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Abstract. Network security is very important for Internet-connected
hosts because of the widespread of worms, viruses, DoS attacks, etc.
As a result, a network intrusion detection system (NIDS) is typically
needed to detect network attacks by packet inspection. For an NIDS sys-
tem, string matching is the computation-intensive task and hence the
performance bottleneck, since every byte of the payload of packets must
be checked against numerous predefined signature strings, which may
occur arbitrarily in the payload. In this paper, we present the design and
evaluation of parallel string matching algorithms targeting hardware im-
plementation on FPGAs and software implementation on multi-core pro-
cessors. Experimental results show that, on a multi-processor system, the
multi-threaded implementation of the proposed parallel string matching
algorithm can reduce string matching time by more than 40%.

1 Introduction

Network security is gaining more and more concern for Internet-connected hosts
because of the widespread of worms, viruses, DoS attacks, etc. As illustrated
in Figure 1, like hardware firewall systems, a network intrusion detection sys-
tem (NIDS) can detect/prevent network attacks by packet inspection/filtering.
However, unlike conventional firewall systems, which perform only protocol anal-
ysis by inspecting the header of packets, an NIDS also inspects the payload of
packets. By adopting this kind of content-based security checking, an NIDS can
significantly reduce much more security threats that cannot be detected by con-
ventional firewall systems, such as buffer overflow attacks.

Snort [1] is an open source software NIDS that is widely adopted by the
research community as a prototyping platform to investigate different intrusion
detection techniques. As a lightweight and yet efficient NIDS, Snort is also used
in small networks to detect various network attacks. To increase the security level
of Internet-connected hosts, we can even install Snort on each host. Snort relies
on a number of predefined rules to filter possible attack packets. For example, one
of the signs of the Nimda worm attack is the occurrence of string “readme.eml”
in a packet. Then, a rule for the NIDS system might be to filter all packets having
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Fig. 1. Network intrusion detection scenario.

this particular string in the payload part. Figure 2 shows the actual Snort rule
which filters incoming attack packets of the Nimda worm. The signature string
“window.open|28 22|readme.eml|22|” is the string that Snort needs to check
against every incoming packet (i.e., by performing a string matching on the
signature string) so as to eliminate the Nimda worm attack. On the other hand,
it should be emphasized that the signature string might appear arbitrarily in
the payload of an attack packet, meaning that every byte of the payload must
be checked against the signature string.

 alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any

 (msg:"WEB-CLIENT readme.eml autoload attempt"; flow:to_client,established;

  
content:"window.open|28 22|readme.eml|22|";
  nocase;

  reference:url,www.cert.org/advisories/CA-2001-26.html;

  classtype:attempted-user; sid:1290; rev:10;)


Fig. 2. The Snort rule for filtering incoming attack packets of the Nimda worm.

At the time of writing, there are 8868 Snort rules like the one shown in
Figure 2. Then, it follows that, for each packet, thousands of signature strings
need to be checked against the payload of the packet. Thus, the string matching
process is a computation-intensive task in Snort. In fact, on profiling the per-
formance of Snort 1.6.3, it is found that 31% of the Snort processing is due to
string matching [2], which is the bottleneck that new string matching algorithms
should be developed so as to further increase the efficiency of Snort.

To increase the performance of Snort, various string matching schemes have
been proposed for incorporation in Snort, for example, the classic Boyer-Moore
[3] and Aho-Corasick [4] algorithms. Based on the ideas of the two algorithms,
Coit et al. proposed a string matching algorithm that can improve the perfor-
mance of Snort by 1.02–3.32 times when compared with the standard Boyer-
Moore implementation [5]. The Wu-Mander multi-pattern matching algorithm
[6] and the E2xB algorithm [7] are another algorithms that have been imple-
mented in Snort.

