Design of a Simulator for Mesh-based
Reconfigurable Architectures

Kang Sun'2, Jun Zheng'?, Yuanyuan Li*, and Xuezeng Pan'

1 College of Computer Science, Zhejiang University, Hangzhou, China.
2 IBM Global Engineering Solutions, GCG Delivery, Shanghai, China.
swankong@126.com
3 Zhejiang Institute of Communication and Media, Hangzhou, China.
taurus-zheng@163.com
4 Department of Computer Science, Shanghai Jiaotong University, Shanghai, China.
brucelevy@163.com

Abstract. Reconfigurable computing has become a hot topic in research
due to its high-performance and flexibility. In this paper we present a
simulator called JRSim for mesh-based reconfigurable architectures. The
purpose of this simulator is to provide a platform to evaluate new archi-
tectures, and to assist in analysis of algorithms as well as the visualization
of their behavior. JRSim is a platform-independent tool which is imple-
mented by Java. It supports flexible bus structure, user-defined function
unit and dynamic reconfiguration. Case studies show that JRSim can
simulate the behavior of mesh-based reconfigurable systems correctly
and efficiently. This simulator can be used to evaluate reconfigurable
system design, or demonstrate the ability of reconfigurable system in an
educational environment.

Key words: reconfigurable computing; reconfigurable mesh; simulator;
dynamic reconfiguration

1 Introduction

Reconfigurable computing is a new paradigm based on changing the hardware
to reconfigure the computation and the communication structure [?]. One of the
features of reconfigurable computing is spatial computation: the algorithms are
directly mapped onto the reconfigurable architectures and the data are processed
by spatially distributing the computations rather than temporally sequencing
through a shared computational unit. The other feature is configurable data
path: the function of the computational units and interconnection network can
be changed by some configuration mechanism. Due to the high-performance and
flexibility of reconfigurable hardware, it has become a new solution for high-
performance computing.

With the rapid development of reconfigurable computing, various reconfig-
urable architectures have been developed by researchers and the industry [?],
and all these systems form a very large design space. Designers are then fac-
ing the difficult choice of the target architecture which is critical since it can

strongly affect the final system’s performance. Furthermore, the development of
reconfigurable system CAD tools also requires a tool to help understand system
properties in a way that leads to a better placing of data or utilization of avail-
able resources [?]. In general, a simulator developed in high level language is
useful for the research on computing system architectures, because these archi-
tectures can be easily changeable with additional application specific function
units or bus structures [?].

Currently, most reconfigurable system simulators are designed for dedicated
systems (e.g. GARP Simulator [?]), and they are usually used for hardware
functional verification. There is still a lack of research in development of gen-
eral purpose reconfigurable architecture simulators which can be employed to
assist the analysis of algorithms, perform design exploration, and evaluate CAD
tools performance. Steckel et al. proposed a general purpose simulator for re-
configurable mesh architectures [?], but the processing element model in this
simulator is based on RAM machine which only has a very limited instruction
set and lacks extensibility. Furthermore, this simulator does not support the
feature of dynamic reconfiguration. Vikram and Vasudevan designed a behavior
simulator for hardware-software co-simulation of reconfigurable systems [?]. This
tool is a hybrid system in which the reconfigurable array is designed by Verilog
HDL and the micro-controller is implemented by integrating RSIM [?] - a C-
based micro-processor simulator. A simulator designed by HDL usually needs
EDA tool working environment, and the performance of most HDL simulation
tools is too low for the performance analysis and design space exploration at
the algorithmic and HW/SW partitioning level that we are planning to support
[?]. In latest study results, Brito et al. introduced a dynamically reconfigurable
FPGA simulator designed by SystemC [?].

In this paper, we propose JRSim - a 2-dimensional reconfigurable mesh ar-
chitecture simulator. The advantages of JRSim include:

1. Both the processing element (PE) and the bus structure are scalable. De-
signer can add user-defined function unit, change data-path granularity, and
define new bus structure in the system.

