Performance Prediction for Mappings of
Distributed Applications on PC Clusters

Sylvain Jubertie, Emmanuel Melin

Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)
Université d’Orléans
Email: {sylvain.jubertie | emmanuel.melin}@univ-orleans.fr
http://www.univ-orleans.fr/lifo

Abstract. Distributed applications running on clusters may be com-
posed of several components with very different performance require-
ments. The FlowVR middleware allows the developer to deploy such
applications and to define communication and synchronization schemes
between components without modifying the code. While it eases the cre-
ation of mappings, FlowVR does not come with a performance model.
Consequently the optimization of mappings is left to the developer’s
skills. But this task becomes difficult as the number of components and
cluster nodes grow and even more complex if the cluster is composed
of heterogeneous nodes and networks. In this paper we propose an ap-
proach to predict performance of FlowVR distributed applications given
a mapping and a cluster. We also give some advice to the developer to
create efficient mappings and to avoid configurations which may lead to
unexpected performance. Since the FlowVR model is very close to un-
derlying models of lots of distributed codes, our approach can be useful
for all designers of such applications.

1 Introduction

Today, clusters are theoretically able to reach the performances needed by large
simulations because they are extensible. This is an interesting property since
it does not limit the simulation complexity or the amount of data to consider.
However clusters bring new programming problems : it is more complex to pro-
duce efficient applications on distributed memory architectures than on shared
memory ones. Several communication libraries like MPI or PVM provide point-
to-point communications and synchronisations to program clusters efficiently.
VR platforms were also ported to clusters to exploit their performances. For
example the NetJuggler [7] environment allows to drive interactive applications
with parallel simulations and a distributed rendering. These approaches are very
interesting but are limited to simple applications assumed to run on homoge-
neous clusters. For example the model behind NetJuggler is too synchronous
because the rendering rate is too dependant of the simulation rate [3].
Consequently we should add more asynchrony between the application parts.
For example an interaction and a simulation code should be connected but not

synchronized if we want to keep an interactive behaviour because the simulation
often have lower frequencies than interaction devices. In this case, we want the
simulation to receive interaction data asynchronously even if some are lost. We
say that they are linked by greedy communications.

Once we have described how to synchronize the application parts, then we can
map them on the cluster processors. Many choices are possible depending on the
underlying nature of the cluster which may be composed of heterogeneous nodes,
peripherals and networks. This mapping is not straightforward and affects the
application performance. Consequently, we need a framework that eases mapping
operations by catching the parameters of each application part and abstracting
the architecture. This framework should also be associated with a performance
model to tune efficient mappings.

The FlowVR library[2][4] was created to ease the development of distributed
interactive applications and to permit greedy communication. But FlowVR does
not offer a way to obtain the best application mapping on a given cluster nor any
kind of performance information. Thus the developer should use his experiments
and test several configurations to find a good mapping. But this task may become
too complex for applications with many parts on heterogeneous clusters such as
the application presented in [4] which integrates 5000 different objects.

We propose in this paper a unified approach to analyse at the same time syn-
chronization, concurrency and network constraints. Thus the developer is able to
associate performance information to his mappings. For example he can deter-
mine information like the frequency of each module, the load on each processor
and the communication times for each connection.From these informations the
developer can determine if its mapping is well suited and can run on the clus-
ter. Otherwise our approach is able to detect and point out network bottlenecks
and modules with low performance. Then the developer can detect parts of the
application to optimize and adapt its mapping.

2 The FlowVR framework

The FlowVR framework is an open source middleware used to build distributed
applications. More details on FlowVR can be found in [2]. A FlowVR application
is a set of modules which communicate via messages through a data-flow network.
Each message is associated with lightweight data called stamps which contain
information used for routing operations.

Modules are endless iteration which encapsulate tasks. Each module waits
until it receives one message on each of its input port. This task is performed
by a call to the FlowVR wait function. Then messages are retrieved by the get
function and are processed by the module. Finally the module produces new
messages and put them on its output ports with the put method.

