Dual-Residue Montgomery Multiplication

Anding Wang, Yier Jin, and Shiju Li

College of Information Science & Engineering
Zhejiang University, Hangzhou, China
anding_704@hotmail.com, jinyier@gmail.com

Abstract. The paper introduces a new approach based on dual residue
system to compute Montgomery multiplication. The novelty of this pro-
posal is that we import an extra Montgomery residue system with new
transformation constant beside the normal one. In this way, one of the
multiplicand can be divided into two parts and both higher and lower
parts are calculated in parallel to speed up computation. Then two im-
plementations in hardware are proposed for the algorithm. In parallel
architecture, the proposed algorithm can perform nearly twice speedup
compared to normal Montgomery method. And in pipeline architecture,
the computation speed can be even faster. Besides speeding up calcu-
lation the extra merit of our proposal is that the multiplier can partial
replace Montgomery multiplier used nowadays without any changes on
top architecture.

keywords: Dual residue system, Montgomery algorithm, Parallelism

1 INTRODUCTION

Modular multiplication is one of the basic computations which are widely used
in public-key cryptography, especially in RSA algorithm [11], Diffie-Hellman key
exchange algorithm [3], elliptic curve cryptography(ECC) and digital signature
algorithm(DSA) [14]. Compared to other computation such as modular addition,
modular multiplication costs much more time, so low-complexity algorithms and
their high-efficient implementations both in hardware and software have been
studied for a long time.

In the aspect of algorithm improvement, several methods are proposed to
simplify divisions or to avoid trial divisions. Among them, two approaches are
of major concentration: One is based on the interleaved modular multiplica-
tion algorithm, and the other is based on the Montgomery algorithm [5]. The
former’s strategy is to simplify the division by finding the quotient early and
then to get modular result. Barrett modified this algorithm by getting approx-
imate result first according to a finely selected radix b = 2L(L equals to two
times of the length of modulus), and then subtract modulus in less than two
times as Barrett’s algorithm [2]. The latter’s strategy avoids division by adding
multiples of modulus in order to make lower bits of product zero. It leverages
pre-computation which transforms operators into residue system to simplify the
operation.

Among these algorithms, it has been proved that the Montgomery method
is better in most cases. However, each step in Montgomery Algorithm depends
on the previous step’s result that means this algorithm cannot be operated in
parallel. Although Koc proposed a new architecture which can improve paral-
lelism in reconfigurable hardware implementation, this modification just change
the implementation form not the algorithm itself [16].

In this paper, we proposes a method that explores the parallelism of Mont-
gomery algorithm itself to further boost speed. The point of this improvement
in parallel comes from splitting normal residue system into dual-residue system
modulo M. Since n-word modulus M is always an odd integer in cryptography
application, an integer R which is coprime to M in normal Montgomery algo-
rithm is often set R,, = r™ where r is an s-bit word. Then we choose appropriate
integers a and b which fulfill @ + b = n. The novelty of our proposal is that we
import an extra residue system with transformation constant Ry, = r® beside the
formal residue system where R, = ™. As b < n, the transformation constant Ry,
is less than the modulus M, similar to Kaihara and Takagi’s new representation
[5]. This extra residue system enables the splitting of one multiplier into higher
part and lower part and each part can be computed in parallel. Both operations
are processed under Montgomery algorithm except for different residues. Since
parameters a and b can be chosen from 0 to n — 1, the variation of b covers all
possibilities of the new residues with different performances. In the result showed
below, we find when b is slightly larger than [n/2], the speed up is close to twice
than that of normal Montgomery algorithm.

Further advantage is that the inputs and outputs on the top level of this new
method are the same as normal Montgomery algorithm, so the implementation of
this method no matter in hardware or in software can take place of Montgomery
multiplier without any changes in high level. And even advanced, our proposal
can make use of all improvements made for Montgomery algorithm up to date.

