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Abstract. Network processors are specialized integrated circuits used to pro-
cess packets in such network equipment as core routers, edge routers, and access
routers. As predicted by Gilder’s law, Internet traffic has doubled each year since
1997 and this trend is showing no signs of abating. Since all emerging network ap-
plications which require deep packet classification and security-related process-
ing should be run at line rates and since network speed and network applications
complexity continue increasing, future network processors should simultaneously
meet two requirements: high performance and high programmability. Single pro-
cessor performance will not be sufficient to support the requirements which will
be imposed on future network processors. In this paper, we consider the CMP
model as the baseline architecture of future network processors. We investigate
the architectural implications of cache coherence protocols with network work-
loads on CMPs. Our results show that the token protocol which uses the tokens
to control read/write permission of shared data blocks shows better performance
than the directory protocol by a factor of 13.4%.

1 Introduction

Network processors are specialized integrated circuits used to process packets in such
network equipment as core routers, edge routers, and access routers. Indeed, as pre-
dicted by Gilder’s law, Internet traffic has continued doubling every year since 1997 [1].
Further, emerging network applications such as QoS, URL matching, virus detection,
intrusion detection, and load balancing require deep packet classification processing [2]
and security-related processing. The emerging deep packet classification processing and
security-related processing are more computation-intensive than all other network ap-
plications [3]. Indeed, all network applications which require deep packet classification
processing and security-related processing should be run at line rates. Since network
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speeds and network applications complexity continue increasing, future network pro-
cessors should simultaneously meet the two conflicting requirements of high perfor-
mance and high programmability.

Since single processors will not be powerful enough to simultaneously reach high
performance and high programmability [4], multiprocessors or multithreaded archi-
tectures have recently been proposed as the baseline architectures of network proces-
sors. Since modern processors have focused on exploiting Instruction-Level Parallelism
(ILP), they have been quite successful at it and there is little room to exploit Instruction-
Level Parallelism any longer. To overcome the limits of Instruction-Level Parallelism
in wide-issue superscalar machines, two alternative microarchitectures have been pro-
posed: Simultaneous MultiThreading (SMT) [5] and Chip MultiProcessor (CMP) [6] in
order to exploit multiple threads (Thread-Level Parallelism - TLP).

Since the individual processor cores of CMPs are simple, CMPs can have low de-
sign complexity and achieve very high clock rates. Further, CMPs can efficiently re-
duce overall power consumption while maintaining the overall performance of them
by increasing the number of processor cores and reducing clock rate of single-thread
processor [7]. Since CMP provides performance scalability as well as programmability,
CMP is an attractive candidate for future network processors. Indeed, single chip mul-
tiprocessors perform 50-100% better than wide-issue superscalar [6] with thread-level
parallelism and multiprogramming workload. In this paper, we use the CMP architec-
ture model as the baseline for future network processors.

When multiple processor cores are integrated on a single chip with shared cache,
two different processor cores can have different values for the same location of the
shared cache. This problem is called as the cache coherence problem. The architec-
tural implications of cache coherence protocols such as the snooping protocol and the
directory protocol have been investigated with commercial workloads, multiprogram-
ming and OS workloads, and scientific/technical workloads [8, 9]. Martin et al. have
presented the Token Protocol which uses the tokens to control read/write permission
of shared cache blocks. They have compared the performance of the token protocol
with other cache coherence protocols such as the snooping protocol and the directory
protocol with commercial workloads [10]

In this paper, we investigate the architectural implications of cache coherence pro-
tocols on CMP processors with network workloads. The performance of each proto-
col (the directory protocol and the token protocol) are measured against each other, as
the number of processor cores is made to vary. The token protocol shows better per-
formance than the directory protocol by 13.4%. As the number of processor cores is
increased, the number of instructions used to complete the application is also increased
due to multithreading mechanism and cache coherence protocol. The results will help
to design single chip multiprocessors for network workloads.