The data-flow network describes the communication and synchronization
schemes between module ports. Each communication is done with a point to
point FIFO connection. Operations on messages like routing, broadcasting, merg-
ing or scattering are done with a special network component called a filter. Syn-
chronization and coupling policy are performed with another network component

called a synchronizer. Both filters and synchronizers are placed on connections
between modules. A synchronizer only receives stamps from filters or modules.
Then it takes a decision according to its coupling policy and sends new stamps
to destination objects. This decision is finally performed by the destination fil-
ters or modules. With the use of synchronizers it is possible to implement the
greedy filter. This filter allows to respectively write and read a message asyn-
chronously. Thus the destination module always uses the last available message
while older messages are discarded. A FlowVR application can be viewed as a
graph G(V, E), called the application graph, where each vertex in V' represents a
FlowVR objects like a module, a filter or a synchronizer, and each directed edge
in F represents a connection between two objects.

3 Performance prediction

We now present our approach to compute performance information for a FlowVR
mapping on a cluster. Then the developer will be able to determine if his appli-
cation runs as expected or to compare several mappings to find the best one.

3.1 Model inputs

A mapping is a FlowVR network enriched with information on the location of
modules in the cluster, and on networks used for communication. A cluster is
defined as a set of nodes Nodes and a set of networks Networks. To deal with
SMP nodes, each node n € Nodes has a list of CPUs given by the function
CPUs(n). A node can also have several adapters connected to different net-
works. Thus each node n is associated to a list of networks Nets(n) C Networks.
Each network net € Networks has a bandwidth BW (net) and a latency L(net).
We assume networks with point-to-point connections in full-duplex handled by
dedicated network adapters without CPU overload. We also assume that com-
munication between objects mapped on the same node are costless since objects
only exchange pointers to a shared memory. The FlowVR network is a graph
G composed of a set of vertices V' and a set of directed edges E. Each v € V
represents a FlowVR object i.e. a module, a filter or a synchronizer. Each e € £
represents a connection between a source objects src(e) and a destination ob-
ject dest(e) with src(e), dest(e) € V. To build a mapping the developer binds
FlowVR objects and connections respectively to cluster nodes and networks. We
denote the location of an object v € V' by the function node(m) which gives a
node n € Nodes. Note that the developer has to map modules on nodes but
modules are then mapped on processors by the operating system scheduler. The
network used by a connection e is given by the function Net(e) which returns
a network net € Networks. If two connected objects are on the same nodes
the connection is local: Net(e) = (. Otherwise the connection is associated to a
network net € Networks such as Net(e) = net.

Our approach implies that the developer must give extra information on
modules to compute performances. For each module m € V' we need to know its
execution time Teyec(m) and its load LD(m) on the host processor. The execu-
tion time Teze.(m) is the time needed by a module m to perform one iteration

when m is not synchronized with other modules and have no concurrent mod-
ules. The load LD(m) is the percentage of Tegec(m) used for the computation.
The rest of Tere(m) is used for I/O operations. For each edge e € E we need to
know the volume of data Vol(e) sent by src(e) through e during one sole itera-
tion. If sre(e) is a module then Vol(e) is equal to the amount of data sent by v
through the output port connected to e. If src(e) is a filter then Vol(e) depends
on the filter characteristics. For example the merge filter sends only one message
built from all messages it received. If sre(e) is a synchronizer then for the sake
of simplicity we assume that Vol(e) = 0. Indeed messages sent and received by
synchronizers contain only stamps. Consequently their message sizes are negli-
gible compared to the amount of data sent by modules. We also assume that
filters and synchronizers have a negligible load compared to module loads. Indeed
they only perform some memory operations on messages. The value of Vol(e) is
independent of the hardware and is statically determined from the module char-
acteristics. Values of Tezec(m) and LD(m) can be determined in different ways.
For example the developer can measure them by running each module separately
on the target node. On the other hand, FlowVR allows to reuse modules from
other applications and Tezec(m) and LD(m) may be already available.