All the approaches mentioned above are software-based, and it is hardly that
they can achieve a packet inspection rate on the order of Gb/s (in practice, a
rate of about 750Mb/s is typically achieved [8]). In order to support fast packet



inspection (e.g., at the rate of 10Gb/s), researchers have investigated different
hardware-based approaches. Specifically, a string matching engine which imple-
ments the Snort rules for packet inspection is realized in hardware. In this re-
gards, FPGAs (Field Programmable Gate Arrays) have become more and more
popular in the realization of this kind of high-speed NIDS systems, because we
can implement massively parallel circuits in FPGAs (FPGAs are computation-
efficient), and more importantly, FPGAs can be dynamically reconfigured to
incorporate new rules on-demand (FPGAs are flexible).

Knuth-Morris-Pratt algorithm (KMP) is an efficient string matching algo-
rithm [9], and has been implemented in FPGAs by Baker et al. [10]. Other FPGA
implementations of string matching algorithms are mostly based on hashing [11]
or brute-force (i.e., using discrete comparators or NFAs/DFAs) [12] implementa-
tions. However, traditional string matching algorithms such as KMP and those
based on hashing are designed based on the von Neumann load/store proces-
sor architecture, which cannot utilize the highly spatial parallelism of FPGAs.
To this end of the problem, we propose that cellular automata (CA) [13, 14], a
highly parallel computational model as proposed by von Neumann as the uni-
versal machine [13], is desirable to tackle the string matching problem of NIDS
systems.

Despite that current software-based implementation of Snort can hardly
achieve a packet inspection rate on the order of Gb/s, we believe that the short-
coming is due to string matching algorithms adopted, not because of the perfor-
mance of current processors. In fact, the power of current multi-core processors
has not been fully harnessed, since the current implementation of string match-
ing algorithms in Snort uses only one processor (i.e., single-threaded). Thus,
we propose to design a parallel string matching algorithm with multi-threaded
implementation. As multi-threaded programs can fully utilize a processor, we be-
lieve that such a multi-threaded implementation in Snort can achieve a packet
inspection rate on the order of Gb/s.

The rest of the paper is organized as follows. In the next section, we present
some preliminaries to help understand our proposed algorithms. In Section 3,
we present the design and analysis of our proposed parallel multi-pattern string
matching algorithms. Experimental evaluation is presented in Section 4. Finally,
we conclude in Section 5.

2 Preliminaries

2.1 Multi-Pattern String Matching Based on DFA

To recognize a set of string patterns, we can combine the patterns and form a
string matching automaton, called deterministic finite automaton (DFA). Fig-
ure 3 shows the detailed process. As can be seen, the process is divided into two
parts, construction of state transition table and pattern recognizing. For simplic-



ity, in Figure 3(a) we only illustrate with one pattern ((aab)∗ab) 1. After a state
transition table is constructed, as Figure 3(b) illustrates, the pattern recognizing
unit (e.g., a processor) can use the table to recognize patterns in a text string
(e.g., the payload of a packet). Specifically, each time a character (i.e., a byte)
of the text string is taken, which is then used together with the current state of
the pattern recognizing unit to look up the next state. If the next state is a final
state, then we can know that a pattern is matched, and the pattern recognizing
unit can stop or continue to find out other patterns in the rest of the text string.
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Fig. 3. The process of multi-pattern string matching based on DFA.

2.2 One-Dimensional Cellular Automata (CA)

A one-dimensional cellular automaton consists of a linear array of identical cells,
which can be regarded as some lightweight processing elements. Each cell can
be in one of a finite number k of states. The state of cell i at time t is si

t ∈
Σ = {0, 1, ..., k − 1}. As illustrated in Figure 4 [14], at each time step, all the
cells update their state simultaneously according to a local update rule φ. This
update rule takes as input the local neighbourhood configuration ηi of a cell,
which consists of the states of the cell i itself and its 2r nearest neighbours, i.e.,
ηi = (si−r, ..., si, ..., si+r). Specifically, we can use the update rule φ to obtain
the new state of cell i as follows: si

t+1 = φ(ηi
t).

