Object-Based Storage Model for Object-Oriented
Database

Zhongmin Li*, Zhanwu Yu*

!State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing, Wuhan University, Wuhan, Hubei, China, 430079
{zhongmli, yzw2008}@gmail.com

Abstract. The current storage models for Object-Oriented DataBase (OODB),
which organize data as objects according to the Object-Oriented Data Model
(OODM), are mainly established on the block storage devices. In this way, the
storage manager does not have detailed knowledge of the characteristics of the
underlying storage devices, and the storage subsystem does not have the seman-
tic knowledge of the data stored in the block storage devices, so it is very diffi-
cult to implement some workload-dependent tasks such as data layout and cach-
ing. Furthermore, the storage subsystem of OODB has to organize the objects
in the pages, which is not well-suited to the objects storage. In this paper, we
present an Object-Based Storage Model (OBSM) for OODB by using the re-
cently-standardized Object-based Storage Device (OSD) interface. OSD off-
loads the storage management into the storage device itself and provides an ob-
ject interface to data, which brings more intelligence into the storage
subsystem. In the first glance at using OBSD in OODB, we explore the meth-
ods to map OODM to OBSM including direct mapping, mapping clustering to
collection and declustering a large object to a series of sub-objects, and analyze
the benefits to the storage subsystem of OODB by using OBSM such as provid-
ing storage functionalities offloading, providing objects sharing pool, providing
integrative object persistence.

Keywords: object-oriented database, object-based storage, storage model, ob-
ject-oriented data model

1 Introduction

The storage subsystem is one of the kernel modules in database system, and its stor-
age performance is of utmost importance for database applications. The standard in-
terfaces to storage subsystem virtualize storage as a simple linear array of fixed-size
logical blocks.

! Supported by the National Key Basic Research and Development Program of China
(N0.2004CB318206).

Corresponding author: Zhanwu Yu, Professor, Ph.D. Supervisor. Major Research Interests:
Multimedia Communication, Massive Information Storage. yzw2008@gmail.com

Most database systems use the N-ary Storage Model (NSM) as their low-level data
layout. In the NSM, all attributes of a conceptual schema record are stored together.
NSM organizes he table into fixed-size pages (e.g., 8KB) each containing a short
range of full records, stores records contiguously starting from the beginning of each
disk page, and uses an offset table at the end of the page to locate the beginning of
each record, and the pages are stored sequentially on disk [1]. NSM is well-suited to
workloads that access full records, which are always fetched into memory regardless
of whether the query actually touches the data. In this way, it wastes memory capacity
and, more importantly, disk bandwidth, so it is not well-suited to workloads that ac-
cess partial records.

The Decomposition Storage Model (DSM) organizes a table in column major order
by storing individual fields sequentially on the disk [2]. DSM gives good performance
when accessing just one or a few fields from a relation, but suffers when reconstruct-
ing full records. In order to solve the problem, Ramamurthy et al suggested DSM
stores two copies of each attribute relation; one copy is clustered on the value while
the other is clustered on the surrogate [3]. To support the relational model, intermedi-
ate and final results need an N-ary representation. However, this technique needs
double storage space and requires updating both copies of the relation.

To address the issue of low cache utilization in NSM, Ailamaki et al. introduce
Partition Attributes Across (PAX), a new layout for data records [4]. Unlike NSM,
within each page, PAX groups all the values of a particular attribute together on a
minipage, and fully utilizes the cache resources during a sequential data access be-
cause only a number of the required attribute’s values are loaded into the cache. How-
ever, compared with DSM, PAX doesn’t optimize the 1/0 between disk and memory.

The Multi-resolution Block Storage Model (MBSM) stores records in a partitioned
way in super-blocks, and then organizes super-blocks on disk into mega-blocks [5].
MBSM is most suitable for decision-support workloads that frequently execute table
scans. Compared to NSM and PAX, MBSM requests fewer disk pages. Compared to
DSM, MBSM’s scan performance is comparable, and its cache performance is better.
Furthermore, MBSM has better insert/update 1/0O performance, and doesn’t require a
join to reconstruct the records.