2. It supports the features of dynamically reconfigurable system.

3. JRSim is a platform-independent tool which is implemented by Java. Its user-
friendly graphic user interface (GUI) improves the visibility of the system
behavior.

2 JRSim Architecture

Fig.??. shows JRSim system architecture. The simulation system consists of 3
components: configuration information, a simulation engine, and a graphic user
interface (GUI). The configuration information includes (1) system architecture
definition, and (2) system function configuration. Simulation engine is the core
component of this simulation system: it analyzes configuration information and
performs simulation task. The GUI is responsible for showing working procedure
and simulation results of the system.

Simulation Engine

Architecture FM: Function Module Connection
Definition PE - Network
RM: Routing Module CM

MM: Memory Module

FM: Function Module

[«l}

PE, | RM: Routing Module CM

2

MM: Memory Module

System FM: Function Module
Configuration PE, | RM: Routing Module c™M [

MM: Memory Module

Fig. 1. JRSim system architecture

2.1 Hardware Architecture Definition

The target system of JRSim simulator is mesh-based reconfigurable architec-
ture. Reconfigurable meshes usually contain a set of connected processing ele-
ments (PEs). They arrange their PEs mainly as a rectangular 2-D array with
horizontal and vertical connections which support rich communication resources
for efficient parallelism. Fig.??.(a). depicts a typical mesh-based architecture. In
each PE, there are four ports at its north, east, west and south sides. These con-
nection ports are used for implementing nearest neighbor connection (NN links)
between PEs. Furthermore, additional communication resources can be provided
by row or column buses. Each PE may be used to implement an operator and
simultaneously to route data words through the array, as shown in Fig.??.(b).

Fig. 2. Reconfigurable mesh architecture

This simulator uses special architecture definition information to describe
the properties of hardware architecture, so that it can be applicable for various
architectures. In architecture definition, 3 different architectural properties are
specified:

1. The size of the reconfigurable array, which is the number of PEs in horizontal
and vertical direction, respectively.

2. The connection resources in the reconfigurable array, such as the available
repertory of nearest neighbor connections. Per side of the PE can be one or
multiple unidirectional and/or bidirectional connections. Besides NN links,
some systems may offer one or multiple buses as additional routing resources.

3. The PE operator repertory.

2.2 Processing Elements

A PE is a core information processing engine. It provides general purpose or
application specific functions. As shown in Fig.??., each PE is constructed by
(1) Function Module (FM), (2) Routing Module (RM), (3) Memory Module
(MM), and (4) Communication Module (CM). Routing Module is responsible
for implementing intra-PE communication, which is data transmission between
inner ports of each PE. And Communication Module is responsible for controlling
inter-PE communication, which is data transmission between different PEs.
Each PE is specified by four types of parameters:

1. Static parameter. Static parameter is some architecture definition informa-
tion of PEs. Once defined, it cannot be changed before the completion of a
simulation task. In JRSim, the static parameter is PE granularity, which is
the data-path width of PE.

2. Function parameter. Function parameter is a set of functions which each
PE can be configured to perform. So far each PE supports the integer op-
erators provided by the programming language Java. JRSim also supports
user-defined operation, which can simulate the behavior of some application
specific function units. A further discussion about user-defined functions is
presented in Section 77.

3. Cost parameter. Cost parameter defines the cost with different PE function-
ality, such as delay, power, etc.

4. Data transfer parameter. There are 2 types of data transfer parameter. One
is transfer parameter for inter-PE connection, and the other is the parame-
ter for intra-PE connection. In each PE, the function unit may need several
operands. The operands are supplied by PE input ports or internal memory
module. Thus, it is necessary to build a mapping table to maintain the cor-
respondence among function unit’s input ports, PE input ports, and internal
memory module. Similarly the output data of each PE may directly come
from its input ports, or from the output port of the function unit in PE.
A mapping table is built to maintain the correspondence between PE out-
put ports and possible output data sources. These two input/output tables
record the transfer parameters for intra-PE connection.