2 MONTGOMERY ALGORITHM

Montgomery modular multiplication was first proposed by P.L. Montgomery in
1985 [4] and was a powerful modular algorithm to deal with arbitrary modu-
lus M. It does not compute modular multiplication straightforward, instead, it
leverage some pre-computation to transform multiplicands into residue system
by a transformation constant R coprimed to modulus M. The M-residue repre-
sentation of integers A, B < M are defined as X = A-R(mod M), Y = B-R(mod
M). Although this algorithm works for any R that is coprime to M and is larger
than M, it is more useful when R is a power of 2 both in hardware and software
implementation. To facilitate the implementation on word based system, we use
s-bit word r as radix and let R be a power of r. Because M is often an odd
integer in reality, the relative prime condition is fulfilled initially. Let R = r™,
the Montgomery multiplication algorithm computes

C=A®,B=ABR ! mod M

_ —n (1)
= ABr™" mod M

for n-word integers satisfying the following condition:
0<A B<M.
If the inputs are X, Y ,the result will be
C'=XYR'=A-R-B-R-R'=ABR mod M.

The key idea of the Montgomery algorithm is to add an appropriate multlple
of M to make the lowest n words of AB equal to 0. As M = ZZ 0 Mi - re,

A= ZZ 0 i r’, B = PO o b -r" and the word-level Montgomery multiplication
algorithm is descrlbed below.

Algorithm 1 Word-level Montgomery Modular Multiplication

Input A,B,M, (0< A B<M),

(Pt < M < ™), (R=r"),my " (mod)

Output C=A®, B=ABr "modM

C:=0

For i=0ton—1
t; = (co + aibo)mal mod r
C=(c+a;B+t;:M)/r;

if (C>M)thenC:=C-M

return C;

The transformation between normal representation and the M-residue rep-
resentation can also be performed through Montgomery multiplication. X can
be computed by multiplying A with R?modM in Montgomery algorithm as
X =A®, R°modM = A-R?> - R"'modM = A- RmodM . The backwards trans-
formation can be performed between X and constant 1 which can be presented
asA=X®,1l=A-R-R L.

3 DUAL-RESIDUE MONTGOMERY ALGORITHM

In order to speed up the Montgomery multiplication, a new fast method which
improves the parallelism of this algorithm is proposed. The novelty of the new
algorithm comes from the splitting of M-residue representation into a normal
residue representation and a new residue representation. In the new residue
representation, the constant R is less than modulus M, a situation that was
forbidden in normal Montgomery algorithm. We denote the new constant as Ry
which equals to r® with b < n. The computation of modular multiplication can
be processed in two residue systems in parallel to improve the processing speed.

According to the Montgomery modular multiplication of two integers with
transformation constant R = r™ mentioned in Section 2, the algorithm can be
rewritten here with XY, the images of A, B, respectively:

X®,Y =XYr " mod M.

Our proposal is to achieve this goal with new method other than that in Algo-
rithm 1. First, we split multiplier Y into two parts Yy and Y7 according to a
parameter a, a < n, i.e., Y = Yy - r® + Y. Then we define another parameter
b equal to n — a to construct a new residue modulus M with transformation
constant r°. It is obviously that in this new residue system the constant 7 is
less than modulus M as b < n which is not the case required by Montgomery
algorithm. However, we will show the effectiveness of the Montgomery computa-
tion in the new residue system later. With these pre-definitions, the Montgomery
multiplication modulo M of images X,Y can be computed as follows:

X, Y =(X& Yy +X®,Y) mod M (2)

In Equation 2, the left term, X ®; Yy, is calculated using Montgomery algorithm
where transformation constant is r°. The right term, X ®,, Yz, is calculated using
Montgomery algorithm where the constant is r" normally. These two calcula-
tions are performed in parallel. The split multiplicands Yy and Y7 are both
shorter than Y in length, so they can be performed faster than the NORMAL
Montgomery method with unsplit operands. The computation details of X ®; Yy
and X ®,, Y7, is described as follows and the computation process of the new
Montgomery algorithm is shown in Figure 1.