3 Design of Parallel String Matching Algorithms

3.1 Parallel Multi-Pattern String Matching Based on CA

To recognize signature strings in the payload of a packet, each character of the
payload is handled by a cell of a one-dimensional cellular automaton, and all the

1 The signature strings to be checked against by an NIDS are typically specified in
a regular expression format, for example, (aab)∗ab. Then the NIDS alerts the user
when it finds strings like “ab”, “aabab” or “aabaabaabab” in a packet.
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Fig. 4. The update process for cell i in a one-dimensional cellular automaton [14].

cells run in parallel and interactively, as illustrated in Figure 5(a). Specifically,
each cell (except the leftmost cell) gets the state of its left neighbour and uses
this state information together with the character it is handling to look up the
state transition table. After the table lookup, the state of the cell is updated and
the new state is sent to the right neighbour of the cell. Algorithm 1 describes
the update procedure for each cell i of the proposed string matching algorithm,
Parallel Multi-Pattern Matching Based on Cellular Automata (CAMP). On the
other hand, suppose that the payload of a packet is “abaababaa”, Figure 5(b)
illustrates the time evolution of the cellular automaton for recognizing strings
belonging to the pattern (aab)∗ab.
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Fig. 5. The working principle of the proposed multi-pattern string matching algorithm
based on cellular automata.

3.2 Multi-Threaded Design of CAMP (MT-CAMP)

Handling each byte of the payload of a packet by a cell is the ideal case for CAMP,
which can achieve the most efficiency. However, since the payload of a packet
can have a length of around 1460 bytes, it is practically infeasible to create 1460
processing elements simultaneously on a processor-based system. To mitigate
this problem, we develop a multi-threaded version of CAMP (MT-CAMP) for
implementation on a multi-core-processor-based system. Algorithm 2 describes
the details of the multi-threaded version of CAMP. Specifically, given that the
length of payload is n and we want to create threadNumber threads, then each
thread implements n

threadNumber
cells (i.e., handles n

threadNumber
bytes of the



payload). On the other hand, it should be noted that the createThread() func-
tion in Algorithm 2 does not always create new threads for different packets. To
reduce thread creation overhead, threads are reused. In actual implementation of
MT-CAMP, we found that the performance is not satisfactory due to significant
communication overhead between threads. We will discuss this issue in more
detail in Section 4.

3.3 Parallel Multi-Pattern String Matching with No Communication

The poor performance of MT-CAMP on a multi-processor system motivated
us to develop a communication-less string matching algorithm, called Parallel
Multi-Pattern Matching with Overlapping Region (ROMP). Figure 6 illustrates
the idea of multi-threaded design of ROMP (MT-ROMP). Specifically, if there
are threadNumber threads created, then the payload of a packet is divided into
threadNumber regions, and each thread uses the DFA approach as mentioned
in Section 2 to carry out string matching in its region. However, since a string
belonging to a particular pattern can span across different regions of the payload,
a thread will also perform string matching in its right neighbour’s region. Hence,
there is an overlapping region where two threads will perform string matching
on it. As we will discuss in subsequent section, the length of this overlapping
region is small when compared to the length of a payload. Algorithm 3 describes
the string matching procedure in each thread of MT-ROMP.

Payload[1..n]

Thread 1 Thread 2 Thread 3

Thread 1
Thread 2

Thread 3
Minimum region of payload handled by a thread

Maximum region of payload handled by a thread

Overlapping region of maximum length (L - 1), where L is
the longest pattern that can be matched in the payload

Fig. 6. Payload division in MT-ROMP.

3.4 Performance Analysis and Comparison

Suppose that the longest pattern that can be matched in a payload is of length
L, then the time complexity of CAMP is O(L). The reason is that L cells are
involved in order to recognize the pattern. Referring back to Figure 5(b), if the
evolution process can stop at time step 2, then the longest pattern is “ab”,
meaning that L = 2. Similarly, if the evolution process has to stop at time step
4, then the longest pattern is “aabab” and L = 5. With a study of the Snort
rules, the value of L is typically in the range 1 < L < 20.