3.2 Determining performance

Performance of modules depend on synchronization and concurrency between
them. Thus we need to determine for each module m its iteration time T;;(m) and
its concurrent execution time Teepec(m). We define Ty (m) as the time between
two consecutive calls to the FlowVR wait function. This definition characterizes

the real frequency F(m) of a module execution for a given mapping:
F(m) = ~—— 8
Tit(m)
We define Teeqec(m) as the execution time of m when several modules are run-
ning on the same node. Indeed, executions of concurrent modules are interleaved
by the OS scheduler. Thus we always have Teepec(m) > Tegec(m). If m has no

concurrent modules then:
Tce:vec(m) = Tezec(m) (2)

We determine Teeqec(m) according to a scheduler policy. But this policy strongly
depends on the time a module waits for I/O and is blocked in the FlowVR wait
function. We first study the effects of synchronization on performances. Then we
will evaluate how the concurrency between modules affects their performances.

Determining T;; from synchronization. In this section we examine how
synchronization between modules affect their iteration time. For a module m we
define its input modules IM(m) as the set of modules with edges connected
to m. We distinguish two subsets of IM(m):IMs(m) and IM,(m) such as
IMs(m)UIMy(m) =IM(m) and IMs(m)NIM,(m) = (). The subsets I M (m)
and IM,(m) contain respectively the modules connected to m through FIFO
connections and through greedy filters.

We first consider the effect of greedy connections on performance. A module
m receiving data through greedy filters does not wait for messages from modules
in IM,(m). Indeed a greedy filter always provide a message which is the last

one available. This means that Tj;(m) does not depend on synchronizations
with modules in IM,(m). Consequently m is like a module with only FIFO
connections. Moreover if IMs(m) = () then T;:(m) only depends on concurrency
with other modules:

Ti (m) = Tcezec(m) (3)

Thus to study the effect of synchronization on performance we can remove greedy
filters from G. We obtain a new graph called Gyrn.. We note that Gy, may not
be connected anymore and may be splitted into several synchronous components.
Since components are not linked we can study each one independently.

We now consider each module m in a component C' € Ggyne. If IMs(m) # 0
then m is synchronized with its input modules. To begin its iteration, m must
receive messages from each module in IM;(m). If m is slower than its IMg(m)
then Tij(m) = Teegec(m). Otherwise, it must wait for the slowest module in
IMg(m) which determines its T;:(m). Thus we have:

Tit(m) = maz(mazx(Ti (i), Vi € IMs(m)), Teezec(m)) (4)

If IMs(m) = 0 then m is not synchronized with other modules. We called these
modules predecessors and we define preds(C) as the set of predecessors in a
component C. Their T} is given by equation 3 since they are not synchronized.
We can also have preds(C) = 0. Indeed modules in C' can be organized in
synchronous cycles. In this case we have at least a predecessor cycle G,. such
as for each module m in Gp., IMs(m) € Gp.. Note that we may have both
predecessors and predecessor cycles in C. In the case of a predecessor cycle Gy,
each module m € G, waits only for other modules in Gj.. Consequently T;;(m)
depends on the Ticze. of other modules in Gy, and on the communication time
between modules in G.. For each module m. € G,. we have:

B Vol(e)
Tit(me) = mechc Teezec(m) + eEZGPC (Wet(e)) + L(Net(e))) (5)
Net(e)#0D

According to equations 3, 4 and 5 we need Teezec(m) for each m to obtain T (m).

Determining Tcezee. for concurrent modules. We turn to study conse-
quences on concurrency on modules performances to compute their T.epec. The
behaviour of concurrent modules on a node n is determined by the OS scheduler.
Our approach is based on the Linux scheduler policy [1][5] which gives priority
to a module over others according to the time each concurrent module waits.
In this case the more a module waits, the higher priority it gets. Therefore to
determine Teepec(m) for each module m we first need the time spent for 1/0
operations and for the FlowVR wait function. A predecessor pm is not synchro-
nized and only waits for I/O operations according to its Tegec(m) and LD(m).
For each predecessor pm, we define 17,0 (pm) as follow :
Trj0(pm) = Tewee(pm) x (1 — LD(pm)) (6)
If IMs(m) # 0 then m If a module m is synchronized with its input modules
then we define T7/o(m) as the time not used for the computation during an
iteration:
Tr0(m) = max(Tewec(m), T3t (1), Vi € IMs(m)) — Tezec(m) X LD(m) (7)
With T7,0(m) we can sort modules on each node n in a list I(n) from the one
with the highest T7,0(m) to the one with the lowest 77,0 (m). Then we consider

