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Abstract. Network distance is an important parameter in optimizing 
performance of network applications. Although there are a number of network 
distance prediction mechanisms, they all take no consideration of Internet 
structure, which has great influence on Internet distance characteristics. By 
analyzing the hierarchical structure feature of Internet, a hierarchical network 
distance predication mechanism called HNDP is proposed. HNDP divides 
Internet into many independent prediction regions, and predicts distance 
information between network nodes by accumulating distances in different 
predication regions, which can avoid the problem that short distance and long 
one cannot be accurately predicated simultaneously. To optimize the influence 
of landmark selection on HNDP prediction accuracy, a shortest distance cover 
landmark selection model is proposed, and then a tabu search algorithm called 
TS_Landmark is given to solve this model in HNDP. Finally, the simulation 
results under ns-2 show that TS_Landmark can select landmarks effectively, 
and HNDP provides more accurate results than traditional single layer ones. 

Keywords: network distance; space embedding; hierarchical structure; 
predication region; landmark selection 

1   Introduction 

Nowadays, new distributed network applications such as grid, CDN (Content 
Distribution Network) and online games evolve rapidly, which have a more strict QoS 
demands. In these applications, more than one node provides the same service. Thus, 
if client node can obtain the lower network performance information and choose a 
best server node based on this information, the application performance will be 
increased dramatically. For example, In P2P applications, network performance 
information will help a client find out which peer is the best one to download files 
from. Likewise, in a CDN, an optimized client can download Web objects from the 
particular mirror site to which it has the highest bandwidth. 

However, IP network uses a best effort service model and does not provide any 
QoS guarantee to upper layer applications, and it also provides no network 
performance information. On the other hand, on-demand network measurements are 
expensive and time-consuming, especially when the number of possible 



communication peers is large. Thus, a suitable performance service model is needed 
to predict unknown network performances from a set of partially observed 
measurements. Among all kinds of network performance parameters, Round Trip 
Time (RTT, which we call it network distance here) is an important and easy to 
acquire one. Quite a number of network distance prediction mechanisms have been 
proposed now. The key of network distance prediction lies in that predicting the 
distance of arbitrary nodes in network accurately using as small number of 
measurement as possible. 

One way to predict network distance is to embed the network into a finite-
dimension geometric space, and assign each node a virtual coordinate in that space. 
The distance of any two nodes can be computed by their coordinates using distance 
computation function in that geometric space [1-5]. In this paper, we make the 
following contributions: 
a) Combination with Internet hierarchical structure, we propose a Hierarchical 

Network Distance Prediction mechanism (HNDP), in which Internet is divided 
into different predication regions according to network nodes relationship, and the 
distance of two nodes is predicted by the accumulation of distances predicted in 
each related region. In this way, we take full use of Internet structure to avoid the 
interference of different predication regions during virtual coordinate space 
construction, and increase the prediction accuracy.  

b) We give a shortest distance cover landmark selection model, and design a tabu 
search landmark selection algorithm called TS_Landmark to solve this model in 
HNDP. The analysis results show us that TS_Landmark can select landmark set 
effectively. 

The rest of the paper is organized as follows. Section 2 presents a short survey of 
the embedding techniques. Section 3 presents a Hierarchical Network Distance 
Prediction mechanism HNDP and a shortest distance cover landmark election model. 
A tabu search landmark selection algorithm TS_Landmark is also proposed in this 
section to solve the landmark selection problem. Section 4 gives a theoretical analysis 
and simulation evaluation of the performance of HNDP and TS_Landmark. Finally, 
Section 5 summarizes our work. 

2   Related Works 

T. Ng firstly proposed a distance predication mechanism named GNP (Global 
Network Positioning) [1], in which the whole Internet is modeled as a Euclid space, 
and each node is assigned a coordinate in that space according to its distance to some 
special nodes (called landmarks). Then distances between any two nodes can be 
computed using distance computation function in Euclid space. 

However, GNP treats Internet as a flat space, and each node in the space has an 
equal status, which is in conflict with the fact that today’s Internet has a hierarchical 
structure. Therefore, short distances predicted by this mechanism always have a large 
relative error. R. Zhang gave a detailed research on Internet distance predication error 
[6]. Based on the fact that most distance predication mechanisms cannot reduce 
relative error of short distance and long distance simultaneously, they propose a 



hierarchical distance predication mechanism, in which the relationship between 
network nodes is divided into short and long according to their distances. When the 
distance between two nodes is shorter than a threshold, it uses short distance 
predication method; otherwise it uses long distance predication method. However, 
this model is still too simple to describe the Internet structure. 