The rest of this paper is organized as follows. Section 2 describes past research
on architectural implications of network workloads on single thread as well as cache
coherence protocols on CMP. Cache coherence protocols which are used in this paper
are explained in section 3. Our simulation environment and methodology are presented
in section 4. We present the architectural implications of network workloads on CMP
in section 5. Finally, we summarize our observations in section 6.
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2 Related Work

As an investigation of architectural implications with network workloads on CMP,
Crowley et al. have compared the performance of different architectures such as a Su-
perScalar (SS) processor, a fine-grained multithreaded processor (FGMT), a single chip
multiprocessor (CMP), and a simultaneous multithreaded (SMT) processor [11]. With
equivalent processor resources and dynamically exploiting both instruction-level par-
allelism and thread-level parallelism, SMT shows better performance than CMP and
better than FGMT and SS by a factor of two.

Nahum et al. have presented an experimental performance of packet-level paral-
lelism on shared-memory multiprocessor [12]. They have found that limited packet-
level parallelism exists within a single connection under TCP. However, an available
packet-level parallelism is increased by using multiple connections.

The architectural implications of cache coherence protocols are investigated when
the following parameters are changed: numbers of processors, cache size, and block size
in the cache [8]. The snooping protocol and the directory protocol are evaluated with
online transaction processing workload (OLTP) and scientific/technical workloads.

Martin et al. have measured and compared the performance of cache coherence
protocols such as the snooping protocol, the directory protocol, and the token protocol
with commercial workloads [10]. They have found that the token protocol is 25-65%
faster than the snooping protocol and 6-18% faster than the directory protocol.

3 Cache Coherence Protocols

It is well known that if multiple processors share a cache, two different processors can
have different values for the same location of the shared cache. This problem is referred
to as the cache coherence problem. A cache is said to be coherent if any read of memory
location returns the most recently written value of that data element. Cache coherence
for multiple processors is maintained with cache coherence protocols which make all
processors have a consistent view of the shared cache and manage the read/write of data
in the shared cache.

A major role of cache coherence protocols is that of tracking the state of any shared
data block. The MOESI coherence state model [13] is used to represent the state of
shared cache data blocks in this paper. Each cache block has 5 states in MOESI coher-
ence state model as follows:

– Modified state: No other processor has a copy of the data block. The copy of the
data in main memory is incorrect.

– Owned state: Only one processor can be in the owned state. All other processors
can have a copy of the most recent in the shared state. The copy of the data in main
memory can be incorrect.

– Exclusive state: No other processor has a copy of the data. The copy of the data in
main memory is also the most recent.

– Shared state: Other processors can also have copies of the data in the shared state.
The copy of data in main memory is the most recent.
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– Invalid state: Either main memory or another processor cache can have valid copies
of the data.

The previously mentioned MOESI cache coherence state model can use different
cache coherence protocols which track the sharing status of a copy of block of shared
cache. Three kinds of cache coherence protocols are briefly explained below.

Snooping protocols: The cache of each processor has a copy of block of shared cache
and a copy of the sharing status. Snooping protocols do not have a centralized location
to maintain the states of cache blocks. All cache controllers in each processor contin-
uously snoop on the bus to discover whether they have a copy of any block currently
requested on the bus. The use of broadcast limits the scalability of bus-based snooping
protocols.

Directory protocols: The sharing status of a block is maintained in the directory of
the home node. The directory keeps information as to which caches have copies of the
block, whether it is dirty, etc. Each access to a cache block of shared cache requires
to first access the directory to find out the state of the cache block. Since directory
protocols do not use the bus unlike snooping protocols, directory protocols do not need
for all processors to watch the interconnection network.

The Token Protocol using broadcast: The token is the base unit which is used to control
the read/write permissions to shared cache blocks in the token protocol. The token pro-
tocol [10] exchanges and counts tokens to control read/write permissions to the shared
cache blocks. Each logical block of a shared cache has a fixed number of tokens. When
each processor has at least one of the block’s token, it can read the cache block. When
each processor has all of the block’s tokens, it can write the cache block.

4 Simulation Environment and Methodology

We present the simulator and benchmark programs which are used to investigate the ar-
chitecture implications of cache coherence protocols with network workloads on CMP.
There are 4 kinds of the options for CMP implementation [14], a conventional mi-
croprocessor, a simple chip multiprocessor, a shared-cache chip multiprocessor, and a
multithreaded, shared-cache chip multiprocessor. In this paper, we used a shared-cache
chip multiprocessor which has a private L1 data cache, a private L1 instruction cache,
and a shared L2 unified cache.

