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Abstract. Software cache promises to achieve programmability on Cell 
processor. However, irregular references couldn’t achieve a considerable 
performance improvement since the cache line is always set to a specific size. 
In this paper, we propose an adaptive cache line prefetching strategy which 
continuously adjusts cache line size during application execution. Therefore, 
the transferred data is decreased significantly. Moreover, a corresponding 
software cache - adaptive line size cache is designed. It introduces a hybrid Tag 
Entry Arrays, with each mapping to a different line size. It’s a hierarchical 
design in that the misshandler is not invoked immediately when an address is a 
miss in the short line Tag Entry Array. Instead, the long line Tag Entry Array is 
checked first, which significantly increases the hit rate. Evaluations indicate 
that improvement due to the adaptive cache line strategy translates into 3.29 to 
5.73 speedups compared to the traditional software cache approach. 
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1   Introduction 

Irregular application is widely used in scientific computing, which exposes unclear 
aliasing and data dependence information. Such applications are frequently seen in 
reservoir numerical simulation, molecular dynamics, etc. 

Heterogeneous multicore is an area and energy efficient architecture to improve 
performance for domain-specific applications. The Cell processor is a representative 
heterogeneous multicore, which comprises a conventional Power Processor Element 
(PPE) that controls eight simple Synergistic Processing Elements (SPEs), as 
illustrated in Figure 1. PPE has two levels of cache that are coherent with the globally 
memory, while SPEs don’t have cache but each has 256KB of local store. PPE can 
access main memory directly while SPE only operates directly on its local store and 
works as an accelerator. Software cache is a common approach to automatically 
handle data transfers for irregular reference, providing the user with a transparent 
view of the memory architecture. 
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There has been substantial research [1-6] on software cache specifically for Cell 
processor. Eichenberger et al. [1] propose a compiler-controlled software cache. It’s a 
traditional 4-way set-associative cache implemented in software. It adopts the LRU 
policy and SIMD mode to look up for a match among the four tags in a set. 

 
Balart et al. [2] demonstrate a software cache for Cell which adopts hashed list for 

lookup and allows for full associative. This design enables a user to determine code 
regions guaranteed not to have any cache conflicts. In such a region, the user can 
reorder lookup and misshandler operations, so communication and computation can 
be efficiently overlapped. The strategy usually performs well for specific loops 
containing few cache accesses with high temporal locality, but it introduces a large 
implementation overhead for the general applications. 

The COMIC runtime system proposed by Lee et al. [3] provides the application 
with an illusion of a shared memory, in which the PPE and the SPEs can access the 
shared data. The management of synchronization and coherence is centralized in the 
PPE and the release consistency is achieved by software cache. 

A hybrid access-specific software cache is presented by Marc Gonzalez et al. [4, 5]. 
It classifies memory accesses into high locality and irregular, and the corresponding 
high locality cache and the transactional cache are designed. The former applies the 
write-back mechanism while the latter supports the write-through policy. Its 
motivation is similar to the direct buffer plus software cache approach. 

Chen et al. [6] propose an integrated software cache and direct buffer approach so 
as to efficiently execute the loops that include both references. Their solution provides 
compile time analysis and runtime support to minimize the coherency operations. 

The software caches usually suffer from poor performance, especially when the 
irregular reference is encountered. The solutions above always set the cache line to a 
specific size, which introduces the reduction of data transfers and increases the 
memory bandwidth overhead. The cache design with adaptive line size could 
obviously improve the irregular application performance. There are some proposals [7, 
8] for the hardware adaptive cache line solutions. But the SPE on Cell has no 
hardware cache, so we focus on adaptive cache line designs implemented in software. 

To the best of our knowledge, the adaptive cache line scheme proposed by 
Sangmin Seo et al. [9] is the only strategy which continuously adjusts the cache line 
on Cell processor. Their design is called extend set-index cache (ESC), which is based 
on 4-way set-associative cache. Nevertheless, the number of TEs could be greater 
than the number of cache lines. The adaptive strategy in ESC utilizes the runtime to 
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adapt to characteristics specific to the loop considering that the loops are invoked 
many times. But their strategy is applied to parallel loops only, and it isn’t sensitive to 
variation across iteration of the loop. Additionally, its storage overhead is large. 