Fig. 1. The Computation process of New Montgomery Algorithm

The correctness of Equation 2 can be defined as following:

(X ® Yo + X ®, Yo)modM
=(X -Yg-r "+ X Yy -r ")modM
=X -Yg-r " -r*4+Yr -r ")modM (3)
=X -Yg-r*+Y) r "modM
=X-Y -r "modM

Here we concentrate on the first term X ®;, Yy where the parameter b should
fulfill (X - Yy +m-M)/r® < 2M, we haveX - Yg +m-M < M 7"~ + M - 2° =
M - (v’ +7%) =2. M -7’ so the only limitation of a and b is that a + b = 7 and
this condition is fulfilled initially.

Since the implementations of Montgomery algorithm can affect the compu-
tation performances and in our method, the operands are not of normal form,
we pay attention to the selection of algorithms. In [9], Koc introduced several
methods to compute Montgomery algorithm in word level and among these ap-
proaches, Coarsely Integrated Operand Scanning (CIOS) algorithm is proved to
be least complex. Furthermore, CIOS algorithm is much more appropriate than
others to implement our proposed dual residue Montgomery algorithm.

For the left term X ®; Yy, operand X is n words long, operand Yy is b words
long and the transformation constant is . So we implement CIOS algorithm
by reducing the iteration times in order to simplify the computation using the
characteristic of short operand. The CIOS algorithm is showed in Figure 2.

Algorithm 2 CIOS Algorithm with constant r°
Input X, Yy, M, M'[0] = M~ [0Jmod r,
Output T=X Yy -r ’modM

Fori=0tob—1{

C:=0
Forj=0ton—1{
(C,8) :=T[j] + X[j] * Yuli] + C

| Tl= s
(C,S):=T[s]+C
T[s] =S
Tls+1]:=C
C:=0

m := T[0] * M'[0] mod r
(C,8) :=T[0] +m * M'[0]
forj=1ton—1{
(C,8) :==T[jl+mxM[j]+C
T[j—1]:=5

(C,8):=T[s]+C
Tls—1]:=S
Tls]:==T[s+1+C

For the right term X ®, Y7, operand X is n words long, operand Yy is
a words long and the constant is r™. Although one of the operand is shorter
than normal operand in Montgomery algorithm, the constant remains 7™ which
means we cannot directly implement CIOS algorithm mentioned above because
the normal form cannot strictly effectively make use of the short-operand and
the improvement of speed will be quite restricted. If so, the parallelism of our
algorithm will be consumed by poor performance of term X ®, Y. To avoid
this restriction, we modify CIOS algorithm to fit our proposal and the modified
CIOS algorithm is listed in Algorithm 3.

Algorithm 3 Modified CIOS Algorithm with constant r°
Input X, Y., M, M'[0] = M~ *[0]mod r,r°
Output T=X-Y, -r ®modM
Fori=0tob—1{
C:=0
Forj=0ton—1{
(C,8) :==T[j] + X[j] * Yeli] + C

Tlj] = §
(C,S):=T[s]+C
T[s]:=S
Ts+1]:=C
C:=0
m := T[0] * M'[0] mod r
(C,S) :=T[0] +m = M'[0]

forj=1lton—1{
(C,8) 1= Tlj] +m+ MJj] +C

Tlj—1]:=8

}

(C,8):=T[s]+C

Tls—1]:=5

T[s]:=T[s+1]+C

}
Fori=0toa—1{

C:=0

m := T[0] * M'[0] mod r
(C,S) :=T[0] + m * M'[0]
forj=1ton—1{

(C,8) :=T[jl+m=M[j]+C

Tlj—1:=8
(C,8):=T[s] +C
Tls—1]:=5
T[s]:=T[s+1]+C
}

The complete computation of modular multiplication are listed below as
Algorithm 4. In this algorithm, X and Y indicate the multiplicands of mod-
ular multiplication and Yy,Yr are higher and lower parts of Y, respectively.