4.1 Simulator
CMP is simulated with the Simics full-system functional execution-driven simulator [15]
and Ruby of GEMS [16] as a cache simulator. The processor modeled is the Ultra-
SPARC III. The simulated system runs an unmodified Solaris operating system version
9 and 1, 2, 4, and 8 processor-cores CMPs are simulated. Two cache coherence pro-
tocols, MOESI-directory and MOESI-token, are used to evaluate network workloads.
The L2 cache is organized as a non-uniform cache architecture. The configuration of L1
I-cache and L1 D-cache is 16KB, 4-way and 3 cycles. The configuration of L2 shared
cache is 16MB, 4-way and 6 cycles.
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4.2 NetBench

NetBench is commonly used for the evaluation of network processors and composed of
nine benchmark programs [17]. NetBench is a set of benchmarks used for single thread,
generally not for multithreaded parallel applications with a shared memory. Since CMP
architectures allow the exploitation of thread-level parallelism, in order to run NetBench
on multiprocessors with shared memory, we need to modify NetBench to support multi-
ple threads like SPLASH-2 [18] in which child processes share the same virtual address
space as their parent process. To decompose a single thread into multiple threads, we
exploited packet-level parallelism as shown in Figure 1. Figure 2 shows the implemen-
tation of Figure 1.

Among nine benchmark programs of NetBench, TL (Table Lookup), ROUTE, DRR
(Deficit Round Robin), and NAT (Network Address Translation) works with the rout-
ing table. When these four benchmark programs are modified to have multiple threads,
they require synchronization mechanisms to share the routing table among multiple
threads. Since the synchronization mechanisms cause additional spinlocks, we do not
use these four programs to investigate the architectural implications of cache coher-
ence protocol with network workloads on CMP. The DH benchmark, Diffie-Hellman
public-key encryption-decryption mechanism, does not require a packet trace. Thus,
we used CRC (Cyclic Redundancy Check), MD5 (Message Digest), and URL (Uni-
form Resource Locator) to investigate the architectural implications of cache coherence
protocols with network workloads on CMP. These three benchmarks are compiled with
gcc -O3 in SunOS 5.8. To warm up the cache, we ran these programs with 160 pack-
ets. Then we processed 5,000 packets. The simulation results are gathered between two
MAGIC BREAKPOINT instructions [19] as shown in Figure 2.

The original NetBench uses the traces from Columbia University available in the
public domain [20]. However, destination and source IP addresses of this trace are
anonymized for privacy protection. Hence, for our purposes, we used other real packet
traces [21].

5 Evaluation Results

We present the evaluation results of two cache coherency protocols, the directory pro-
tocol and the token protocol, with network workloads and investigate the architectural
implications of these two cache coherence protocols on CMP.

Equation (1) shows the CPU time needed to execute a program. If two systems have
the same clock cycle and run the same instructions per program, then the first term and
the third term of Equation (1) are fixed and the CPU time depends on only the Clock
cycles Per Instruction (CPI). Thus, to compare the performance of single processors
which run single threaded and user-level programs, CPI (or IPC which is the inverse
of CPI) is commonly used. However, CPI is inaccurate for multithreaded workloads
running on multiprocessors. The inaccuracy is caused by the incorrect assumption that
instructions per program is constant during execution of the programs. Multithreaded
workloads running on multiprocessors can have different instruction paths which are
caused by spinlocks and other synchronization mechanisms. The different instruction
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Fig. 1. Conversion single thread to multiple threads with packet-level parallelism

paths change the number of instructions to perform the same amount of work [22]. For
this reason, we used as a measure the total number of cycles required to complete the
programs for the performance comparison.

CPU time =
Seconds
Program

=
Instructions

Program
× Clock cycles

Instruction
× Seconds

Clock cycle
(1)

5.1 Performance comparison of cache coherence protocols

As mentioned in related work, the token protocol showed better performance than the
snooping protocol and the directory protocol in commercial workloads. Figure 3 shows
the performance comparison between the directory protocol and the token protocol with
3 benchmark programs from NetBench. As shown in Figure 3, the token protocol shows
better performance than the directory protocol by 13.4%.