In this paper, we propose an adaptive cache line size strategy, which adaptively 
adjusts cache line size according to the characteristics specific to the irregular 
reference. The solution gathers the addresses accessed by the irregular reference and 
divides them into long line addresses (long addresses) and short line addresses (short 
addresses). The algorithm adaptively chooses the optimal cache line size, regardless 
of how many times the loop is invoked. 

Moreover, a corresponding software cache design - adaptive line size cache (ALSC) 
is presented. It is based on the 4-way set-associative cache (4WC) and adopts a hybrid 
Tag Entry Arrays, a long line Tag Entry Array and a short line Tag Entry Array, with 
each mapping to a different line size. The operations to the long line Tag Entry Array 
is the same as the traditional 4WC, but when a miss occurs in the short line Tag Entry 
Array, the misshandler is not invoked at once. Instead, the long line Tag Entry Array 
is checked. So the miss rate is significantly decreased. 

In order to implement cache replacement policy for cache design with multiple line 
sizes, we present a novel LRU policy - IndAlign_LRU. It adopts a link array, with 
each link mapping to one set in the long line Tag Entry Array and two successive sets 
in the short line Tag Entry Array. The data field of the link node stores the cache line 
index. IndAlign_LRU policy is implemented by moving nodes to the link head or tail. 

The experimental results show that our approach obtains speedup factors from 3.29 
to 5.73 compared to the traditional software cache scheme with specific line size. 
Moreover, it significantly reduces the miss rate and the total transferred data size. 
Additionally, the adaptive approach we proposed shows good scalability. 

The rest of the paper is organized as follows. The adaptive software cache line 
algorithm is presented in Section 2. Section 3 describes the ALSC design. The ALSC 
operational model is presented in Section 4. Section 5 evaluates our adaptive 
approach. The last section concludes the paper. 

2   The Adaptive Software Cache Line Algorithm 

The adaptive cache line prefetching scheme, which is based on our previous work 
[15], consists of four steps. A loop with normalized boundaries is extracted from CG 
in the NAS benchmark suite for a clear explanation, as illustrated in Figure 2a. And 
the adaptive strategy is shown in Figure 2b. 

The first step is to initialize the cache lines. For the sake of simplicity, two cache 
lines, 128B and 256B, are introduced. 

The second step is to divide the addresses into long and short addresses. Our 
adaptive algorithm is applied to each iteration range. We propose a dynamic address 
collecting solution, which means the address collecting is stopped when the first set 
conflict is encountered. 
for(k=0; k<ub; k++) 
  sum += a[k]*p[colidx[k]]; 

a. Simplified original code 



/*step1: initialization*/ 
lb_tmp=0; 
Longln=256;//size of long line 
Shortln=128;//size of short line 
do{ 
  /*step2: the addresses dividing process*/ 
  ub_tmp = collect_dynamic(lb_tmp, ub_tmp); 
  for(k=lb_tmp; k<ub_tmp; k++) 
    ea[k] = &p[colidx[k]]; 
  /*align the addresses collected to a 256B boundary*/ 
  for(k=lb_tmp; k<ub_tmp; k++) 
    work_ea[k] = ea[k]&(~(Longln-1)); 
  /*search the same elements in array work_ea, e.g., 
work_ea[k1] = work_ea[k2]*/ 
  search_same_data(work_ea, k1, k2); 
  if((ea[k1]&(~(Shortln-1)))!=(ea[k2]&(~(Shortln-1)))) 
    Take ea[k1], ea[k2] as long addresses; 
  Take the rest elements in array ea as short ddresses; 
  /*step3: prefetch the long and short lines*/ 
  prefetch(lb_tmp, ub_tmp); 
  /*step4: computation loop within the iteration range*/ 
  for(k=lb_tmp; k<ub_tmp; k++) 
    sum = sum + a[k]*cache_buffer[k-lb_tmp] 
  /*The return value is used as lb_tmp in next loop*/ 
  lb_tmp = ub_tmp; 
}while(lb_tmp < ub) 

b. After the adaptive software cache line strategy 

Fig. 2. Example for adaptive cache line size algorithm 

To explain it clearly, an example is shown in Figure 3. We assume the following: 
• There are seven memory requests with addresses ranging from a1 to a7 in an 

iteration range and they are all mapped to the addresses in the range of 256N - 
(256(N+2)-1)). 

