
A Hierar
hi
al Programming Model for LargeParallel Intera
tive Appli
ationsJean-Denis Lesage and Bruno Ra�nINRIA, Grenoble Informati
s Laboratory, Fran
eAbstra
t. This paper fo
uses on parallel intera
tive appli
ations rang-ing from s
ienti�
 visualization, to virtual reality or 
omputational steer-ing. Intera
tivity makes them parti
ular on three main aspe
ts: they areendlessly iterative, use advan
ed I/O devi
es, and must perform understrong performan
e 
onstraints (laten
y, refresh rate). In this paper, wepropose an appli
ation des
ription language based on a data �ow andhierar
hi
al 
omponent model to 
ope with the 
omplexity of parallel in-tera
tive appli
ations. It enables us to de�ne highly generi
 
omponents,enfor
ing the appli
ation maintainability and portability. An implemen-tation on top of the FlowVR middleware is presented.1 Introdu
tionAn intera
tive appli
ation is an endless iterative pro
ess involving a user user in-tera
ting with a program through input and output devi
es. It is often referred toas a "human in the loop simulation". Today, an emerging 
lass of intera
tive ap-pli
ations intends to asso
iate virtual reality, s
ienti�
 visualization, simulationand appli
ation steering. It leads to very 
omplex appli
ations 
oupling advan
edI/O devi
es, large data sets, various parallel 
odes. To be intera
tive, they mustperform under strong performan
e 
onstraints, often measured in terms of la-ten
y and refresh rate. Examples of su
h appli
ations are des
ribed in [1�3℄. Inthis paper we fo
us on two issues fa
ed when designing su
h appli
ation:� Software engineering issues where multiple pie
es of 
odes (simulation 
odes,graphi
s rendering 
odes, devi
e drivers, et
.), developed by di�erent per-sons, during di�erent periods of time, have to be integrated in the sameframework to properly work together.� Hardware performan
e limitations bypassed by multiplying the units avail-able (disks, CPUs, GPUs, 
ameras, video proje
tors, et
.), but introdu
ingat the same time extra 
omplexity. In parti
ular it often requires to intro-du
e parallel algorithms and data redistribution strategies, that should begeneri
 enough to minimize human intervention when the target exe
utionplatform 
hanges.One 
hallenge is to ensure the generi
ity and modularity of the appli
ation.S
ienti�
 visualization appli
ations are often developed with Modular Visu-alization Environments (MVE) like OpenDX [4℄, Iris Explorer [5℄ or VTK [6℄.



These environments are usually based on a data �ow model where pro
essingtasks re
eive data and generate new ones. Most of MVEs support parallel exe-
utions. An appli
ation is basi
ally a list of �lters applied to the data set beforerendering. The �rst natural level of parallelism is to distribute the di�erent stepsof the �lter pipeline on di�erent ma
hines. Be
ause the data set is read only, thepipeline 
an easily be dupli
ated and exe
uted in parallel on sub parts of the dataset [7℄. Advan
ed parallel rendering algorithms exist, based for instan
e on spe-
i�
 parallel data stru
tures and dynami
 work balan
ing s
hemes. In this 
asethey are implemented on their own, usually using 
lassi
al parallel programminglanguages, be
ause MVEs do not provide the ne
essary 
onstru
ts.In virtual reality, to ensure an e�
ient data redistribution between paral-lel algorithms that may run at di�erent and varying frequen
ies, 
omplex 
ou-pling s
hemes asso
iating data re-sampling and 
olle
tive 
ommuni
ations are re-quired. Dedi
ated environments like FlowVR [8℄, OpenMask [9℄ or COVISE [10℄propose di�erent approa
hes to support su
h features. However, the resulting ap-pli
ation 
ode tends to be di�
ult to maintained when rea
hing a 
ertain size.Conne
tivity between pro
essing tasks (
ommuni
ation 
hannels) are expressedby dire
t links between the 
orresponding elements: it requires the 
on
ernedelements be dire
tly visible one for ea
h other, preventing attempts to stronglystru
ture the 
ode by en
apsulating patterns in methods or fun
tions.Component models, like CCA (Common Component Ar
hite
ture) or CCM(Corba Component Model), provide ADLs for the des
ription of distributed ap-pli
ations. SCIRun, an environment dedi
ated to s
ienti�
 visualization, is basedon the CCA model [11℄. Some extensions intend to enfor
e the support of parallel
omponents and the asso
iated 
oupling patterns [12℄. But these models su�erfrom the same limitations as the systems mentioned earlier (FlowVR, Covise)regarding the modularity of parallel 
omponent 
oupling. Fra
tal [13℄ is a trulyhierar
hi
al 
omponent model. We are aware of one implementation of Fra
talfor parallel (grid) appli
ations: ProA
tive [14℄. A ProA
tive 
omposite 
ompo-nent 
an be a parallel 
omponent. But redistribution patterns are 
oded into theports of the parallel 
omponents. A pattern 
annot be modi�ed without modify-ing the 
omponent, limiting appli
ation modularity. In this paper we propose toen
ode 
oupling patterns as standalone fra
tal 
omponents with a 
onne
tivitymodel between primitive 
omponents (pro
essing tasks) that does impair thismodularity.We propose an appli
ation des
ription language, 
alled ar
hite
ture des
rip-tion language or ADL following the uses of the 
omponent 
ommunity, based ona data �ow and hierar
hi
al 
omponent model. We fo
us on intera
tive appli-
ations, instead of a general purpose language, relying mainly on their iterativenature, to restrain the domain of the language.To enfor
e the generi
ity of the des
ribed appli
ation, 
omponents defer in-trospe
tion and auto-
on�guration pro
esses to 
ontrollers. A 
ontroller is lo
alto a given 
omponent, but it may get extra data 
onsulting the state of theneighbor 
omponents or through external data repositories. These 
ontrollers,that 
an generate new 
omponents for instan
e, are 
alled re
ursively and re-



