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Abstract. This paper proposes a novel scheme of group key manage-
ment based on Jacobian Elliptic Chebyshev Rational Map, named Ja-
cobian Group Key Management(JGKM). The scheme is more efficient
than other group key managements since fewer re-keying messages are
sent when group membership changes. Besides, it provides both forward
and backward secrecy. Therefore, this proposal is helpful to deploy se-
cure multicast over some networks with high latency or limited band-
width such as wireless network. Furthermore, it fits both small-scale and
large-scale groups.
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1 Introduction

Encryption is one of the most effective access control mechanisms. All
data are encrypted by keys and thus key materials should keep away from
attacks. In the context of unicast, a pairwise secure channel is employed
to update keys. Contrarily, secure multicast must deal with more compli-
cations. Many group key management schemes for secure multicast have
been proposed in the past decade [1–5]. These schemes can be classified
into three main classes, viz. centralized, decentralized and distributed.
Centralized group key management schemes require a single or a small
set of entities, named Key Server (KS), to generate or distribute share
key to all group members via a secure channel. This kind of schemes can
reduce both storage requirement and computational power remarkably.
Respectively, decentralized key managements divide the whole group into
smaller subgroups. Each subgroup is controlled by a single or several KSs.
Distributed schemes allow each member to perform group key generation
? Supported by NSF 60473090
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and the key generation can either be collaborative or done by a single
member. However, no single one can uniquely determine what the key is.
Each of the three schemes has its own advantages and disadvantages. No
single scheme can fit all applications. For example, Centralized schemes
have the risk of single-point-failure while distributed schemes must be
weighed against its disadvantages: Many such schemes have a high com-
plexity or a high computational cost. They are best suited for small-scale
groups that have nodes with enough computational resources for group
Diffie-Hellman key exchange and enough memory to store state infor-
mation about all of the group’s members. There also has to be a trusted
mechanism to authenticate the membership join/leave events and the DH
public keys.

Most of secure multicast key management schemes focus on decreasing
computational and communication overhead [6–8]. In this paper, we in-
troduce a novel approach based on Jacobian Elliptic Chebyshev Rational
Map (JECRM) to minimize re-keying messages and computational cost.

JECRM has attracted many researchers from a variety of fields re-
cently, of course cryptographist included[10–13, 23–27]. Some encryption
algorithms based on JECRM have been proven not secure[10–13]. In de-
spite of utilizing the same property in this paper, attacks provided in [10]
take no effect.

Here is the layout of our paper. Section 2 introduces Jacobian Elliptic
Chebyshev Rational Map and its property. Section 3 illustrates Jacobian
group key management detailedly. Security and complexity analysis are
made in section 4 and 5. Finally, conclusions are drawn in section 6.

2 Jacobian Elliptic Chebyshev Rational Map

Jacobian Elliptic Chebyshev Rational Map satisfies chatic properties
such as pseudo-random, sensitivity to tiny change of initial conditions,
ergodicity, one-way iteration process and etc. All of these properties are
interconnected with cryptography closely.

Definition 1: Let v be a variable taking value over the interval [-1,1],
let n ≥ 2 be an integer, Jacobian Elliptic Chebyshev Rational Map with
modulus w is recursively defined by:

Rn+1(v, w) =
2vRn(v, w)

1− w2(1− v2)(1−R2
n(v, w))

−Rn−1(v, w)

where w ∈ [0, 1] and R0(v, w) = 1, R1(v, w) = v.
JECRM has two important features[24, 25]:
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Theorem 1. Jacobian Elliptic Chebyshev Rational Map is a One-way
function in v.

Theorem 2. Jacobian Elliptic Chebyshev Rational Map satisfies the
semi-group property when r, s ≥ 2:

Rrs(v, w) = Rr(Rs(v, w), w)
= Rs(Rr(v, w), w)

There are also other functions that satisfy semi-group property, for
example, mod-exp function

fa(fb(v)) = fb(fa(v)) = fab(v)

where fa(v) = va mod p.
The rest of the paper illustrates how to use JECRM to manage group

keys in a secure group communication. The reason why we choose JECRM
other than mod-exp function is explained in section 4.

3 Jacobian Group Key Managemen

The following notations will be used throughout this paper.

v A secret seed selected by KS. None of other members knows v
w A public share selected by KS
ui The ith user
ri A large random number selected by KS and delivered to member

ui. ri can be either prime or composite. It makes no difference.
Moreover, ri is known to all members

ki A pre-placed key encryption key established between ui and KS
kpri Private key of KS, It is used for signature
kpub Public key of KS. It is used for signature verification
kold The old group key before membership changes
knew The new group key after membership changes
{M}k M is encrypted by k

Here we make a reasonable assumption: kpub is known to all group
members. This can be done using PKI. ki is a pre-placed key between KS
and group members. This can be done using pairwise key kpub and kpri.