As for MT-CAMP, the time complexity is O( n
threadNumber

· L), since each
thread needs to implement n

threadNumber
cells and the cells within each thread

are evolved one by one. The time complexity of MT-ROMP is O( n
threadNumber

+
(L − 1)) = O( n

threadNumber
+ L), as the longest pattern string can span across

two regions of the payload. Table 1 shows the time complexity comparison of
CAMP, MT-CAMP, and MT-ROMP with other existing algorithms.



Algorithm 1 CAMP—Update procedure for each cell i.
cellUpdate(payload[i], transitionTable)

1: currentState← stateLookup(payload[i], transitionTable) /* current state */
2: newState← NULL /* new state of the cell */
3: leftNeighbourState ← NULL /* state of the cell’s left neighbour */
4: while (TRUE) do

5: leftNeighbourState ← getLeftNeighbourState()
6: newState← stateLookup(payload[i], leftNeighbourState, transitionTable)
7: if (newState 6= NULL and newState 6= currentState) then

8: currentState← newState

9: if (isFinalState(currentState, transitionTable)) then

10: report(“Matched at payload position i!”)
11: end if

12: end if

13: end while

Algorithm 2 MT-CAMP—Creation of threads and update procedure of cells
in each thread.
MTcreateThreads(threadNumber, payload[1..n], transitionTable)

1: cellsPerThread ← n

threadNumber
; head← 1; tail ← 1

2: while (head < n) do

3: tail ← head− 1 + ((head + cellsPerThread − 1 ≤ n)?cellsPerThread : (n− head))
4: createThread(MTcellsUpdate(payload[head..tail], transitionTable))
5: head← head + cellsPerThread

6: end while

MTcellsUpdate(payload[j..k], transitionTable)

1: m← k − j + 1 /* number of cells per thread */
2: currentState[1..m]← NULL /* current state of cells */
3: newState[1..m]← NULL /* new state of cells */
4: for i = 1 to m do

5: currentState[i]← stateLookup(payload[j + i − 1], transitionTable) /* initial state */
6: end for

7: while (TRUE) do

8: for i = 1 to m do

9: leftNeighbourState ← getLeftNeighbourState(i, currentState[1..m])
10: newState[i]← stateLookup(payload[j + i − 1], leftNeighbourState, transitionTable)
11: if (newState[i] 6= NULL and newState[i] 6= currentState[i]) then

12: currentState[i]← newState[i]
13: if (isFinalState(currentState[i], transitionTable)) then

14: report(“Matched at payload position (j + i − 1)!”)
15: end if

16: end if

17: end for

18: end while

Algorithm 3 String matching procedure in each thread of MT-ROMP.
MT-ROMP(payload[j..k], n, transitionTable)

1: currentState← stateLookup(payload[j], transitionTable) /* current state */
2: newState← NULL /* new state of the cell */
3: for (i = j + 1; i <= n; i + +) do

4: if (i > k and currentState == NULL) then

5: break /* escape from the overlapping region */
6: end if

7: newState← stateLookup(payload[i], currentState, transitionTable)
8: if (newState 6= currentState) then

9: currentState← newState

10: if (isFinalState(currentState, transitionTable)) then

11: report(“Matched at payload position i!”)
12: end if

13: end if

14: end for



Table 1. Time complexity comparison.

Algorithm Complexity

CAMP O(L)
MT-CAMP O( n

threadNumber
· L)

MT-ROMP O( n

threadNumber
+ L)

Boyer-Moore [3] O(n)
Aho-Corasick [4] O(n)
KMP [9] O(n)

4 Experimental Evaluation

To implement the ideal design of CAMP (i.e., each byte of the payload is handled
by an individual processing element), a viable approach is to use FPGAs, since
we can implement massively parallel circuits on FPGAs. More importantly, the
communication overhead between cells will be insignificant since the communi-
cation is deterministic and at wire speed. On the contrary, the communication
between threads is not deterministic, which accounts for the significant com-
munication overhead. Currently, we have not implemented CAMP on FPGAs
yet. In this section, we would like to evaluate the performance of MT-CAMP
and MT-ROMP on a multi-processor system (particularly, a multi-core system)
using multi-threaded implementation. Specifically, our focus is to study the scal-
ability of the proposed parallel string matching algorithms, while maintaining a
fast string matching rate.