peatedly in a traverse pro
ess until rea
hing a �xed point. Traverse either leadsto an error (missing data impair the traverse 
ompletion) or a su

ess. This ap-proa
h enables to de�ne highly generi
 
omponents, enfor
ing the appli
ationmaintainability and portability. In parti
ular, we 
an de�ne arbitrarily 
om-plex and adaptive data redistribution 
omponents, for instan
e mixing 
olle
tive
ommuni
ations and re-sampling. This is an important feature for intera
tiveappli
ations where these 
oupling me
hanisms play an important role to enfor
eintera
tivity.Se
tion 2 presents our hierar
hi
al model. Se
tion 3 details our implementa-tion on top of the FlowVR [15℄ middleware with a fo
us on the traverse pro
ess.Se
tion 4 
on
ludes the paper.2 Programming ModelIn this se
tion, we des
ribe our hierar
hi
al 
omponent model inspired by Fra
-tal[13℄ for large parallel intera
tive appli
ations. Fra
tal is a 
omponent modelbased on a 
omponent hierar
hy. This model enables to en
apsulate 
ompo-nents into high-level 
omponents. This en
apsulation enfor
es reusability andmodularity. We will also present another feature, named 
ontrollers, inspiredby Fra
tal too. Theses obje
ts enables dynami
 re
on�guration and 
omponentintrospe
tion.2.1 ComponentsA 
omponent has an interfa
e de�ned by a set of ports. We distinguish two kindsof 
omponents:Primitive 
omponents. A primitive 
omponent 
ontains a loop. At ea
h iter-ation, the 
omponent reads data from its input ports. It writes 
omputationresults on its output ports.Composite 
omponents. A 
omposite 
omponent 
ontains other 
omponents(
omposite or primitive). We impose a strong en
apsulation paradigm: a
omponent 
annot be dire
tly 
ontained into two parent 
omponents.2.2 Port TypingThere are two types of ports: input and output ports. The input port re
eivesdata and output port sends data. We do not impose a strong typing. We simplyrequire the input and output 
orresponden
e. Nevertheless, depending on theneeds, the port typing 
an be extended. We plan a stronger typing based on thedata type ex
hanged by the ports.



2.3 ExampleThroughout this paper, we use a simple example (Fig. 1). It shows the 
lassi
alstru
ture of an intera
tive appli
ation. The goal of this appli
ation is to 
omputeprime numbers and from these numbers 
ompute a 3D image. The image isupdated ea
h time a new prime number is 
omputed. A keyboard enables theuser to 
hange his point of view on the image.The Computes 
omposite 
omponent is a parallel 
omponent programed withMPI. It spawns n pro
esses Computes/0,..., Computes/n-1 seen as primitive
omponents of Computes. Noti
e that n is only known on
e the appli
ation asbeen 
on�gured for an exe
ution on a parti
ular target ma
hine.The 
omposite 
omponent Renderer is divided in two main parts (Fig. 1.b).The �rst one, Visu makes the rendering on a display. This display 
ontainsseveral s
reens. For ea
h s
reen, a rendering pro
ess must be instan
ed. TheVisu 
omponent 
ontains all these rendering pro
esses. The se
ond one is the
omponent Capture. It gets key events from user and sends them to the Visu
omponent.Two 
oupling 
omponents are dedi
ated to 
ommuni
ation (ComponentsConne
t and GreedyConne
t). The Conne
t 
omponent transmits data fromComputes 
omponent to Renderer 
omponent. The Conne
t 
omponent 
on-tains a 
ommuni
ation pattern. The GreedyConne
t resamples messages fromCapture for Visu.
Computes