modules in the list order. Each module m is mapped on the most available CPU
i.e. the CPU with the lowest load, and receives a concurrent load LD.(m) on
this CPU according to its load LD(m). Finally, we use the ratio between LD(m)
and LD.(m) to evaluate Teegzec(m). Algorithm 1 describes this process. Note that
some modules may have the same 77,0, in this case the order between them is
arbitrary. Our tests show that the scheduler can choose one possible order but if
we run the application several times the scheduler can choose another possible
order. Thus we have no performance garantee but we are able to detect when
this case occur.

Algorithm 1 Computation of Tcexec In this approach TI/O(m) is _deter-

for all cpu € CPUs(n) do mined from Tit (l), i€ IMS (m) from
enﬁﬁgrLD(CP“) =0 equation 7. But Tj(¢) may depend on
while I(n) # 0 do Teezec(i) according to equations 3, 4
m = head(l(n)) d 5. F le if i i d
I(n) = tail(l(n)) an . or example 1I 7 1S a predeces-
i‘gc:‘daTl ipu € CPUs(n) do sor, IMS (7’)) = @7 then nt (7’) depends on
if CPULD(cpu) < load then Teerec(?) from equation 3. Then if m and
load = CPULD(cpu) 1 are mapped on the same node then we
o I can not compute Teepec(i) since we have
LD.(m) = (1— CPULD LD ; ;
CP[}Z%@)(: CPULD(XE)LXDC(WS") not. yet determined Tl/o (m) and T{/O (7)
Tucoee(m) = Tepec(m) x 4202 which depend on T (7) from equation 7.
end while Consequently, in this example we have an

interdependency between equations 3 and 7. To detect interdependencies we first
modify Gsyn. to represent concurrency between modules. Therefore we add bidi-
rected edges between concurrent modules in Ggyn.. We obtain a new graph Gep
were each edge represents a dependency due to synchronization (directed edges)
or concurrency (bidirected edges). If we detect a cycle in the graph then we can
have an interdependency between modules in the cycle. We define a cycle as a
path between a module and itself such as this path is not empty. Note that a
cycle can contain the same bidirected edge twice but not the same directed edge.

We turn to present how to determine Teezec(m) and Tj(m) for each module
m in Ggep. Note that Ggep may not be connected, in this case Ggep has several
components. Since there is no dependencies between components of G4, We can
study separately each one. A component Cg, can contain cycles of different
nature and Directed Acyclic Graphs. We propose to extract cycles from Clge, to
obtain a set Dgep of DAGs. Then we study cycles and DAGs independently.

If we consider a DAG d in Dy, then we have no concurrency between modules
because we have no bidirected edges between them. Thus from equation 2 we
have Teezec(Mm) = Tegec(m) for each module m € d. If d contains a predecessor
pm then from equations 2 and 3 we can determine T;:(pm). Then we propagate
this value to each module m such as IMs(m) = pm to determine T;;(m) from
equations 2 and 4. If, for a module m we have IMy(m) ¢ d then it means that
it is dependant of a module in a cycle. Consequently we must first study this
cycle. Note that different kinds of cycles may be present in Cgep.

We first consider a cycle Ceycie C Cgep with only bidirected edges i.e. all mod-
ules in Cgyee are on the same node and but from distinct components. If Ceyere
contains only predecessors then we determine T7,0(pm) for each pm € Ceyere