TMP1 and T M P2 are internal variables which are used to store partial prod-
ucts. CIOS(X,Yq) is a function whose detail is described in Algorithm 2 and
Modified_.CIOS(X,Yr) make use of algorithm mentioned in Algorithm 3. The
initial stage Step 1 transfers multiplicands from memory to register and flushes
all the internal variables. Step 2 computes TM P1 and T'M P2 in parallel. The
complexity of our algorithm depends on this step and the parallelism depth de-
cides the performance improvement of our proposal compared to normal Mont-
gomery algorithm. Step 3 merges two internal variables together through a mod-
ular adder.

Algorithm 4 Dual Residue Montgomery Multiplication
Input X, Y,M, (0< XY < M),

(r"t < M < ™), (R=7r"), My " (mod r)

Output C=X®,Y=XYr"" mod M
step 1 TMP1:=0; TMP2:=0; Yg =Y/r* Yo =Y mod r%
step 2| TMP1=CIOS(X, Yy,

TM P2 = Modified_CIOS(X, Yz, r"™)

step 3| C = (T'MP1+TMP2) mod M,

4 HARDWARE IMPLEMENTATION

4.1 parallel architecture

The diagram of multiplier with parallel architecture based on the new Mont-
gomery algorithm are showed in figure 2. It includes six registers, two operation
units(CIOS and Modified CIOS) and one modular adder. These six n-word long
registers are used to store multiplicands X and Y, modulus M, internal variables
TMP1 and TM P2 and final product C. The CIOS algorithm architecture can
be find in [6], although we can make use of any other designs which may be of
higher efficiency. In fact, this is one advantage of our algorithm that can make
use of any available improvement of Montgomery algorithm no matter in hard-
ware or in software. In the multiplier, input registers which store multiplicands
X and Y, modulus M are all barrel registers of n-word width.

In the aspect of area cost, this proposed multiplier requires one more Mont-
gomery multiplier with CIOS architecture, two extra register for internal vari-
ables and a modular adder. As the CIOS architecture mentioned in [6] has an
internal state machine and the hardware cost is less than other implementations,
the extra hardware cost is insignificant.

Transformation between ordinary integers and their residue class representa-
tion is also performed in the same multiplier. The forward transformation is to
compute modular multiplication of multiplicand A and R?(modM) which can
be divided into higher and lower part to fit this multiplier. And backward trans-
formation between X and constant 1 is less complex as the higher part is zero
and only the lower part computation is required.

In reality, the division of multiplicand Y according to parameter a is case
specific and the process element of CIOS algorithm architecture can be changed
in variable environment. For example, the CIOS and Modified CIOS algorithm

e —

Modulus M

=
i X * CIOS M o
& = =
; 2l |2
— — |k
_— > Modified gl =
CI08 ad
Vi, _[—' §

Fig. 2. The diagram of parallel architecture multiplier

are of same radix and compute in same sequence, a should be set slightly smaller
than [n/2] in order to achieve most significant performance speedup because the
Modified CIOS algorithm requires more computation steps than CIOS algorithm.
a should be chosen around [n/3] when CIOS algorithm runs at radix-2 while
the Modified CIOS algorithm based on radix-4 [15].

This architecture is of high attractive when used in cryptography application
such as public key cipher RSA. Because the use of our multiplier can reach nearly
twice speedup with sequential output which cannot be produced through several
independent Montgomery multipliers. Another advantage is that the product
of our multiplier is the same as normal Montgomery algorithm although the
computation process is different. That means our multiplier can partial replace
Montgomery multiplier used nowadays without any change on top architectures.
This characteristic provides significant flexibility on time and space trade-off.
In the time critical paths, our multiplier can be used to speed up computation
while in the area critical occasions normal Montgomery multiplier is used.

4.2 Pipeline architecture

In other cryptography applications such as Elliptic Curve Cryptosystem(ECC)
[14], the product of multiplier is not used in the next round immediately which
differs from that in RSA system. In order to further improve multiplication
speed, we introduce an two stages pipeline architecture showed in figure 3.

Compared to parallel architecture, the pipelined one require one more register
as pipeline register. The modified CIOS algorithm is performed in two steps
which is distributed in two stages. With this architecture, the bipartite multiplier
can achieve even higher computation speed, i.e., we set a around [n/3], the time
cost is only one third of normal Montgomery multiplication.