• The data located in addresses from 256N to (256(N+1)-1) is represented Li, and 
the former 128B is represented by Li-1 while the latter 128B is expressed as Li-2. 
Li-1 and Li-2 are “adjacent” lines. 

• The data located in addresses from 256(N+1) to (256(N+2)-1) is represented Lj, 
and the former 128B is represented by Lj-1 while the latter 128B is expressed as 
Lj-2. Lj-1 and Lj-2 are “adjacent” lines. 

 

All the seven addresses are taken as short addresses initially, as illustrated in 
Figure 3a. The addresses a1 and a3 are mapped to the “adjacent” lines. If a short line is 
fetched from the memory, two DMA operations which respectively fetch the Li-1 and 
the Li-2 are required. So our adaptive strategy makes the two short lines Li-1 and the Li-2 
merged into a long line Li. And the addresses a1 and a3 are taken as long addresses. 
Obviously, the data required can be obtained in one DMA. Analogically, addresses a2, 
a4, a5 are regarded as long addresses. 



The data located in addresses a6 and a7 is in Lj-2, and there’s no memory 
requirement in its “adjacent” line Lj-1, so the address a6 and a7 are both taken as short 
line addresses. 

 
The third step is to adaptively prefetch the long and short lines from lower bound 

lb_tmp up to upper bound ub_tmp. 
The last step is the computation loop, which performs the computation. 

3   The Adaptive Line Size Cache Structure 

 
We design a software cache which corresponds to the adaptive cache line algorithm. 
For the sake of simplicity, we describe the cache including only two kinds of lines, 
128B and 256B. It’s composed of the following structures, as depicted in Figure 4. 

The Cache Storage is set to be 64KB in this paper. 
The Cache Parameter1 includes two components, the mask1 and the line size1 (L1). 

L1 is set to be 256B, so the number of the long line (n_L) is 256 (64KB/256B). 
The Tag Entry Array1 is a long address tag lookup table which is composed of S1 

(S1 = n_L/4 = 64) sets. Each TE statically maps to a 256B long line. 
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Fig. 4. The ALSC structure 
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Fig. 3. Example for addresses merging 



The Cache Parameter2 is similar to the Cache Parameter1. The line size2 (L2) is set 
to be 128B and the number of the short line (n_S) is 512. 

In Tag Entry Array2, each tag statically maps to a short line. 
Every set in the Tag Entry Array1 maps to 8 successive short cache lines. The short 

lines are orderly numbered 0, 1, 2, ⋯, 7, 0, 1, 2, ⋯, 7, which are the line indexes. 
In order to implement LRU replacement policy among multiple line sizes, we 

extend the traditional LRU replacement policy and present IndAlign_LRU, which 
adopts an Index Link Array. Its initial information and the mapping relationship 
between the Index Link Array and the cache lines are illustrated in Figure 5. 

 
The Index Link Array is a link array which has S1 links. Each link is mapped to one 

set in the Tag Entry Array1 and two successive sets in the Tag Entry Array2. Each link 
contains 8 nodes, with each node having a data field to store the line index. The data 
filed of link head stores the index of the cache line which is the earliest accessed 
while the data field of the link tail stores the index of the line which is the latest 
accessed. The cache line activity is recorded by moving nodes to the head or the tail. 

The V_dir1 and V_dir2 record the valid bits and the D1 and D2 store the dirty bytes. 
The cache architecture we propose is a hierarchy design. Figure 6 shows set masks 

of the long line address and short line address. Both the numbers of set in Tag Entry 
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Array1 and Tag Entry Array2 are powers of 2, so a bit-wise AND operation instead of 
the hash function is used to improve performance, as shown in (1). 

SetID = (ea & SetMask) >> N_bits (1) 

Where SetID is the number of the set, SetMask is the set mask and 2N_bits equals the 
corresponding cache line size. 