On the other hand, in order to solve problems brought by using Euclid Space as 
embedding space (such as distance triangle inequality, distance symmetry, and so on), 
IDES [12] assigned each network node two vectors: ingress coordinate vector and 
egress coordinate vector. Distance between two nodes is computed by the inner 
product of source node’s egress coordinate vector and destination node’s ingress 
coordinate vector. Virtual Landmarks [3] and Internet Coordinate System [4] are also 
two virtual coordinate based network distance predication mechanisms, but they use 
Lipschitz space embedding instead of Euclid space embedding. 

The study of Costa showed that landmark selection criterion has a great influence 
on distance predication accuracy. Closest node selection criterion can increase short 
distance predication accuracy, but meanwhile it has negative influence on long 
distance predication accuracy [4]. They proposed a mixture landmark selection 
mechanism, which combined the random selection and closest selection criterion. 
However, in [6] R. Zhang showed that mixture landmark selection mechanism still 
lacked the ability to predict all kinds of distances accurately. 

3   Hierarchical Network Distance Predication Mechanism 

Actually, the Internet hierarchy can be divided into international backbones, 
national backbones, area networks and local networks. Nodes in an area network have 
a high connectivity with each other, which gives a large aggregation coefficient in the 
network. The highly aggregate area networks are connected sparsely by international 
backbones and national backbones [8]. Therefore, the core network is a mesh 
structure composed of high performance routers and high speed links, while the edge 
network is composed of tree-liked area networks. Edge network connects to core 
network using low rate links. 

The area characteristics of Internet can help us handle one area with no influence 
on other areas. Meanwhile, its hierarchical structure results in the network 
performance asymmetric. For example, in edge network there are a large number of 
nodes, but network bandwidth is not very high, which causes the range and frequency 
of network delay variation is large. But in the core network, high performance routers 
connect to each other with dedicated high speed links, therefore network delay 
variation is stable. Most of today’s network distance predication mechanisms treat 
Internet as a flat structure, and embed it into a single geometric space, therefore, much 
of the Internet structure information is lost during the embedding process, which leads 
to high predication error. In fact, the area and hierarchy characteristics of Internet 
affect not only network traffic distribution [9], but also the network distance 
predication accuracy. In this paper, we design a decentralized Hierarchical Network 
Distance Predication mechanism (HNDP), in which Internet is divided into different 
predication regions according to network nodes relationship, and the distance of two 



nodes is predicted by the accumulation of distances predicted in each related area. By 
this means, we take full use of Internet structure to avoid the interference of different 
predication regions during virtual coordinate space construction. Each predication 
region can choose coordinate update period according to its own network condition, 
therefore the network intrusion is reduced with guarantee to predication accuracy. 

3.1   Definition of HNDP 

In HNDP, based on the Internet topology characteristics, we divide the whole 
Internet into edge network and core network. Core network is embedded into a 
geometric space as a whole; while edge network is divided into small regions 
according to network distance and administrative relationship. Each small region is 
embedded into an independent coordinate space. To describe this mechanism 
accurately, we firstly give some definitions of HNDP as follows. 

Definition 1: Region: An area that is composed of one or more ASes. It can be 
embedded into a virtual coordinate space independently. 

Definition 2: Core: Region that is composed of tier-1 and tier-2 ISPs. This region 
is located in network core, and in HNDP, there is only 1 Core. 

Definition 3: Edge: Regions that are composed of tier-3 and access ISPs. There is 
more than one Edge in HNDP, and different Edges have no intersection. Each Edge 
has one or more intersected nodes with Core according to its access relationship. 

Definition 4: Dual: The set of intersected nodes between Core and Edges. They are 
embedded both into Core prediction region and its own Edge prediction region, thus 
have two different coordinates. 

Definition 5: Prediction error: 
Suppose is the measured distance between node i and node j, and is the 

predicted distance after assigning coordinate (xi,yi,…,ui) and (xj,yj,…,uj) to node i and 
node j. Thus, the error between predicted distance and measured distance is 
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Therefore using multi-dimension downhill simplex algorithm [10], we can find out 
(xi,yi,…,ui) and (xj,yj,…,uj) that minimize error, and these coordinates are the best 
coordinates for node i and node j. 

The principle of HNDP can be seen from a simple network demonstration in Fig. 1, 
in which the network is divided into 5 prediction regions: An independent network 
structure in the center and its neighbor dual nodes are defined as Core; each edge 
network and its related dual nodes are defined as an independent Edge. Core shares 
one or more dual nodes with each Edge. 
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Fig. 1 Prediction region partition based on Internet hierarchical structure 

Firstly, each prediction region is embedded into an independent Euclid Space, thus 
every non-dual node is assigned a coordinate, and every dual node is assigned two 
coordinates. When doing distance prediction, if two nodes i and j are in the same 
region, then their distance is computed directly using their coordinates; otherwise 
their distance is the distance from i to its dual nodes set plus the distance from j to its 
dual nodes set plus the distance between the two dual nodes sets. 