The Clotho Storage Model (CSM) allows the DBMS to construct in-memory data
pages that contain only the data required for a given query [6]. CSM provides the de-
sired tradeoff between full- and partial-record access to save memory and disk band-
width. The Atropos disk array logical volume manager enables efficient two-
dimensional access to relations stored on disk, allowing data pages to be filled effi-
ciently, regardless of the query [7]. The combination of Clotho and Atropos uses
knowledge of the relation’s schema and the characteristics of the underlying disk
storage to enable a geometry-aware storage model (GASM) with the desired tradeoff:
the performance of NSM for full-record access, the performance of DSM for single-
record access, and a near-linear tradeoff for partial-record access. Many studies [7, 8,
9, 10] have taken the view that a storage device can provide relevant characteristics to
applications to allow for optimized 1/O access. But the required information about de-
tailed knowledge of the mechanical parameters and geometry of the disk drives in the
storage subsystem can be measured empirically, so it is difficult and fragile in prac-
tice, making the realization of GASM problematic.

Schlosser uses Object-Based Storage (OBS) interfaces to allow the database stor-
age manager to cleanly communicate its storage requirements to the storage subsys-
tem, where more information is available to make low-level optimizations [11]. In
this way, an entire table is stored as a single object, and the schema of the relation is
expressed through attributes assigned to that object, so storage managers can take ad-
vantage of heterogeneous storage devices without being burdened with different de-
vice parameters. Using the Object-based Storage Devices (OSD) specification [12],
data can be addressed at an object granularity, allowing the storage manager to access
individual records and fields of the relation directly. Furthermore, object-based stor-
age devices have much richer semantic information about the data that they store, al-
lowing them to optimize their performance “under the covers” much more effectively
than current storage devices. The database no longer needs detailed information about
the storage subsystem, but still can take advantage of geometry-aware data placement
techniques such as CSM.

Schlosser only discussed how to organize relational database tables into objects us-
ing OSD, which are mainly used in Relational Database (RDBM) and Object-
Relational Database (ORDBM). Sometimes applications evolve to object-oriented
software development to keep the promise of flexibility and extensibility. OODB is
well-suited, since it provides homogeneous means to store and to manage complex
structures very efficiently. As for Object-Oriented Database (OODB), it usually uses
Object-Oriented Data Model (OODM) to store the hierarchical classes in the pages
based on the block storage devices such as disks [1]. In this way, the storage subsys-
tem needs manage two buffers: pages buffer and objects buffer, and frequently change
the storage mode between them. Its storage performance is low, and it is difficult to
realize multilevel persistent objects storage.

In this paper, we present an Object-Based Storage Model (OBSM) for OODB us-
ing OSD. We store the hierarchical classes as objects in the OSD devices by mapping
OODM to OBSM. The rest of the paper is organized as follows: Section 2 briefly in-
troduces the OSD model and its advantages. Section 3 summarizes the OODM and
the methods to map OODM to OBSM. Section 4 analyzes the benefits to OODB by
using OBSM. Section 5 gives a summary for the paper and future work.

2 Object-based Storage

2.1 OSD model

An object is variable-length and can be used to store any type of data, such as files,
database records, medical images, or multimedia, even be used to store an entire file
system or database [13]. The OSD object abstraction is designed to re-divide the re-
sponsibility for managing the access to data on a storage device by assigning to the
storage device additional responsibilities in the area of space management [12]. Fig-
ure 1 shows the relationship between the OSD model and a traditional SBC-based
model for a file system.

Traditional Model OSD Model

\ Applications | \ Applications |
A A

Y Y
| System Call Interface | | System Call Interface |

‘ File System
User Component

File System
User Component

x

File System Storage ‘ OSD Interface
Management

| Sector/LBA Interface | ‘
i
L]
| Block /O Manager | Block I/O Manager |
ey |y
@ (b)

Fig. 1. Comparison of traditional and OSD storage models: (a) traditional storage model; (b)
OSD storage model.

OSD Storage
Management

The user component of the file system contains such functions as hierarchy man-
agement, naming and user access control. The storage management component is fo-
cused on mapping logical constructs (e.g., files or database entries) to the physical or-
ganization of the storage media.