Connect

Renderer

outPrimes

in

out

inPrimes

GreedyConnect

Capture

Renderer

Visu

inPrimes

inPrimes inKeys

out

outKeys

in

. . .

Computes

Compute/0 Compute/n

outPrimes

outPrimes

outPrimesFig. 1. a) The appli
ation : a 
omposite 
omponent Computes generates primes num-bers. They go through the Conne
t 
omponent to the renderer. b) The Renderer 
om-posite 
omponent 
ontains two 
omponents Render and Capture. 
) The Computes
omposite 
omponent is a MPI parallel 
omponent.In this example, Computes, Renderer are examples of 
omposite 
omponents.Compute/0 and Visu are primitive obje
ts. outPrimes from Computes is anoutput port. inPrimes from Renderer is an input port.



2.4 LinksLinks are used to model data �ows between ports. We distinguish two kinds oflinks. The parent link joins a port from a 
omponent to one of his 
hildren'sport. The extremities of a parent link must have the same type. For example(Fig. 1.b), the outPrimes port on 
omputes 
omponent has the same type as allits 
hildren (i.e. output port).The se
ond kind of links are 
alled sibling links. They go from a 
omponentto an another. We assume that an obje
t 
annot share data with an anotherobje
t without using a 
onne
tion. So a sibling link must join an input port toan output port. Due to the stri
t en
apsulation paradigm, a sibling link 
annotdire
tly 
onne
t two 
omponents that are not brothers (
hild of the same parent).A 
hain of sibling and parent links must be used to 
onne
t two non brother
omponents.The link between outPrimes port and in port of Conne
t in our example isa valid sibling link.2.5 Parallel ComponentsA 
omposite 
omponent 
an be a 
ontainer for parallel appli
ation. For example,Computes is a parallel MPI 
ode spawning when laun
hed several pro
esses,ea
h one being a primite 
ompenent. These primitive 
omponents are linked tothe same parent port (Fig. 1.
). This kind of stru
ture 
an express the dataand task parallelism for instan
e. Noti
e that the number of pro
esses spawneddepends on the instan
iation of the appli
ation for a given target ar
hite
ture.The Computes 
omponent has a mandatory parameter that de�nes the numberof MPI pro
esses. It must be set to know the number of primitive 
omponentsit 
ontains. Su
h level of dynami
ity is 
lassi
al for parallel 
omponents.A 
omposite 
omponent 
an also en
apsulate a pipeline. Ea
h stage of thepipeline 
an be 
ontained into a 
omponent. A sibling link from a 
omponentto another will make the transition from one stage to an other. Thanks to 
om-ponents reusability, we 
an also dupli
ate a pipeline by building a 
omposite
omponent 
ontaining various parallel pipelines.2.6 Communi
ations and Redistribution PatternsCommuni
ation between parallel 
omponents have a huge impa
t on appli
ationperforman
e. They need to be 
ustomisable and modular. A 
ommuni
ation
omponent is simply a 
omponent en
apsulating a generi
 redistribution pattern.The simplest one is just a link transferring data from one output port of aprimitive 
omponent to one input port of a primitive 
omponent.In our example, a 
onne
tion s
hema is implemented in the MergeThenTree
omponent (Fig. 2). This 
omponent has a di�erent implementation followingthe number of primitive 
omponents Compute and Renderer will spawn. Un-like the parallel 
omponents, user does not have to set the parameters of these



