840  0.872  0.573  0.797  0.692  0.843  0.771  0.589  0.878  0.628  0.747  
6 0.913  0.865  0.871   0.754  0.942  0.963  0.675    0.772  
7 0.757  0.842  0.716  0.655  0.800  0.781  0.750  0.676   0.602  0.773  
8 0.604  0.617  0.598  0.690  0.738  0.897  0.761  0.696  0.809  0.670  0.710  
9 0.906  0.919  0.809  0.893  0.862   0.981  0.907  0.975  0.795  0.813  

10 0.550  0.764  0.592  0.643  0.800  0.675  0.734  0.582  0.786  0.547  0.675  

Table 5. The predicted results for bal 

Reduction 
Methods CM1 JM1 KC1 KC3 KC4 MC1 MW1 PC1 PC2 PC3 PC4 

1 0.645  0.572  0.698  0.679  0.753  0.500  0.703  0.732  0.517  0.704  0.818  
2 0.652  0.574  0.698  0.676  0.751  0.523  0.726  0.715  0.761  0.673  0.819  
3 0.440  0.432  0.719  0.598  0.737   0.699  0.530  0.813  0.722  0.793  
4 0.549  0.444  0.696  0.613  0.722  0.316  0.691  0.720  0.818  0.693  0.793  
5 0.608  0.442  0.682  0.674  0.753  0.579  0.735  0.690  0.818  0.718  0.811  
6 0.447  0.528  0.552   0.802  0.477  0.449  0.645    0.827  
7 0.579  0.513  0.706  0.737  0.745  0.587  0.726  0.712   0.698  0.807  
8 0.610  0.636  0.696  0.749  0.760  0.899  0.731  0.704  0.765  0.732  0.777  
9 0.446  0.469  0.658  0.650  0.690  0.293  0.319  0.530  0.518  0.654  0.819  

10 0.609  0.593  0.692  0.730  0.745  0.712  0.718  0.679  0.755  0.669  0.762  
Based on data from Table 3 - Table 5, we use the one-way ANOVA design to 

analyze the performances of the nine metrics reduction methods Fig. 1 shows the 
values of the mean and standard error of mean for pd, notpf and bal. We observe that 
DWT (method 8) performs the best on mean for pd, PCA (method 9) performs the 
best for notpf, and DWT performs the best for bal. It is also worth noting that the 
means of pd, notpf and bal vary according to the reduction methods, so it is for the 
standard error. 



 
(a)                          (b)                       (c) 

Fig. 1. The error chart for (a) pd, (b) Notpf , (c) bal 

Our null hypothesis is that there is no significance difference for performances of 
the ten metrics reduction methods. The F-value is selected at 90% confidence level 
(i.e., α = 0.10) [3]. The p-value related to the F-test is also provided. Table 6 - Table 8 
present the results of ANOVA. Since the p-value is well below the significance level 
α, we can reject the null hypothesis and conclude that there is a significant difference 
in the means of the 10 metrics reduction methods. 

Table 6.  ANOVA for pd 

 
Sum of 
Squares df 

Mean 
Square F p-value 

Between Groups 1.111 9 0.123 2.615 0.010 
Within Groups 4.437 94 0.047   
Total 5.548 103    

Table 7.  ANOVA for notpf 

 Sum of 
Squares 

df Mean 
Square 

F p-
value 

Between Groups 0.386 9 0.043 3.701 0.001 
Within Groups 1.088 94 0.012   
Total 1.473 103    

Table 8.  ANOVA for bal 

 Sum of 
Squares 

df Mean 
Square 

F p-value 

Between Groups 0.206 9 0.023 1.783 0.082 
Within Groups 1.208 94 0.013     
Total 1.415 103       

Table 9 presents the description of pd, notpf and bal in detail. The results indicate 
that the all metrics reduction methods improve notpf, and most methods improve the 
bal compared with NoRedcution. But at the same time, the pd decreases with the 
increase of notpf. The only exception is DWT. The means of pd and notpf for DWT 
both increase compared with NoRedcution. It is also worth noting that the pf for 
CfsSubsetEval+ GeneticSearch (method 2) and InfoGainAttributeEval+top5 (method 
5) have a minimum decrease among the other 8 reduction methods compared with 
NoRedcution. We conclude that the metrics reduction methods could improve the 
predicted performance on average, the DWT outperforms the other reduction methods, 



and CFS with genetic search algorithm and information gain also could obtain better 
predicted performance. 

Table 9.  The data description for pd, notpf and bal  

Reduction 
Methods 

N 
pd not_pf Bal 

Mean 
Std. 

Deviation Mean 
Std. 

Deviation Mean 
Std. 

Deviation 
1 11 0.623 0.203 0.784 0.130 0.666 0.099 
2 11 0.684 0.182 0.752 0.133 0.688 0.084 
3 10 0.588 0.273 0.815 0.110 0.648 0.140 
4 11 0.618 0.305 0.781 0.133 0.641 0.151 
5 11 0.681 0.226 0.736 0.110 0.683 0.109 
6 8 0.478 0.283 0.844 0.101 0.591 0.152 
7 10 0.665 0.187 0.735 0.073 0.681 0.091 
8 11 0.769 0.093 0.708 0.091 0.733 0.076 
9 10 0.421 0.228 0.886 0.066 0.575 0.145 
10 11 0.760 0.124 0.668 0.094 0.697 0.056 

Total 104 0.635 0.232 0.768 0.120 0.663 0.117 

5   Conclusion and Future Work 

In this paper, we have conducted a large-scale comparative experiment of nine 
different software metrics reduction methods over eleven public-domain data sets 
from the NASA Metrics Data (MDP) repository. It is shown that, on average, there is 
a significant difference in the predicted performance of the different metrics reduction 
methods. We also demonstrate that the metrics reduction methods can improve the 
predicted performance, the DWT outperforms the other reduction methods on average, 
and CFS with genetic search algorithm and information gain can also obtain better 
predicted performance. These two conclusions are critical for complex data mining 
problems such as software fault-proneness classification. The practitioner should not 
solely rely on sophisticated and/or robust algorithms to generate accurate predictions. 
As demonstrated in our study, it is advised to use some feature reduction methods to 
reduce software metrics in order to improve the predicted performance. 

A source of bias in this study is the set of data reduction methods explored by this 
study. Data mining is a large and active field and any single study can only use a 
small subset of the known data mining algorithms. Therefore, we only suggest that 
DWT does best in the chosen nine typical reduction methods. Future works can 
investigate whether the classifier would affect the performance of reduction methods. 
In addition, it would be worthwhile to investigate whether the metrics reduction 
method is effective for the other metrics, such as object-oriented metrics and software 
process metrics. 
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