In the OSD model, the logical constructs are called user objects, which are com-
posed of data, user-accessible attributes, and device-managed metadata, and act as
data containers that abstract the physical disk layout details under the object interface.
A user object is the basic object type, and the root object, partition objects and collec-
tion objects provide additional navigational aids for user objects. Each object, regard-
less of its type, has a unique name or Object ID (OID), a set of object attributes, and
some meta-data. There is only a root object on each Object-Based Storage Device
(OBSD), which encompasses all the other objects. Each user object is a member of
only one partition object which allows for efficient addressing, capacity and quota
management, and security management of sets of user objects. Within each partition
there may be zero or more collection objects that are used to group user objects for
fast indexing and multi-object operations. A user object can be a member of zero or
more collection objects at the same time.

In addition to mapping data, the storage management component maintains other
information about the OSD objects that it stores (e.g., size, usage quotas, and associ-
ated username) in attributes. The user component may have the ability to influence
the properties of object data through the specification of attributes by accessing the
object interface. The difference between an OBSD and a block-based device is the interface,
not the physical media [13]. The OBSD makes the decisions as to where to allocate stor-
age capacity for individual data entities and managing free space.

2.2 OSD advantages

Fig. 2 shows the architecture of the OSD. In order to separate access paths of control,
management and data, the Client, the Metadata Server (MDS) and the OBSD are self-
existent. The Client is the initiator of data access, the MDS manage the metadata of
whole storage system and the OBSD are the storage devices to store objects [12]. In
comparison with traditional storage architecture, the Object-based Storage System
(OSS) possess some features such as intelligence of storage devices, distributed meta-
data, parallel data access, data sharing across platforms and security of data access
[13,14].

Client MDS
Application
Server Metadata
File System | _ Control path - Server
User Component | o

s
%
%

OSD Storage
Management

Storage Device

Fig. 2. OSD architecture

In the OSD model, the OBSD can understand some of the relationships between
the blocks on the device, and can use this information to better organize the data and
anticipate the storage requirements of whole system, because the object storage man-
agement component stands in the OBSD. The attributes of an object can contain static
information about the object (e.g., creation time), dynamic information updated on
each access (e.g., last access time), information specific to a storage application (e.g.,
filename, group, or user ids), and information specific to a current application. Attrib-
utes may also contain hints about the object’s behaviors such as the expected
read/write ratio, the most likely patterns of access (e.g., sequential or random), or the
expected lifetime of the object [12, 13]. To access such various attributes enables the
storage system to better store, organize and manage the data.

While separating the MDS, the Client can directly access the OBSDs, and 90% of
the metadata management is offloaded from the metadata server to the OBSDs. In this
way, it solves the bottleneck problem which results from using traditional network
storage architectures, which are designed with a single monolithic metadata server.
Each OBSD manages the layout and retrieval of the data that is presented to it. This
brings improvement in an order of magnitude in the potential performance of the sys-
tem’s metadata management. Furthermore, adding more OBSDs to the system will
not only increase the capacity of whole object-based storage system, but also increase

the resources of the metadata management. This also improves scalability of clusters
greatly since hosts no longer need to coordinate metadata updates.

Direct accessing the OBSD enables a high-performance solution, as there are no
potential bottlenecks in the system between the hosts and the storage devices. Owing
to intelligence built in the OBSD, there is no need for a file server to intermediate the
transaction. Further, if the file system stripes the data across a number of OBSDs, the
aggregate 1/0 rates and data throughput rates scale linearly.

Obijects introduce a mechanism in the OBSD that allows the device treat storage
applications or clients individually. With objects, since metadata is offloaded to the
OBSD, the dependency between the metadata and storage system/application is re-
moved. Attributes improve data sharing by allowing storage applications to share a
common set of information describing the data, and are the key to giving storage de-
vices an awareness of how objects are being accessed. In this way, OSD removes the
biggest obstacle to data sharing.

Security is perhaps the single most important feature of object-based storage that
distinguishes it from block-based storage. Although security does exist at the device
and fabric level for SANSs, objects provide a finer granular security at a much lower
cost in the OSD model [13]. In order to realize secure data sharing, a credential-based
access control system is running in the OSD model, which is very different to realize
in the traditional network storage architectures. In this security architecture, every ac-
cess is authorized, and the authorization is done without communicating with a central
authority that may slow the data path. The security manager may authenticate the Cli-
ent, but the OBSD does not authenticate the Client. It is sufficient for the OBSD to
verify the credential sent by the Client. The credential-based access control system
may ensure the Client to use more effective and more achievable network such as
Ethernet.