A group key management must provide re-keying mechanisms when
membership changes. JGKM supports the following operations:

-Join: a new member is added to the group.
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-Leave: a member is evicted from the group.
-Merge: a subgroup is added to the group.
-Partition: a subgroup is split from the group
-Re-key: the group key must be updated when any above operations

occur.

3.1 Addition and Merge

Algorithm 1:
At the beginning, there is no user in group. The first user is added by

following steps.
Step 1. The first user u1 sends joining request to KS.
Step 2. KS responses u1 with {Rr1(v, w)}k1 , it can only be decrypted

by u1.
Step 3. u1 selects Rr1(v, w) as the initial group session key.
Obviously, key distribution starting up needs for only two messages.
With the group growing, more and more users need to be added.

JGKM consists of four steps.
Algorithm 2:
Step 1. the newcomer un+1 sends joining request to KS.
Step 2. KS responds un+1 with {Rrn+1(v, w)}kn+1 . The cipher-text can

only be decrypted by un+1.
Step 3. KS multicasts {r1, r2 · · · rn+1, w, cmd = addition}kpri

to all
members. Each member can decrypt ri (i = 1, 2 · · ·n + 1) and w using
kpub. cmd = addition indicates that each member should do addition
computing after receiving this message. Here we should note that ri and
w are public. Everyone knows kpub can decrypt ri and w. Signature is
used here to prove the source of multicast. This can prevent malicious
attackers from sending mendacious ri, w and cmd.

Step 4. Newcomer computes the new group key individually according
to theorem 1:

knew = Rr1···rn(Rrn+1(v, w), w)
= Rr1···rn+1(v, w)

Old ones do addition computing, the same new group key is produced by

knew = Rrn+1(kold, w)
= Rrn+1(Rr1···rn(v, w), w)
= Rr1···rn+1(v, w)
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Apparently, just three re-keying messages (from step 1 to step 3) are
needed in JGKM when member added. Newcomers and old ones can
compute new group key without too much interactions. This approach
can be extended easily.

If m users, denoted as un+1, un+2, · · · ,un+m, will be added:
Algorithm 3:
Step 1. un+1, un+2, · · ·un+m send joining requests to KS.
Step 2. KS multicasts {Rrn+1(v, w)}kn+1 , {Rrn+2(v, w)}kn+2 , · · · ,

{Rrn+m(v, w)}kn+m . Each member choose the right part to decrypt.
Step 3. KS multicasts {r1, r2, · · · , rn+m, w, cmd = addition}kpri

Step 4. Newcomer un+i computes new group key by

knew = Rr1···rn+i−1rn+i+1···rn+m(Rrn+i(v, w), w)
= Rr1···rn+m(v, w)

Old members compute the same group key by

knew = Rrn+1···rn+m(kold, w)
= Rrn+1···rn+m(Rr1···rn(v, w), w)
= Rr1···rn+m(v, w)

Here just 2m+1 messages are needed. Now, we can draw a conclusion
of JGKM.

Conclusion 1: The number of re-keying messages is irrelevant to cur-
rent group size. It rests with the number of newcomers.

3.2 Eviction and Partition

It is easy to cope with member’s eviction in JGKM. If member ud

should be evicted, KS multicasts one message:
Algorithm 4:
Step 1. KS multicasts {ud, rd, cmd = eviction}kpri

to all members.
cmd = eviction indicates that each member should do eviction computing
after receiving this message.

Step 2. The rest do eviction computing according below equation:

knew = Rr1···ri−1ri+1···rd−1rd+1···rn(Rri(v, w), w)
= Rr1···rd−1rd+1···rn(v, w)

The new group key contains no information of ud. Simply, ud has been
removed since he knows nothing about v while v is a secret selected by
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KS. Security discussion will be shown in section 4.
It is also easy to extend this approach to fit m users’ leaving. Assuming

uj1 , uj2 · · ·ujm leave the group.
Algorithm 5:
Step 1. KS multicasts a combined message {(uj1 , rj1), (uj2 , rj2), · · · ,

(ujm , rjm), cmd = eviction}kpri
to entire group.

Step 2. The rest do eviction computing and new group key is given by:

knew = Rr1···ri−1ri+1···rn(Rri(v, w), w), (i 6= j1, j2 · · · jm)

Similarly, the new group key contains no information of uj1 , uj2 , · · · , ujm

Now, we have another conclusion:
Conclusion 2: Only one re-keying message is sent when someone

evicted.

4 Security Analysis

The security of group key management protocols can be measured by:
-Backward secrecy: new members should not be able to read past traf-

fic.
-Forward secrecy: Former members should not be able to read present

and future traffic.
-Collusion attack: Evicted members must not be able to work together

and share their individual piece of information to regain access to the
group key.

From section 3, we know that JGKM’s security bases on the secrecy of
parameter v. JGKM provides both forward and backward secrecy ground-
ing on the fact that Rn(v, w) is one-way function in v and sensitive to
initial condition v.