2.3 User-defined Functions

A simple description language is designed to describe user-defined functions in
JRSim simulator. Fig.??. is an example of user-defined function declaration. The
#DEFINE ... #END_DEFINE statements define a block of function declaration

statements. As shown in Fig.??., each function consists of four parts: function
name (ACC), arguments (X, Y, Z), function body, and delay cost (delay=3).

User-defined function declaration is read and analyzed by the interpreter
which is integrated in the simulator. Function objects will be constructed and
stored in a hash table according to the declarations. Once a PE is configured
as a user-defined operator and simulator runs into this operation clock cycle,
the interpreter will read out corresponding function object from the hash table,
execute this piece of code, and then output the result.

foreach clock cycle do
foreach node m in system do
if m.state == READY
add m into ReadyList

#DEFINE endif
ACC(X,Y, Z) { endfor
return X*Z+Y; foreach node n in ReadyList do
¥ sim(n)
update state of n and n.child
(delay=3) endfor
#END_DEFINE endfor

Fig. 3. Example of user-defined function Fig. 4. Pseudo code of simulation process

3 The Implementation of JRSim

3.1 (Re)Configuration of Processing Elements

The simulator uses configuration information to configure the PEs. Configura-
tion information includes PE architecture description, operator repertory, user-
defined function declaration and connection resources. An object class is con-
structed in the simulator program code to record the status and properties of
each PE during simulation. These properties include:

1. The position of each PE, which is the X and Y coordinates in the array.

2. The state of each PE. During simulation process, PEs will enter different
states in different simulation stages. We will discuss the state transition of
PE in Section ?7.

3. The input/output ports of each PE, the attributes of the operands needed
by the function unit, and the source of the operands.

3.2 System State Transition

We note the state of arbitrary PE A; ; at clock cycle ¢ as s, and s€S=(Busy,
Ready, Waiting, Idle, Null).

Busy - PE is executing some tasks.

Ready - PE is ready for running a new task.

Waiting - PE is waiting for some signal (or data) to get ready.
Idle - PE is configured, but there’s no task to run immediately.
Null - PE is not used.

At the beginning of each clock cycle, all the PEs which are in Ready state
will be placed in a queue named ReadyList. Then the task assigned to every PE
in ReadyList will be executed and the corresponding PE’s state will be updated.
After this procedure, the PE which is in Ready state will be put into ReadylList
in next clock cycle. This loop procedure will be repeated until the final result is
produced and there’s no more new input data. ReadyList is used for gathering all
the PEs which should be processed in current clock cycle. Fig.??. is the pseudo
code of simulation process.

In simulation process, the state transition of each PE A; ; at clock cycle ¢ is
determined by:

sij (t)=F(t,PD;;,IN; ;) (1)

In formula (??), ¢ is current clock cycle, PD; ; is a set of parent nodes of
A; j, which have accomplished their task and generated output data, and IV; ;
is the number of effective input ports in A, ;. If PD; ;=IN; ;, it means that
all the input data needed by PE A; ; are available and A; ; is in Ready state.
Otherwise, if 0<PD; j<IN; ;, A; ; will be in Waiting state. A; ; will be in Busy
state while executing a task. And if not used, its state will be Null. Fig.??. is
the state machine of PE.

Fig. 5. State machine of reconfigurable PE

3.3 System Working Flow

As a synchronized reconfigurable system simulator, the behavior of JRSim is
controlled by clock signal. The system work flow in each clock cycle is shown in
Fig.?7?.

1. The system checks whether there are new input data or the system needs
to be reconfigured. If some PEs get new input data, the system will update
their states and put the PE whose state is Ready into ReadyList.

2. The system executes the simulation task. Each PE has two tables to record
the correspondence between I/O ports and function unit. One is called
operand table, where the input data indices are stored. Operand[i]=j means
that the ith operand of PE is inVal[j]. inVal[j] is input port number or in-
ternal memory. The other is called output table. The output value is noted
as outVal[i]. In (?7?), outTab is output table. If outTab[i] = -1, it means that
the output value of port i comes from FM (Function Module) in PE. And
if outTab[i] is between 0 and inNum, it means that the output value comes
directly from input port. All the other values of outTab[i] are considered as
€rror.

resof FM, if outTabli]= -1,
outValli| = < inValloutTabli]], if 0 < outTabli] <inNum, (2)
Error, else.
3. The system updates the status of each PE according to the state machine
shown in Fig. 77.
4. When all the PEs finish their task and there’s no new input data, the simu-
lation process will terminate.