5

I ——

J X J CIOS [—I >
I ‘
L Modified Modified

CIOS CIOs

Modular Adder

Pipeline Regisier
Pipeline < ogistor

Fig. 3. The diagram of pipeline architecture multiplier

CONCLUSION

In this paper, we proposed a dual-residue method to compute Montgomery al-
gorithm. In this approach, we define two residue systems with one normal trans-
formation constant and another smaller one which assures the splitting of mul-
tiplicand and compute partial modular multiplication in parallel under CIOS
algorithm or other Montgomery algorithms with low complexity. The implemen-
tation in hardware is then presented and two architectures are developed fit for
different applications, in which the pipelined one can achieve three times speedup
with little extra hardware cost. Further work will be concentrate on converting
this method from GF(p) to GF(2™).

References

1.

2.

D.E. Knuth, The Art of Computer Programming — Seminumerical Algorithm, vol.
2, Addison-Wesley, 3rd ed., 1998.

P. Barrett, “Implementing the Rivest Shamir and Adleman public key encryption
algorithm on astandard digital signal processor,” Advances in Cryptology-CRYPTO
86, pp. 311-323, 1987.

W. Diffie, and M.E. Hellman, “New Directions in Cryptography,” IFEE Trans.
Infomation Theory, vol. 22, no. 11, pp. 644-654, 1976.

P.L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation, vol. 44, no.170, pp.519-521, 1985.

M.E. Kaihara, and N. Takagi, “Bipartite Modular Multiplication,” Cryptographic
Hardware and Embedded Systems(CHES’05), LNCS 3659, pp. 201-210, 2005.

M. McLoone, C. Mclvor, and J.V. McCanny, “Coarsely integrated operand scan-
ning (CIOS) architecture for high-speed Montgomery modular multiplication,”
IEEE International Conference on Field-Programmable Technology(ICFPT’04),
pp- 185-191, 2004.

10.

11.

12.

13.

14.

15.

16.

C.D. Walter, “Space/Time Trade-Offs for Higher Radix Modular Multiplication
Using Repeated Addition,” IEEE Trans. Computers, vol. 46, no. 2, 1997.

K. Manochehri, and S. Pourmozafari, “Modified radix-2 Montgomery modular mul-
tiplication to make it faster and simpler,” International Conference on Information
Technology: Coding and Computing(ITCC’04), vol. 1, pp. 598-602, 2005.

C.K. Kog, T. Acar, and B.S. Jr. Kaliski, “Analyzing and comparing Montgomery
multiplication algorithms,” IEEE Micro, Vol. 16, Issue 3, pp. 26-33, 1996.

Lee Chiou-Yng, Horng Jenn-Shyong, Jou I-Chang, and Lu Erl-Huei, “Low-
complexity bit-parallel systolic Montgomery multipliers for special classes of
GF(2™),” IEEE Trans. Computers, vol. 54, Issue. 9, pp. 1061-1070, 2005.

R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Commum. ACM, vol. 21, no. 2, pp. 120-126,
1978.

L. Hars, “Long Modular Multiplication for Cryptographic Applications,” Crypto-
graphic Hardware and Embedded Systems(CHES’04), LNCS 3156, pp. 45-61, 2004.
T. Yanik, E. Savas, and C.K. Kog, “Incomplete reduction in modular arithmetic,”
IEE Proceedings-Computers and Digital Techniques, vol. 149, Issue. 2, pp. 46-52,
2002.

IEEE Standard Specifications for Public-Key Cryptography, IEEE Std 1363-2000,
2000.

L.A. Tawalbeh, A.F. Tenca, and C.K. Kog, “A radix-4 scalable design,” IEEE
Potentials, vol. 24, Issue. 2, pp. 16-18, 2005.

A.F. Tenca, and C.K. Kog, “A Scalable Architecture for Modular Multiplication
Based on Montgomery’s Algorithm,” IEEE Trans. Computers, vol. 52, no. 9, 2003.