Computes MergeThenTree Renderer

C0 R0

C0

C1

C2

R0merge

C0

C1

C2

merge

R3

R0

R1

R2

1 X 1

3 X 1
3 X 4

Fig. 2. Parallel 
ompute 
omponent send data through a 
onne
tion 
omponent toa parallel renderer. A

ording to N and M parameters, a 
ommuni
ation s
hemes isgenerated.dynami
 
omponents. These 
omponents get their mandatory parameters fromtheir neighbors.The simplest 
ommuni
ation pattern is a simple 
onne
tion. But it 
ould bea merge tree and a broad
ast tree with di�erent arities. The order of mergedmessages 
ould be 
ustomized. Communi
ations may resample messages. Com-ponents 
an 
ontain �lters that operate on messages or enfor
e syn
hronizationsbetween a set of 
omponents. Typi
ally, �lters are used to resample messages.Several �lters 
an be syn
hronized to perform a 
oherent sampling, i.e. ensurethey sample messages issued at the same logi
ial time.Some 
ommuni
ation 
omponent parameters depends from the state of theneighbor 
omponents. In the example (Fig. 2), the shape of the 
ommuni
ationpattern depends on the number of Compute and Render 
omponents 
onne
tedat its extremities. For this reason, these 
omponents 
an 
reate dependen
erelations between 
omponents.Our model eases the development of generi
 
ommuni
ation patterns outsidethe 
ontext of an appli
ation. An implementation of this model 
an be asso
iatedfor example with a library of N ×M data redistribution 
omponents. Compo-nents provide modularity. A user is able to 
hange a 
ommuni
ation pattern forhis appli
ation and see the impa
t on performan
e.2.7 ControllersControllers are used for the 
on�guration and the 
onstru
tion of dynami
 
om-ponents. Parallel and 
ommuni
ation 
omponents are often dynami
. Parallel
omponents 
an have a parameter to set the number of 
omputational units (i.e.the degree of parallelism). Communi
ation 
omponent parameters often dependon their neighbor states.



There are two types of 
ontrollers :� Controllers getting data from a 
omponent (introspe
tion)� Controllers setting parameters (
on�guration)A 
ontroller is asso
iated to a 
omponent and a method. A main 
ontrollermust be implemented for all new 
omposite 
omponents. We named this 
on-troller exe
ute. This 
ontroller 
reates 
hildren 
omponents. For example, in theComputes 
omponent, the exe
ute 
ontroller 
reates all Compute/i primitive
omponents and 
onstru
ts the parent links.The 
ontroller 
an lead to an ex
eption if a mandatory parameter 
an notbe set. For example, the 
ommuni
ation pattern in MergeThenTree 
omponent
an not be built if the number of Compute primitive 
omponents is not set (Se
.2.6). In this 
ase, the 
ontroller throws an ex
eption.2.8 Traverse AlgorithmA 
ontroller always a
ts lo
ally on a 
omponent, but some a
tions must beexe
uted globally on the entire appli
ation. For example, building a view ofan appli
ation, a graph for instan
e, requires to 
all a view builder 
ontrolleron ea
h 
omponent. Data dependen
es may impose a given exe
ution order on
ontrollers. For instan
e some 
ontrollers, like exe
ute, dynami
ally 
reate new
omponents. Conne
tion 
omponents often have to be 
onstru
ted after theirneighbors. Most 
ontrollers have to be exe
uted at most on
e by 
omponentto obtain the 
orre
t result. Consequently, the iteration algorithm is an impor-tant issue in our model. We named this algorithm the traverse algorithm. Thisalgorithm must respe
t following 
onstraints :� Top-down iteration : a 
ontroller must be applied on the parent 
ompoenentbefore to be applied to its 
hildren.� A 
ontroller must be applied on a 
omponent at most on
e.� Constraints on the exe
ution order must be respe
ted.� The traverse algorithm stops if the 
ontroller 
annot be 
alled on any re-maining 
omponent.In the implementation se
tion (Se
. 3), we will present an implementation ofthe traverse algorithm and some 
ontrollers.2.9 Intera
tions With Traverse AlgorithmDue to traverse properties, when a traverse fails, the 
ontroller leads to an ex-
eption on the remaining 
omponents. Most programming languages enablesex
eption 
at
hing. If ex
eptions provide enough details, user 
an know why
ontroller 
annot exe
ute on these 
omponents. Often, a parameter is missing.In order to �nish the traverse, the simplest solution is to ask the user to 
orre
tlyset this parameter.