(Dynamic)
onfiguration?

Yes
Read Configuration,
(Re)Congfigure the

Update Pes State
and GUI displays

Fig. 6. The working flow of JRSim

3.4 Dynamic Reconfiguration

Reconfigurable technology includes static reconfiguration and dynamic reconfig-
uration [?]. In statically reconfigurable system, if the system needs to initiate

a new configuration, it has to stop computation. But in dynamically reconfig-
urable system, it permits reconfiguration of a portion of the device while other
portions of the device are still performing computations.

JRSim supports dynamically multi-context reconfigurable system modeling.
The simulator stores multiple configuration information in memory. A series of
configuration C;(0 < ¢ < n) are queued in time sequence. At the beginning of
each clock cycle, the system will check whether the configuration signal is valid
or not. If valid, configuration C; will be dequeued and the corresponding PEs
and connecting networks will be reset and configured. During configuration, all
other PEs will keep executing their own tasks.

4 Case Studies

JRSim is implemented by Java programming language, which owns the advan-
tages of object-orientated and platform-independent features. Here we just use
matrices multiplication as an illustrational example to demonstrate the effec-
tiveness of the simulator.

Given an mxp matrix A and a pxn matrix B, the production of Ax B will
be an mxn matrix which is noted as C. c; ; represents the element in ith row
and jth column of C. ¢; ; can be calculated by equation (?7).

p
Cij = ik xbp; (1<i<m,1<j<n) (3)
k=1

According equation (??), ¢; ; can be regarded as the inner product between
ith row vector in A and jth column vector in B. A recursive formula for com-
putation of ¢; ; can be presented as (k is the number of inner product accumu-
lation)[?]:

1

C: :0

i, J

S R C_ i

i =cjtapkbe, i=1....mij=1....n (4)
+1

Ci,j C'IZ])

4.1 Algorithm Mapping

The multiplication algorithm can be mapped onto a mesh-based reconfigurable
array. Fig.?? shows the mapping results. Each element in Fig.??. is a multiply-
accumulator (MAC or ACC). Matrix A is preliminarily stored in the array and
matrix B is inputted from the bus. After MAC operation, the results will be
sent to the right-side adjacent PEs and the inputs from outside buses are also
sent to next stage. The output of the PE in ith row and jth column is just the

value of ¢; ;. The two inputs of PFE; j, are cﬁj which is produced by PE; ;1 and

by,; which is received from jth bus input. a, ; is stored in PE; . So cfjl can be

computed by equation (?7?). After p times recursion of column 4, we can get the

result of ¢; ;.
k+1 __
Cij = Cij+aikbr; (5)

»
L
|
|
.

[\
o
.
(
(

Fig.7. Mapping matrices multiplication Fig. 8. JRSim runtime window
onto PE array

Table 1. The delay cost of each operation

Operation|Inner Product|Multiplication|Routing|Addtion
(ACCQ) (MUL) (RT) | (ADD)
Delay 3 2 0 1

(Cycle)

4.2 Experiment Results

We used the two matrices shown in equation (??) to verify the simulator. In this
experiment, the data-path width of each PE is 16-bit wide. The delay cost of
each operation is listed in Table 7?7. ACC is MAC operation defined in Fig.??.

135 8 6 0 9 —4
7911 4 20 7 3

A=139610|'2=|-41 5 -2 (6)
0 6-45 8§ —3-10

The simulation result is correct. The computation procedure consumes 19
clock cycles under circumstance that all multi-cycle operations are pipelined.
Fig.?? is a runtime snapshot of the simulator. The red notes are working PEs.