Because the number of the set in Tag Entry Array1 is 64 and the line size1 is 256B, 
the SetID in Tag Entry Array1 is decided by the successive 6 bits, ranging from 8th to 
the 13th bit. Correspondingly, the SetID in Tag Entry Array2 is decided by the bits 
from 7th to the 13th. When the cache receives a memory request with a global address 
ea, if it’s a miss in the Tag Entry Array2, it may be a hit in the Tag Entry Array1. 
Since the number of the bits which decide the SetID is one bit less. 

 

4   The ALSC Operational Model 

The simple ALSC operational flowchart is shown in Figure. 7. 
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Fig. 7. The ALSC operational flowchart 
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Fig. 6. Set masks of the long line address and short line address 



4.1   Lookup_long, Lookup_short, IndAlign_LRU_long, IndAlign_LRU_short 

Both Lookup_long and Lookup_short are the same as the traditional 4WC. 
IndAlign_LRU_long and IndAlign_LRU_short are invoked respectively when the long 
address hit and short address hit occur. 

Suppose a hit of the long address is encountered and the matching set and way is 
set_L and hit_index_L respectively, the set_Lth link nodes whose data fields are 
(2*hit_index_L) and (2*hit_index_L+1) moves to the link tail. This operation is called 
IndAlign_LRU_long. Figure 8a illustrates the operation when hit_index_L is 0. 

Suppose a short line address comes subsequently and the matching set and way is 
set_S and hit_index_S respectively, the set_Lth set in the Tag Entry Array1 and the 
set_Sth set in the Tag Entry Array2 are both mapped to the set_Lth link if the equation 
(set_L*2=set_S) or (set_L*2 +1=set_S) is satisfied. 

If the former or the latter is satisfied, the node whose data field is hit_index_S or 
(hit_index_S+4) moves to the link tail, respectively. The two cases are illustrated in 
Figure 8b and Figure 8c respectively. The operations are called IndAlign_LRU_short. 

 

4.2   Misshandler_long 

For a long address, the function IndAlign(index_L) is defined as follows. If index_L is 
an even number, IndAlign(index_L) is defined as 

IndAlign(index_L) = index_L And (index_L +1). (2) 

If index_L is an odd number, IndAlign(index_L) is defined as 

IndAlign(index_L) = (index_L -1) And index_L. (3) 

When a long address which is mapped to the set_Lth set arrives subsequently and a 
miss occurs, Misshandler_long is invoked, which includes the following phases: 
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Fig. 8. Examples for the operations in ALSC 



Choosing the oldest lines to be the victim. We first get the oldest indexes, index_old 
from the set_Lth link head. The two successive short lines whose indexes are 
IndAlign(index_old) (as defined in (2)(3)) are chosen to be the victims. 

Writing back the dirty bytes and setting the corresponding V_dir bits. 

Fetching the long line required from the main memory and filling the corresponding 
DE. Moreover, the nodes whose data fields are IndAlign(index_old) moves to the tail 
of the set_Lth link, as shown in Figure 8d. 

4.3   Misshandler_short 

For a short address which is mapped to the set_Sth set, IndAlign(index_S) is defined 
as follows. If set_S is an even number, IndAlign(index_S) is defined as 

IndAlign(index_S) = oldest(0, 1, 2, 3). (4) 

If set_S is an odd number, IndAlign(index_S) is defined as 

IndAlign(index_S) = oldest(4, 5, 6, 7). (5) 

The oldest(ind1, ind2, ind3, ind4) means the index of the line which is the earliest 
accessed, with the four parameters in parenthesis denoting the line indexes. 

If a short address, which is mapped to the set_Sth (set_S /2 = set_L) set in the Tag 
Entry Array2 arrives subsequently and a miss occurs, the Tag Entry Array1 is searched 
first. If there’s a valid matching, the operation is similar to IndAlign_LRU_short. 
Otherwise, Misshandler_short is called. A simplified ALSC design is shown in Figure 
9. We assume the address is mapped to the set_Lth link. 
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Fig. 9. A simplified ALSC structure 



Choosing the oldest index (index_old) from the set_Lth link according to (4) or (5) 
after judging the parity of set_S. We assume the index_old is 5. 