Since the string patterns that we intend to match are the signature strings
in Snort, the first step of evaluation is to convert the signature strings into a
state transition table. This process can be carried out by an open source tool
called JFlex [15], which is a lexical analyzer generator (or scanner generator).
For performance evaluation, we do not use all the signature strings in Snort. In
fact, we randomly choose 400 signature strings.

To evaluate the performance of our proposed parallel string matching algo-
rithms, synthetic packets of payload of 1460 bytes are generated. Specifically,
for each of the 400 string patterns chosen, we randomly put the string pattern
in the payload, and the rest of the payload is filled with random bytes. Using
this way, we generate 10 packets for each string pattern and the positions of the
string pattern are different. Effectively, 4000 different packets are generated. For
our experiments, these 4000 packets are duplicated 100 times to form a packet
stream of 400K packets and the packets are stored in the main memory of the
system under test.

As a comparison algorithm, the DFA string matching approach as mentioned
in Section 2 is chosen. Since the DFA approach shares the same design mechanism
as the Aho-Corasick algorithm [4], which is well-known to be a fast multi-pattern
string matching algorithm, its speed is of the same grade as the Aho-Corasick
algorithm.

First of all, we evaluated the performance MT-CAMP. Using a single thread,
we found that MT-CAMP is about 16 times slower than the DFA approach. The
deficiency of MT-CAMP comes from the fact that there is excessive communica-



tion overhead between cells. When using more threads, we also found that there
is significant communication overhead in using thread-specific synchronization
functions such as mutexes.

The poor performance of MT-CAMP motivated us to develop a communication-
less parallel string matching algorithm for a multi-processor system, namely MT-
ROMP. When inspecting the 400K packet stream under a Pentium D 3.4GHz
system with Ubuntu Linux 6.10 installed, the DFA approach uses 3.40s, while
MT-ROMP uses 4.08s and 2.06s 2 when one processor core and two processor
cores are utilized, respectively. Hence, there is 40% reduction in string matching
time when the two processor cores of the dual-core microprocessor are utilized.
Since we were not able to obtain a quad-core system to study the scalability of
MT-ROMP, we have resolved to evaluate its performance under an SMP ma-
chine with eight processors (Sun4u/Sparc with SunOS 5.9 installed). The results
are shown in Figure 7. As can be seen from Figure 7(a), there is about 45% re-
duction in string matching time when two processors are used. This result is
quite matched with that obtained from the dual-core machine. On the other
hand, Figure 7(b) shows that the speedup is quite linear. However, the speedup
is saturated when more than six processors are used. This is due to frequent
context switching of the system.
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Fig. 7. Performance comparison of MT-ROMP and the DFA approach.

The lesson learnt from our experience of designing a parallel string matching
algorithm on a multi-processor system is that it is extremely important to reduce
communication between threads. As discussed in detail in [16], the frequent
use of mutexes, semaphores, monitors, etc., to achieve synchronization between
threads has adverse effect on the performance of multi-threaded programs. With

2 This corresponds to a string matching rate of about 2.1Gb/s. However, the ac-
tual value for real-life packet inspection should be lower than 2.1Gb/s, as the 400K
packets are stored in the main memory of the system. We have not taken into con-
sideration the preprocessing time of packets once they are received from the network
interface.



the emergence of multi-core microprocessors, if we expect parallel programming
to become mainstream, Lee suggested in [16] that we should construct parallel
programming models that are much more predictable and understandable than
threads.

5 Conclusions and Future Work

In this paper, we have presented the design and evaluation of several parallel
multi-pattern string matching algorithms for an NIDS system. Our future work
is to implement CAMP on FPGAs to investigate how fast string matching rate
it can achieve in hardware implementation. As for MT-ROMP, we would like to
integrate it with Snort, and then carry out more detailed performance evaluation
with real-life network traffic.
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