Indeed, the ex
eption raised by 
omponent 
an be printed. User 
an give anappropriate answer to the algorithm. In 
ase of an appli
ation with thousand
omponents, we have made the intera
tion simpler with the use of a 
omma-separated-value �le. This �le 
an be read by a spreadsheet program. User 
an�ll an automati
 generated �le with all parameters to be set with his favoritespreadsheet program.Traverse algorithm 
an also intera
t with an other program. For example,for mapping issues, the 
hoi
e of ma
hines where a pro
ess must be mapped isa 
omplex problem for a human. Mapping has a huge impa
t on performan
elike refresh rate or laten
y. A mapping program using a hardware des
ription�le 
ould 
al
ulate a mapping solution e�
iently.This implementation 
ould give the possibility to make dynami
 re
on�gu-rations. During exe
ution, the entire appli
ation 
ould be stopped. The systemwill pro
eed to a new instantiation of the appli
ation. The traverse algorithm
an now use the log �le to resolve ex
eption raised during the traverse algorithm.This traverse algorithm 
ould be done in parallel with the exe
ution. A mappingalgorithm 
ould adapt the appli
ation to resour
e 
apa
ities at exe
ution-time.3 Implementation3.1 Greedy Traverse AlgorithmThe main issue in the model implementation is the traverse algorithm. Thisalgorithm must iterate on 
omponents and respe
t several 
onstraints. (Se
t.2.8). This algorithm must �nd a 
onsistant order 
onsidering all 
onstraints forthe iteration through the 
omponents.We make the traverse via a greedy algorithm. This algorithm manages aqueue of non-exe
uted 
omponents. For ea
h 
omponents in this queue, thealgorithm tries to exe
ute the asso
iated 
ontroller. If the 
ontroller was su
-
essfully exe
uted, then all of its 
hildren are pushed in the queue. Otherwise,the algorithm makes a rollba
k operation on the 
omponent and push it at theend of the queue.The traverse is done when the queue be
omes empty. If the algorithm 
annot 
hange the queue state, then a �xed point is rea
hed. No new evolution 
anbe performed to 
omponent states. To respe
t traverse properties, the algorithmmust stop and signal its fail.With this implementation of the traverse algorithm, there is no need to ex-press 
onstraints on 
omponents. But, this implementation may lead to unne
-essary 
ontroller 
alls. We provide bounds on the number of 
ontroller 
alls forthis algorithm:Proposition 1. Let Ncomp the maximum number of 
omposite 
omponents inan appli
ation. The maximum (resp. minimum) number of 
all of 
ontrollersperformed by greedy traverse algorithm is O(N2

comp
) (resp. O(Ncomp)).For sake of 
on
iseness, the proof is omitted. The proof outline is to showthat a 
ontroller 
an be 
alled at most Ncomp times by 
omponent.



The 
omplexity of our algorithm is upper bounded by O(N2

comp
) but we donot have to 
ompute an order of iterations between 
omponents 
onsidering all
onstraints. The greedy traverse algorithm tries to iterate on 
omponents untilit �nds an a

eptable order. Theses tries 
an lead to extra 
osts but 
omputationof an a

eptable order may involve 
omplex algorithms. Our solution is a goodtradeo� between s
alability and 
omplexity of the implementation.3.2 Implementation on the Top of the FlowVR MiddlewareWe have built our model on the top of FlowVR [15, 8℄. This middleware is usedto 
onstru
t large parallel intera
tive appli
ations. It eases the development ofvirtual reality appli
ations that asso
iates s
ienti�
 visualization and simulta-tions. For instan
e we developed appli
ations involving a real time 3D modelingalgorithm using data from a 
amera network, parallel simulations and multi-proje
tor visualization with FlowVR.FlowVR is based on four types of primitive 
omponents [8℄:Modules User de�ned 
omponents. They make all 
omputational issues in theappli
ation.Conne
tions They transmit data from an output port to an input port.Filters They make treatments on messages. They are involved in 
ommuni
a-tion s
hemes.Syn
hronizers They implement syn
hronization poli
ies between 
omponents.All these kinds of 
omponents have been implemented using our model. These
ond step of the implementation was to 
onstru
t 
ontrollers dedi
ated tothe middleware. The main 
ontroller spe
ially developed for FlowVR builds aXML des
ription of the appli
ation. When laun
hing an appli
ation, FlowVRdistributes order to FLowVR dameons running on the nodes of the target ma-
hines to load plugins, 
on�gure 
ommuni
ations s
hemes, et
. These orders aredes
ribeexgtra
ted from an XML des
tiption of the appli
ation. For ea
h primi-tive 
omponent, we have 
reated the 
ontroller that builds this XML des
ription.Composite 
omponents just re
usrively link 
hildren des
ription into the XMLtree.All examples from the FlowVR suite have been redeveloped with the hierar-
hi
al model introdu
ed in this paper. The example used in this paper (Fig. 1)was inspired from one of these appli
ations. Mo
ing to the hierar
hi
al model im-proved appli
ation modularity. For instan
e, an appli
ation 
an now be importedas a 
omposite 
omponent in larger appli
ations.4 Con
lusionWe presented an ADL for intera
tive appli
ations based on the fra
tal 
ompo-nent model. Our main goal was to ensure a high level of modularity for largeappli
ations involving parallel 
omponents and advan
ed 
oupling s
hemes. Con-�guration of 
omponents is deferred to 
ontrollers. It enables us to separate some