Checking the V_dir arrays and writing back the dirty bytes. The V_dir1[2], which is 
mapped by the index_old should be checked first. If it’s valid, the dirty bytes in L[4] 
and L[5] should be written back. Meanwhile, the V_dir1[2] is set to be 0. Otherwise, if 
it’s invalid, the V_dir2[5] is checked. If it’s valid, the dirty data in L[5] is written back. 

Fetching the required short line from the memory, filling the corresponding DE, and 
setting V_dir2[5] to valid. Finally, the node whose data field is 5 moves to the link tail. 

5   Evaluation 

5.1   Evaluation Environments 

The experiment is conducted on a Cell BE blade [10] with two Cell processors 
running at 3.2GHz with 1GB of system memory. In this experiment, the programs are 
bound to one Cell processor to avoid the NUMA effect. 

The performance is measured with Sparse matrix-vector (SpMV) multiplication 
and IS, CG, FT, MG from NAS parallel benchmarks [11]. The sparse matrix 
epb1.mtx is a 14734*14734 symmetric matrix, which is obtained from the University 
of Florida Sparse Matrix Collection [12]. The benchmarks IS, CG, FT, MG are tested 
with CLASS A. The sequential regions are executed on the PPE while the iterations in 
the parallel loops are distributed among the available SPEs. The system runs Fedora9 
(Linux Kernel 2.6.25-14). Our programs are compiled in the Cell SDK3.1. 

5.2   Execution Speed 

In this section, we evaluate four software cache configurations. The first one is a 
traditional software cache design implementing a 4-way set-associative cache. This 
cache design is with 64KB storage and 128-byte cache lines. It’s referred to 
TRADITIONAL. The second cache configuration is ESC [9]. It is an alternative to 
implement the adaptive software cache line on Cell processor, so we compare it with 
our scheme. The last configuration is our adaptive software line size cache, which 
adopts a 64KB cache storage. We refer to this configuration as ADAPTIVE. The last 
two configurations adaptively choose a cache line size among 128B, 256B, 512B and 
1024B during application execution. 

Figure 10 illustrates the normalized speedup of different applications, and the 
baseline is the execution speed of TRADITIONAL. On the whole, our adaptive cache 
line strategy combined with the optimized cache structure performs better than the 
other two cache designs. 



We first compare our adaptive cache line solution with the ESC. Obviously, our 
adaptive cache solution achieves noticeable performance improvements. It mainly 
results from the following factors: 

First, the adaptive algorithm in ESC is applied to the parallel loop only, but it isn’t 
sensitive to variation across iterations of the loop. Our adaptive approach could be 
applied to not only the parallel loop but also the iteration ranges, so it could choose 
the optimal cache line size more precisely. 
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Fig. 10. Normalized speedup 

Second, the algorithm in the ESC sometimes might choose a cache line size which 
is not the optimal. An example is given in Figure 11. There are five different cache 
line sizes, LS0 to LS4, with the size increasing. Suppose that their performance levels 
are 1, 3, 2, 4, 0, with each higher level corresponding to the better performance. 
Obviously, LS3 is the optimal line size. The adaptive execution in ESC is as follows. 
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Fig. 11. An example of the adaptive algorithm in ESC 

When the loop is invoked the first time, it’s executed with the initial line size, LS2. 
And the time per iteration (TPI) is TPI1. When the loop is invoked the next time, it 
executed with a shorter line, LS1. The corresponding TPI is TPI2. TPI1 must be greater 
than TPI2 according to the performance level, so a shorter line LS0 is chosen and the 
corresponding TPI3 is measured in the next loop invocation. Obviously, TPI3 is greater 
than TPI2, so LS1 is chosen to be the optimal. Nevertheless, LS3 is the optimal line size 
according to the performance level. This results from the following two reasons. 



• Though TPI1 is greater than TPI2 in the above algorithm, it’s not necessary the 
case that a shorter line performs better for the loop, as shown in Figure 11. 

• The adaptive strategy in ESC depends on many factors, for example, the initial 
cache lines size, choosing which line (a longer or a shorter line) in the second 
invocation of the loop. 