3 OBSM for OODB

The common data model supported by ODMG [15] implementations is based on the
OMG Object Model, which was designed to be a common denominator for object re-
quest brokers, object database systems, object programming languages, and other ap-
plications. Generally, OODM includes interface, class, and structure (literal) data
types. An interface specifies the abstract behavior of its instances; a class specifies the
abstract state and behavior of its instances; a structure type is defined with a name and
a set of attributes, and will be called a named structure type [16]. An instance of a
named structure type has no identifier but values of attributes. The ODMG Object
Model defines atomic literal types such as short and string.

Logically, OODB consists of a class hierarchy represented by a Directed Acyclic
Graph (DAG). Each node in the DAG represents a class, and classes are named and
associated with each class that is a set of instance variables. The OODB consists of
instances of these classes, and every instance in the OODB belongs to its home class.
Since the hierarchy represents an ISA relationship among the objects, an instance be-
longs not only to its home class but to all the superclasses related to it, and has a
unique identifier to distinguish it from every other instance in the OODB.

While using OSD to store the objects in OODB, the primary problem is how to
map OODM to OBSM. There are several methods to map OODM to OBSM: (1) di-
rect mapping a Logical Object (LO) based on OODM to a Storage Object (SO) in
OBSD, (2) mapping LOs clustering to SOs collection, (3) declustering a large LO to a
series of sub-objects (several SOs).

3.1 Direct mapping

Primarily we map a LO to a SO in the object-based storage system. No need to
change the structure of LO, just add a unique SO identifier (SOID), the length of LO
and some storage attributes for the LO to construct a correlative SO (see Fig. 3). We
also can add some other attributes to the end of SO. It is the general way to map a LO
toa SO.

Storage Object
SOID

Logical Object Length of SO
LOID LOID

Length of LO

Length of LO

Attributes of LO

Attributes of LO

Other Values of LO

Other Values of LO

SO Storage Attributes
Other Attributes

Fig. 3. Direct mapping

3.2 Mapping clustering to collection

Clustering is a container for the objects which attributes are similar such as all the in-
stances of some class, and is the ability to store logically related objects close to-
gether. When applications access an object, applications can find the object or other
correlative objects using clustering. Using OBSM, we can map a clustering to a Col-
lection Object (CO) stored in the OBSD. In this way, each LO in the clustering is
mapped to a relevant SO using the method described in 3.1, and the CO has its own
unique object identifier and attributes (see Fig. 4). The SOs belong to the CO logi-
cally, but not the part of it. The common attributes of all the SOs can be drew out to
become the part of the attributes of the CO. Each SO also has its own unique object
identifier and attributes. Applications can access the CO, and also directly access any
SO in the CO respectively.

Clustering

[tor | o2 | o3 [Lo4 |

Attributes of CO

Collection Object

Fig. 4. Mapping clustering to collection

3.3 Declustering a large object to a series of sub-objects

In the block storage device, a large logical object which size is bigger than one page
must be stored in several pages using some strategy. In the OSD, a large logical object
can be mapped to a SO using the method in 3.1. When the size of a large object is too
big to affect the access efficiency mapping a SO stored in an OBSD, we can split the
large logical object to several slices, and each slice is mapped to a relevant SO (see
Fig. 5). In this way, we can use some strategies to distribute the series of sub-objects
in different OBSDs to increase the access 1/0 bandwidth using the characteristic of
parallel access of OSD. The procedure is hided in the object storage system, and the
applications don’t need to know the processing details. For applications, accessing a

large object and accessing an average object are in the same way.

4 Benefits

In the OSD, the storage devices have the intelligence according to offloading the stor-
age management component into the storage devices, which brings many benefits to

Large Object

| Slice 1 i Slicezi Slice 3 i Slice 4 |

OBSD OBSD OBSD OBSD

Fig. 5. Declustering a large object to a series of sub-objects

the object management in the OODB.

4.1 Providing storage functionalities offloading

Using OBSM, the storage management component of the storage subsystem is off-
loaded into the object-based storage devices. In this way, some functionalities of stor-
age management can be offloaded into the object-based storage system, and the stor-
age manager of OODB focuses on the transaction processing.

4.2 Providing objects sharing pool

The object-based storage system can provide an objects sharing pool for OODB, and
provide access control at object granularity. Synchronization of metadata is realized
in the object-based storage system, so various OODBs can share the objects sharing
pool to construct a parallel distributed Object-Oriented DataBase System (OODBS).
The metadata server of the object-based storage system can provide a uniform DAG
for all the OODBs.