Considering an adversary ud a group insider, he knows ri (i = 1, 2...n)
and Rd(v, w). He does not know v and Rri(v, w), ri 6= d. The new group
key has changed into knew after its leaving.

Discussion 1: Section 3.2 indicates that

knew = Rr1···ri−1ri+1···rd−1rd+1···rn(Rri(v, w), w)
= Rr1···rd−1rd+1···rn(v, w)

This equation does not contain any information of ud at all. If ud want
to regain the new group key, he must know ri, v, w. But v is a secrecy
selected by KS. ud can’t resolve v from Rd(v, w) since Rd(v, w) is a one-
way function in v.
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Discussion 2: At the same time, section 3.2 implies

kold = Rrd
(knew, w)

Obviously, kold is also a one-way function in knew, resolving knew from
above equation is a hard problem as well. Not any efficient method or
quantitative measurement [21, 22] have been found to finish this attack.

Similarly, If ud is a newcomer, it is also impossible to recover kold by

knew = Rrd
(kold, w)

However, we must point out that ri should be restricted. Otherwise an
adversary may recover group key without effort.

Restriction 1: ri 6= 1
If ri = 1, member ui will receive R1(v, w) according to algorithm 1 and

algorithm 2. On the other hand, according to definition 1, R1(v, w) =
v. This indicates member ui receives the secret parameter v. That is
forbidden.

Restriction 2: ri must be larger enough, e.g. ri ≥ 232

According to definition 1, if ri is very small, e.g. ri = 2 or 3, it is
possible to resolve v from Rri(v, w). In order to enhance the security of
JGKM, we choose random number ri ≥ 232.

Restriction 3:

ri 6=
l∏

j∈[1,n]
j 6=i

rj , (l = 1, 2 · · ·n− 1)

If rn = r1r2 · · · rn−1, according to algorithm 2, un will receive KS’s
response Rrn

Rrn(v, w) = Rr1...rn−1(v, w)

which is the new group key after un’s leaving.
Furthermore, restriction 3 also eliminates collusion attack.
Now, we will explain why JECRM is chosen other than mod-exp func-

tion. Although mod-exp function does satisfy semi-group property, it is
a one-way function in n rather than v. That is , it is easy to resolve v
from mod-exp function. Therefore, v can’t be chosen as common secrecy.
If mod-exp function is chosen, it is obvious that an attacker can recover
kold after his addition or regain knew after his eviction.



8 Qin Ke, Zhou Mingtian, Liu Naiqi. et al

5 Complexity Analysis

JGKM involves multiple floating-point operations. We employ unique
decomposition theorem to improve JGKM’s efficiency. According to unique
decomposition theorem, an integer r can be uniquely decomposed to
r = pl1

1 pl2
2 · · · pln

n where pi are primes. If r is not decomposed, we must do r
iterations in order to computer Rr(v, w). On the other hand, according to
following equation, at most p1l1 +p2l2 + · · · pnln floating-point operations
are needed.

Rr(v, w) = Rpl1
1 pl2

2 ···pln
n

(v, w) = Rp1 · · ·︸ ︷︷ ︸(Rp2 · · ·︸ ︷︷ ︸(Rpn · · ·Rpn︸ ︷︷ ︸(v, w), w), w)

l1 l2 · · · ln

For example, we choose r = 751733146710 ≈ 2128 (The key length of AES
is 128 bits), thus computation of Rr(v, w) need only 7× 5+17× 3+31×
4 + 67 × 10 = 880 other than 2128 floating-point operations. At present,
Chinese Godson-2 can perform 2 billion single-precision floating-point and
1 billion double-precision floating-point operations per second. That is,
Godson-2 perform Rr(v, w) within 0.13ms. It should be much faster in
mainframe computers.

6 Summary

In this paper, we proposed a group key management based on Jaco-
bian Elliptic Chebyshev Rational Map. On one hand, it has the structure
of centralized schemes, on the other hand, it has the virtue of distributed
schemes. Briefly, it has following features:

-A Key Server is involved in performing initialization.
-Each group member contributes its share ri to group key.
-Each member receives a secrecy from KS.
-Each member make use of others’ share and his own secrecy to com-

pute new group key without interaction.
-As the group grows, old members’ secrecy remain unchanged. New

members’ secrecy are sent by pre-placed secret channel.
-As the group shrinks, departing members’ secrecy are removed from

the new key.
-JGKM does not need any auxiliary keys except for pre-placed keys.
-JGKM is more efficient than other schemes[5–7, 14, 15]. The number

of re-keying messages is irrelevant to current group size. Only 2m + 1 re-
keying messages are sent when group grows and only 1 re-keying messages
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are sent when group shrinks. This makes it differ from other schemes.
Most of group key managements involve 2m + log(n) re-keying messages
where n is current group size.
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