Third, the loop has to be invoked many times to compare TPIs in the ESC strategy, 
which greatly degrades the performance. Additionally, a certain loop may be invoked 
once in some applications, so the adaptive algorithm in ESC doesn’t work well in 
such cases. The loop in SpMV is invoked only once, and not surprisingly, the ESC 
has only a slight performance improvement compared with the traditional approach. 

Then we compare the ADAPTIVE with the TRADITIONAL configuration. We 
achieve speedup factors of 3.29 for FT, 4.53 for IS, 5.73 for CG, 4.01 for MG and 
4.12 for SpMV. The benchmarks which are sensitive to the cache line size and are 
dominated by irregular references benefit more from the ADAPTIVE configuration. 
CG is such an application, so it achieves a significant performance improvement. 
Though IS isn’t sensitive to the cache line size, it is dominated by irregular memory 
references and thus it exposes a high miss rate. Not surprisingly, it obtains a 
significant speedup from our adaptive prefetching scheme. 

5.3   Transferred Data Size 

If the transferred data size of the cache design with 128B is the baseline, the 
transferred data size of cache line design with 128B, 256B, 512B and 1024B is 
illustrated in Figure 12. 
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Fig. 12. Normalized transferred data size 

Obviously, the transferred data of the ALSC is less than the other cache designs, 
especially compared with the 1024B line design. Because even though only a few 
bytes are needed, the whole 1024B line is transferred if the cache line is set to be 
1024B. The ALSC outperforms designs with the fixed short cache line because the 
latter immediately transfers data when a miss occurs. Nevertheless, the ALSC first 
checks the long line Tag Entry Array. If it’s a hit, there is no need to transfer data. 



5.4   Scalability 

Figure 13 presents the scalability of our approach. All the benchmarks, except IS, 
show good scalability from 1 to 8 threads, with speedup more than 6 on 8 SPEs. The 
main reason is that every thread executes in an exclusive SPE. IS doesn’t scale up 
well because it contains some computations in either master execution or critical 
codes. Those computations are executed sequentially. Therefore, its speedup of 8 
SPEs is only about 3.8. 
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Fig. 13. Scalability of the adaptive approach on Cell processor 

5.5   Storage Overhead 

Table 1 depicts the extra storage overhead except the storage for N cache line. FAC 
and 4WC denotes the fully associative and 4-way set-associative cache, respectively. 

To formally describe the extra storage overhead we assume as followed: 
• The number of the short line is N, and the number of set in 4WC is S (S=N/4). 
• S’ is the number of sets in ESC, which is four times the closest power of 2 to S. 
• The tags are 4-byte integers while dirty and valid bits are one byte. 
• All the caches introduce fetch buffers. And every TE needs a line index. The 

FAC and the ESC both need a field to record the global address. 

Table 1.  Extra storage overhead (in bytes) 

Heading level Example 4WC ESC ALSC 
TE tag+line index =8 tag+line index =8 10N tag+line index =8 
TE Array TE*N=8N (4*TE)* S=8N (4*TE)* S’=32S’ (4*TE)*3S/2=12N 
LTE V+D+tag =6 V+D=2 V+D+tag =6 (V+D)+(V+D)/2 =3 
Cache line table LTE*N= 6N LTE*N =2N LTE*N= 6N LTE*N=3N 
Total Size 14N 10N 32S’+6N 15N 

 
Suppose that the whole cache size is 64K, the total storage overhead is listed in 

Table 2. The ALSC storage overhead is a little more than that of the FAC and 4WC 
and much less than that of the ESC. 



Table 2.  Extra storage overhead with a 64KB cache (in bytes) 

Line size Number of lines FAC 4WC ESC ALSC 
128B 512 7168 5120 19456  7680 
512B 128 1792 1280 4864  1920 
1KB 64 896 640 2432  960 
4KB 16 224 160 608  240 

6   Conclusions and Future Works 

We present an algorithm which adaptively adjusts the software cache line for irregular 
reference on Cell processor. Moreover, a corresponding software cache design is 
proposed, which significantly improves the hit rate and decreases the reduction of 
data transfers. The evaluation results indicate that our strategy achieves the speedup 
factor from 3.29 to 5.73 compared with the traditional software cache approach. 
Additionally, the adaptive strategy shows good scalability. 
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