4.3 Providing integrative object persistence

The storage subsystem of OODB can use unified object interface to access the objects
storage sharing pool without format conversion, and the uniform DAG provides effi-
ciency navigation. Furthermore, persistence objects and temporary objects have the
same object storage format, which provides an integrative management for objects in
OODB.

5 Conclusion

In this paper, we introduce a new storage model called OBSM for OODM. We have
explored the methods to store the objects of OODB by using object-based storage de-
vices to improve the interaction between the database storage manager and the storage
subsystem. OBSM brings some benefits to OODB such as providing storage func-
tionalities offloading, providing objects sharing pool, providing integrative object per-
sistence. OBSM provides an integrative management for objects in OODB.

OSD has much richer semantic information about the data that they store, allowing
them to optimize their performance in the underlying storage system, so it is much
more effectively than current storage devices. OSD already includes provision for free
space management, which is currently handled by the database storage manager. With
better semantic information about the free space requirements of the database, the
storage subsystem could better optimize its layout and set aside free space for future
inserts and deletes. Our future work focuses on investigating these opportunities for
OODB applications.

Acknowledgments. This paper is supported by the National Key Basic Research and
Development Program of China (N0.2004CB318206). Every member in our project

team has made contribution to this project. Especially thanks Dr. Sheng Zheng for his
helpful advice.

References

1. R. Ramakrishnan, J. Gehrke: Database management systems. Number 3rd edition. McGraw-
Hill (2003)

2. G. P. Copeland, S. Khoshafian: A decomposition storage model. In ACM SIGMOD Interna-
tional Conference on Management of Data, ACM Press (1985) 268-279.

3. R. Ramamurthy, D. J. DeWitt, Q. Su: A case for fractured mirrors. In International Confer-
ence on Very Large Databases, Morgan Kaufmann Publishers, Inc. (2002) 430-441

4. A. Ailamaki, D. J. DeWitt, M. D. Hill, M. Skounakis: Weaving relations for cache perform-
ance. In Proceedings of VLDB Conference (2001)

5. J. Zhou, K. A. Ross: A multi-resolution block storage model for database design. Proceed-
ings of the Seventh International Database Engineering and Applications Symposium
(IDEAS’03), Asuncidn, Paraguay (2003)

6. J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki, G. R. Ganger: Atropos: A disk array
volume manager for orchestrated use of disks. In Conference on File and Storage Technolo-
gies. USENIX Association (2004)

7. M. Shao, J. Schindler, S. W. Schlosser, A. Ailamaki, G. R. Ganger: Clotho: Decoupling
memory page layout from storage organization. In International Conference on Very Large
Databases (2004) 696-707

8. J. Schindler, A. Ailamaki, G. R. Ganger: Lachesis: Robust database storage management
based on device-specific performance characteristics. In International Conference on Very
Large Databases, Morgan Kaufmann Publishing, Inc. (2003) 706-717

9. J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-aligned extents: Matching
access patterns to disk drive characteristics. In Conference on File and Storage Technolo-
gies, USENIX Association (2002) 259-274

10. R. VanMeter: SLEDs: Storage latency estimation descriptors. In IEEE Symposium on Mass
Storage Systems. USENIX (1998)

11. Steven W. Schlosser, Sami Iren: Database storage management with object-based storage
devices. Proceedings of the First International Workshop on Data Management on New
Hardware (DaMoN 2005), Baltimore, MD, USA (2005)

12. SCSI Object-Based Storage Device Commands-2 (OSD-2), http://www.t10.0rg. October
(2004)

13. Mike Mesnier, Gregory R. Ganger, Erik Riedel: Object-based Storage. IEEE Communica-
tions Magazine, Vol. 41(8) (2003) 84-90

14. Azagury A, Dreizin V, Factor M: Towards an Object Store. 20th IEEE Symposium on Mass
Storage Systems (2003)

15. R. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel, O. Schadow, T. Stanienda,
F. Velez: The Object Data Standard: ODMG 3.0. Morgan Kaufgrnann, Publishers, Inc.
(1999)

16. Liwu Li: On ODMG Data Types. 39th International Conference and Exhibition on Tech-
nology of Object-Oriented Languages and Systems (TOOLS 39) (2001) 219-228