As the number of processor cores is increased, the number of cycles required to
complete the programs is also increased. This effect is due to the fact that the number
of instructions needed to deal with multiple threads in an operating system is increased
as the number of threads is increased. In the following subsection, we investigate the
instruction overhead due to the multithreading mechanism.

5.2 Instruction overhead due to the multithreading mechanism

Since multithreading is used to exploit packet-level parallelism, the instruction over-
head due to the multithreading mechanism is measured. To measure the instruction
overhead due to multithreading mechanism, the numbers of instructions which are used
to complete benchmark programs are compared two cases: normal program without
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pthread_t tid[NUMBER_OF_MAX_THREADS]


{


}


main()


int i=0;


while(i < NUMBER_OF_PACKETS)

{


}


packet_processing();

i++;


MAGIC_BREAKPOINT;


MAGIC_BREAKPOINT;


{


}


void *ParallelFunction(void *arg)


int i;


while(i < NUMBER_OF_PACKETS)

{


}


packet_processing();

i=i+NUMBER_OF_PROCESSORS;


i = (int)arg;


pthread_crete(&tid[i],NULL,ParallelFunction, (void *)  i)


{


}


main()


int i;


for ( i = 0; i < NUMBER_OF_PROCESSORS; i++ )


for ( i = 0; i < NUMBER_OF_PROCESSORS; i++ )

pthread_join(tid[i],NULL)


MAGIC_BREAKPOINT;


MAGIC_BREAKPOINT;


(a)
 (b)


Fig. 2. Example codes to convert single thread to multiple threads with packet-level
parallelism

multithreading mechanism and multithreaded program with 1-thread. As shown in Fig-
ure 4, when multithreading mechanism is used, the numbers of instructions of the di-
rectory protocol and the token protocol are increased by 9.7% and 10.3%, respectively.

5.3 L2 cache misses

The performance of a shared cache is influenced by the cache misses which occur in the
single processor and the coherence misses which arise from inter-processor communi-
cation in multiprocessors.

Figure 5 shows the number of cache misses in the L2 shared cache. As the number
of processor cores is increased, the number of L2 cache misses is also increased. The
reason for the increase in the number of L2 cache misses is the memory contention
since the L2 cache is shared among all processors. Most L2 shared cache misses are
coherence misses in the multiple processor cores as shown in (a) and (b) of Figure 5.

5.4 Architectural implications

The token protocol shows better performance than the directory protocol by a factor
of 13.4%. When a single-thread program is decomposed into a multithreaded program
with the ability to exploit packet-level parallelism, the instruction overhead due to mul-
tithreading mechanism occurs. The instruction overhead due to multithreading is almost
10%. Most L2 shared cache misses are coherence misses in multiple processor cores.
Thus, we need to reduce instruction overhead due to multithreading and L2 shared cache
misses for performance enhancement of future network processors which are based on
CMP.
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Fig. 3. Performance comparison of cache coherence protocols
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Fig. 4. Instruction overhead due to multithreading mechanism

6 Conclusions

The architectural implications of cache coherence protocols, the directory protocol and
the token protocol, are investigated on the CMP processor model subjected to network
application workloads. The performance has been measured for each protocol with
varying numbers of processors. The token protocol shows better performance than the
directory protocol by a factor of 13.4%. When single-thread programs are decomposed
into multithreaded programs with exploiting packet-level parallelism, the instruction
overhead due to multithreading mechanism occurs. The instruction overheads of the
directory protocol and the token protocol are 9.7% and 10.3%, respectively. Most L2
shared cache misses are coherence misses in multiple processor cores.

As future work, the architectural implications of cache coherence protocols need to
be investigated with varying cache size and block size. We will also investigate the ar-
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(a) Number of L2 cache misses in the directory protocol
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Fig. 5. Number of L2 cache misses

chitectural implications of simple CMP multiprocessor with network workloads which
exploit multiprogramming instead of multithreading.
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