The result shows that matrices multiplication algorithm can be mapped onto
reconfigurable array to exploit the parallelism of PEs. The complexity of basic
algorithm for multiplying two nxn matrices is O(n3). Strassen algorithm can
reduce the time for matrices multiplication to O(n'97). But the time complexity
of implementing matrices multiplication on reconfigurable hardware is only O(n).

5 Conclusions

In this paper, we introduce a simulator for mesh-based reconfigurable systems.
The proposed simulator has the integer operators provided by the programming
language Java, and supports dynamic reconfiguration. Expansion interfaces are

also provided by JRSim to add user-defined function units. Case studies show
that the implemented simulator system is able to profile application processing
time and waiting time of each PE, as well as to investigate additional application
specific functions for the architecture of a reconfigurable system. Furthermore,
this system can be used to demonstrate the ability of reconfigurable system in
an educational environment.

Acknowledgments. This work was supported by Natural Science Foundation
of Zhejiang Province, China (Grant No.Y105355), and special project of Zhejiang
High-Tech Development Plan (Grant No.2006C11105).

References

1. Vaidyanathan R., Trahan J. L., Dynamic Reconfiguration Architectures and Algo-
rithms. KAP: Kluwer Academic Publishers, 2004, ISBN: 0-306-48428-5.

2. Compton K., Hauck S., Reconfigurable Computing: A Survey of Systems and Soft-
ware. ACM Computing Surveys, 2002, 34(2): 171-210.

3. Duan R., Fan X.-Y., Gao D.-Y., Shen G., Reconfigurable Computing Technology
and Developing Trends. Application Research of Computers, 2004 (8): 14-17 (In
Chinese).

4. Shinozaki A, Shima M, Guo M, Kubo M. A high performance simulator system for
a multiprocessor system based on a multi-way cluster. Proceedings of 11th Asia-
Pacific Computer Systems Architecture Conference (ACSAC’06). Shanghai, China,
2006, Springer LNCS 4186: 231-243.

5. Hauser J. R., Wawrzynek J., Garp: A MIPS Processor with A Reconfigurable Co-
processor. Proceedings of 5th Annual IEEE Symposium on FPGAs for Custom
Computing Machines. CA. USA, 1997: 12-21.

6. Steckel C., Middendorf M., Elgindy, H., Schmeck H., A Simulator for The Reconfig-
urable Mesh Architecture. Proceedings of Workshops Held in Conjunction with 12th
International Parallel Processing Symposium and 9th Symposium on Parallel and
Distributed Processing. Orlando, FL., USA, 1998, Springer LNCS 1388: 105-110.

7. Vikram K.N.; Vasudevan V., Hardware-Software Co-simulation of Bus-based Recon-
figurable Systems. Elsvier Microprocessors and Microsystems, 2005, 29(4): 133-144.

8. Hughes C.J., Pai V. S., Ranganathan P., Adve S.V., RSIM: Simulating Shared-
memory Multiprocessors with ILP Processors. IEEE Computer, 2002, 35(2): 40-49.

9. Rosa A. L., Lavagno L., Passerone C., A Software Development Tool Chain for A
Reconfigurable Processor. Proceedings of International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASE’01). Atlanta, GA. USA.
2001: 93-98.

10. Britio A. V., Melcher U. K. M., Rosas W., An Open-source Tool for Simulation
of Partially Reconfigurable Systems Using SystemC. Proceedings of IEEE Com-
puter Society Annual Symposium on Emerging VLSI Technologies and Architec-
tures. 2006.

11. Sanchez, E., Sipper, M., Haenni, J.-O., Beuchat, J.-L., Stauffer, A., Perez-Uribe,
A., Static and Dynamic Configurable Systems. IEEE Transactions on Computers,
1999, 48(6): 556-564.

12. Wu S.-Q., Wang Q., Xie Y.-X., Design and Implementation of Matrix Multiplier
for Inverter Harmonic Elimination Model Calculation. Journal of South China Uni-
versity of Technology (Natural Science), 2003, 31(8): 1-5. (In Chinese)