When doing distance accumulation, each distance is computed in an independent 
coordinate space. An Edge may have more than one dual node, i.e., for node N21 in 
Fig. 1, we can see that it has two dual nodes Dual21 and Dual22. For this condition, we 
define the predicted distance is the smaller one among all possible ones. Due to the 
practical Internet structure, the number of each Edge network’s dual nodes is limited. 
Therefore our definition above is meaningful. 

3.2   Hierarchical Distance Prediction Mechanism 

From the above discussion, we can give the flow of HNDP as follows. 
Step 1. Initialization 

a) Dividing network into Core, Edge according to network topology, and 
determining Dual in network; 

b) Selecting landmarks in each prediction region using landmark selection 
model, which is discussed in the following section. 

Step 2. Virtual coordinate computation 
a) Landmarks in each prediction region measure distances to each other, and 

then construct their coordinates (x,y,…,u) in the embedded space by 
minimizing error between predicted distance and measured distance; 

b) Each non-dual node in the prediction region measures its distances to 
landmarks in the same prediction region, and then constructs its coordinate 
accordingly. Since dual nodes lie in both Edge and Core, they have two 
coordinates; 

c) Each non-dual node records its dual node’s coordinates. If a dual node’s 



coordinate changed, it advertises all non-dual nodes in its Edge to update. 
Step 3. Distance prediction 
To predict the distance between node A and node B, Firstly using coordinates to 

compute distances of dist(A, DualA), dist(DualA, DualB) and dist(DualB, B), and then 
predicting the distance between A and B is: 

dist(A, B) = dist(A, DualA) + dist(DualA, DualB) + dist(DualB, B)    (4) 

3.3   Landmark Selection Model 

In virtual coordinate based distance prediction mechanisms such as HNDP, network 
nodes are divided into two kinds: landmarks and ordinary nodes. Landmarks measure 
distances to each other, and then construct coordinate according to measured data; 
Ordinary nodes measure their distances to landmarks, and then construct coordinate 
according to measured data and landmark coordinate. From some kind of view, when 
doing embedding from network distance space to other coordinate space, we firstly 
distill the basic feature of network distance space by landmark selection, and then 
determine ordinary nodes coordinates based on landmarks coordinates and the 
distances between them and landmarks. Thus, landmark selection has a vital influence 
on prediction accuracy. Firstly, the more landmarks we select, the more accurate 
distance prediction we get, but at the same time the more cost we have to pay; 
Secondly, if two landmarks are too close to each other, they nearly provide the same 
network distance information, thus we need only keep one of them to decrease the 
total cost. 

Theoretically, each node in network can be selected as landmark, which means the 
number of possible solutions is terribly high for landmark selection. What’s more, the 
relationship between landmark selection and distance prediction accuracy is very 
complex. As a result, the best landmark selection problem is relatively difficult to 
solve. The research of Costa showed that selecting closest nodes as landmarks can 
help improving short distance prediction accuracy, but it has negative effect on long 
distance prediction accuracy [4]. This phenomenon can be explained as follows. Each 
landmark contains distance information of its neighbor network with some scope, if a 
link lies in a landmark’s scope, then the prediction accuracy will be high, otherwise 
the prediction accuracy will be low. Thus, landmark selection problem can be 
described in another way: How can we select a certain number of nodes that distribute 
in the network as uniformly as possible? Combined with the classical facility location 
problems in Math, we propose a shortest distance cover based landmark selection 
model, and then give a Tabu search approximation algorithm to solve that problem. 

(1)  Model Description 
In a network with m nodes, suppose that 
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According to the analysis before, a good landmark set has the following aspect: the 
distance between landmark set and each node in the network should be as small as 
possible. Therefore, the landmark selection problem in network distance prediction 
can be described as follows: Given a network with m nodes, which k of them should 
be selected as landmarks, so that the distance of each node in the network to landmark 
set is minimized. Formally, the model is described as follows: 
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(2) Tabu Search based Landmark Selection Algorithm TS_Landmark 
The above problem is NP hard, and it’s impossible to solve it in the whole Internet 

scale. However, in HNDP, we reduce the computation scale by prediction region 
partition, and prediction regions are also independent with each other, thus we can use 
this model on each prediction region and solve it with a suitable heuristic algorithm. 
Here we propose a Tabu Search based landmark selection algorithm TS_Landmark 
[13, 14], which is described as follows: 

 
L: Random Selected Landmark Set. 
L*: Best Landmark Set. 
F(L*): Objective Function Value of Best Landmark Set. 
A(s, L): Aspiration Function. 
T: Tabu List. 
Max-gen: Maximum Iteration Generation. 
 