aspe
ts of a 
omponent from its 
ore fun
tional nature. An appli
ation is then
on�gured by 
alling the 
ontrollers in a traverse pro
ess. This ADL has beenimplemented and validated on top of the FlowVR middleware. We expe
t tointegrate it in the FlowVR distribution soon.Referen
es1. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O'Hallaron,D.R.: From Mesh Generation to S
ienti�
 Visualization: An End-to-End Approa
hto Parallel Super
omputing. In: Super Computing. (2006)2. Gross, M., Wuermlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., Svoboda, T., Gool, L.V., S. Lang, K.S., Moere, A.V., Staadt, O.: Blue-C:A Spatially Immersive Display and 3D Video Portal for Telepresen
e. In: Pro
eed-ings of ACM SIGGRAPH 03, San Diego (2003)3. GrImage: website http://www.inrialpes.fr/grimage/.4. Lu
as, B., Abram, G.D., Collins, N.S., Epstein, D.A., Gresh, D.L., M
Auli�e, K.P.:An ar
hite
ture for a s
ienti�
 visualization system. In: VIS '92: Pro
eedings ofthe 3rd 
onferen
e on Visualization '92, Los Alamitos, CA, USA, IEEE ComputerSo
iety Press (1992) 107�1145. Foulser, D.: IRIS Explorer: a framework for investigation. SIGGRAPH Comput.Graph. 29(2) (1995) 13�166. S
hroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit An Obje
t-Oriented Approa
h To 3D Graphi
s, 3rd Edition. Kitware, In
. (2003)7. Ahrens, J., Law, C., S
hroeder, W., Martin, K., Papka, M.: A parallel approa
hfor e�
iently visualizing extremely large, Time-varying Datasets. Te
hni
al report,Los Alamos National Laboratory (2000)8. Allard, J., Gouranton, V., Le
ointre, L., Limet, S., Melin, E., Ra�n, B., Robert,S.: FlowVR: a Middleware for Large S
ale Virtual Reality Appli
ations. In: Pro-
eedings of Euro-par 2004, Pisa, Italia (August 2004)9. D.Margery, B.Arnaldi, A.Chau�aut, S.Donikian, T.Duval: OpenMASK: Multi-Threaded or Modular Animation and Simulation Kernel or Kit : a General In-trodu
tion. In Ri
hir, S., Ri
hard, P., Taravel, B., eds.: VRIC 2002 Pro
eedings.(2002) 101�11010. A.Wierse, U.Lang, Rhle, R.: Ar
hite
tures of Distributed Visualization Systemsand their Enhan
ements. In: Eurographi
s Workshop on Visualization in S
ienti�
Computing, Abingdon (1993)11. Keming Zhang and Kostadin Damevski and Venkatanand Venkata
halapathy andSteven G. Parker: SCIRun2: A CCA Framework for High Performan
e Computing.hips 00 (2004) 72�7912. Denis, A., Pérez, C., Priol, T.: Padi
oTM: an open integration framework for
ommuni
ation middleware and runtimes. Future Generation Comp. Syst. 19(4)(2003) 575�58513. E.Bruneton, T.Coupaye, Stefani, J.: The Fra
tal Component Model. Te
hni
alreport, Obje
tWeb Consortium (February 2004)14. Baude, F., Caromel, D., Morel, M.: From distributed obje
ts to hierar
hi
al grid
omponents. In: CoopIS/DOA/ODBASE. (2003) 1226�124215. T. Ar
ila and J. Allard and C. Ménier and E. Boyer and B. Ra�n: FlowVR: AFramework For Distributed Virtual Reality Appli
ations. In: AFRV, Ro
quen
ourt(November 2006)