TS-Landmark(L, Max-gen) { 
        T=null; 
      L*=L; 

F(L*)=∞; 
A(s,L)= F(L*); 
gen = 1; 

         while(gen < Max-gen) { 
for each i IN L { 
for each j (in neighbor(i) AND NOT in L AND T) 

                   Si = Si + {j}; 
         L’= L’+best(Si); 
             } 
       if(F(L’)<A(s,L)){ 
          A(s,L)=F(L’); 

       L=L’; 
} 
if(F(L’)<A(s,L)) 

L*=L; 
       gen = gen + 1; 
 } 

} 



The algorithm uses search steps as stop condition, which can be set flexibly 
according to accuracy requirements. Obviously, if we set Max-gen=1 here, the 
algorithm regresses to a random selection algorithm. 

4   HNDP Predication Accuracy Analysis 

Firstly we give the definition of absolute prediction error and relative prediction 
error as follows: 
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In which predist stands for the predicted distance, and meadist stands for measured 
distance; with this two parameters we can justify the departure degree of different 
prediction mechanisms between predicted distance and measured distance. 

To evaluate the performance of HNDP, we use Waxman random topology 
generation algorithm in BRITE [11] generate a 2 layer and 1000 nodes network, and 
the distances between network nodes are generated by BRITE randomly. Then we use 
this topology as ns2 simulation network. 

Simulation scenario 1: Relative error of TS_Landmark algorithm. 
Firstly we determine the ideal landmark set Lr based on network distance, and 

compute the sum of distances Sr from Lr to each node in the network. Then we use 
TS_Landmark select a landmark set L, and compute the sum of distances S from L to 
each node in the network. The relative error is 

S
SSerr r−

=                                   (8) 

Obviously, here err is always larger than 0. During the simulation, we record the 
relative error err under different size of landmark set, and the curve is shown in Fig.2. 

 
Fig. 2 Relative error of landmark selection 

We can see that the relative errors of TS_Landmark are all less than 0.25 and larger 
than 0 in Fig. 2, and as the number of landmarks increases, the distance prediction 



relative error tends to become smaller. One reason for this phenomenon is that as the 
number of landmarks increases, the possibility that TS_Landmark selects good 
landmarks increases too, therefore the relative error between computed value and best 
value decreases accordingly. One extreme instance is that if we choose all nodes as 
landmarks, then the relative error will be 0. 

Simulation Scenario 2: Distance Prediction Error Analysis. 
To compare the relative prediction error of different distance prediction 

mechanisms, we use GNP, Random Landmark Selection based HNDP (Random 
HNDP) and Tabu Search Landmark Selection based HNDP (Tabu HNDP) to predict a 
given network separately, and the parameters used during simulation is shown as 
follows. 

Table 1.  Simulation parameters configuration 

Parameters GNP Random HNDP Tabu HNDP 

Landmark Number 30 30 30 

Landmark Selection Random Random Tabu Search 

Regions Number 1 5 5 

Embedding Space 5D Euclid 5D Euclid 5D Euclid 

Coordinate Algorithm downhill simplex downhill simplex downhill simplex 
 

The cumulative distributions of three different distance prediction mechanisms’ 
relative error is shown in Fig. 3. 

 

 
Fig. 3 Cumulative distribution of distance prediction relative error 

Fig. 3 shows that both Random HNDP and Tabu HNDP are more accurate than 
GNP, which means that by partitioning Internet into different prediction regions the 
distance prediction accuracy can be increased. Meanwhile, Tabu HNDP is more 
accurate than Random HNDP. That is to say, by using TS_Landmark, better 
landmarks are selected, and thus the distance prediction accuracy is increased 
accordingly. 



5   Conclusion 

Based on the hierarchical structure of Internet, a decentralized hierarchical network 
distance prediction mechanisms HNDP is proposed. In HNDP, Internet is divided into 
a Core prediction region and quite a number of Edge prediction regions. Each region 
is embedded into an independent geometric space. Thus the interfering problem of 
predicting precision between short distance and long distance is decreased, and the 
accuracy and flexibility of distance prediction is increased. The landmark selection 
has proven having the vital influence on HNDP prediction accuracy, so a shortest 
distance cover based landmark selection model is proposed, and a tabu search 
algorithm is also given to solve that model. The analysis and simulation results show 
us that both Random HNDP and Tabu HNDP have higher prediction accuracy than 
GNP. 
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