with equation 6. Otherwise if we have at least one non predecessor module m
then we use equation 7. But we need to first study parts of the graph which con-
tain IMs(m). If Ceyere contains only directed edges then Ceyere is a synchronous
cycle. Moreover each module m within C¢yee has no concurrent modules. Con-
sequently we have Tiezec(m) = Tegec(m) from 2. If Ceyee is a predecessor cycle
then we use equations 2 and 5 to obtain T;:(m). Otherwise, for each module m
in Ceyere with IMs(m) ¢ Ceyere we first need to study parts with modules in
IMs(m). Then we apply equation 4 to modules in Cgyere. We finally consider
cycles with both directed and bidirected edges. In this case we have an inter-
dependency and we can not sort modules. To solve this problem we propose to
choose an order between modules. For example, we consider that modules in
the same synchronous component C' have the same iteration time. Indeed if we
have m € C such as Teegec(m) > Ty (i),i € IMg(m) then m is slower than i.
In this case messages from ¢ are accumulated and generate a buffer overflow.
Thus our hypothesis seems appropriate and desirable for the developer. But this
single iteration time is not yet determined. We are nonetheless able to compare
concurrent modules in the same component C. Indeed if we consider my, mg € C'
and € Ceyere with node(mq) = node(msg) = n we have Ty (mq) = Ty (me) ac-
cording to our hypothesis. If m; and mqo are not predecessors of C' we have from
equation 7 :

Trjo(m1) — Trjo(me) = Tezec(mz2) X LD(mz2) — Tezec(m1) X LD(m1)) (8)

Consequently it comes to compare the time each module effectively uses the
CPU. Note that, if we have a predecessor pm € C, or a module m from another
component, then we are not able to compare them. Consequently we distinguish
two possible configurations. In the first one we have only modules from the same
component on a node n. According to our hypothesis we are able to sort them and
we can solve the interdependency. On the other hand if we have a predecessor pm,
or amodule m from a different component in C¢yse, then our hypothesis does not
allow to compare them. In this case we propose to set Teepec(m) = Tegec(m) for
each m € Ceyele, just to define an order. Then we are able to determine Teegec(m)
for each module m and then T;;(m). At this step we can verify the order. If the
order has changed we repeat the process but we can not guarantee that this
process always converge. In this case our tests show oscillations of the execution
time due to variations in the module order. This behaviour does not correspond
to the one expected for performance, especially for interactive applications which
performance has to be stable. Moreover this dynamic variation of performance
due to the scheduling can be very difficult to detect and to analyse. Our method
makes possible to detect when this behavior may occur and to precisely point
out modules in these configurations. With this information the developer can
change its mapping or can tune the scheduler to sort modules statically.

We now construct Cge, from these different parts. We first consider cycles
and DAGs which are not dependent of others. The graph contains such parts
since we have extracted cycles from it. For each module m in these “predecessor
parts” we have determined Tiezec(m) and Ti:(m). Then we merge parts which
depends on these “predecessor parts” and we can compute Teepec(m) and Tyt (m)
for each module m in them. We repeat the process for the other parts until we
complete the graph. Once we have determined Tiezec(m) and Tj(m) for each

m € Gsyne we verify that Teepec(m) < T (i),i € IMym. If this is not the case
for a module m then we predict a buffer overflow on node(m). The developer
can remove the buffer overflow in different ways. For example he can distribute
m on several nodes to decrease Tpycc.(m) and consequently Teepec(m). If is also
possible to map concurrent modules of m on other nodes to decrease Teezec(m).

We can now determine performance for a given mapping. We also provide to
the developer a way to detect incorrect mappings. In this case our analysis point
out modules which generates errors and propose a mean to solve them.

Networking. We now consider communication between FlowVR objects. We
begin our study with a traversal of the application graph G(V, E) to determine
the frequency F(f) of each filter f, and Vol(e) on its output ports. When we
consider a filter f then we assign it a frequency F(f) according to its behaviour.
For example a greedy filter fgrccqy sends a message only when the receiving
module mges; asks it for a new data and we have F(fgreedy) = F(Maest). We
also determine Vol(e) from the frequency and the behaviour of objects. Note
that we can add additional edges to represent communication out of the FlowVR
communication scheme, for example MPI connections. Then we can compute the
bandwidth bws needed by a node n to send its data on a network net :

bws(n,net) = z Vol(e) x F(src(e)) 9)
Ve€eE,
Net(e)=net,
node(src(e))=n

If, for a node n, we have bws(n,net) > BW (net) then messages can not be
sent through the network thus we can predict a buffer overflow on n. We can
also determine the bandwidth bw, needed by n to receive its data by replacing
node(src(e)) = n by node(dest(e)) = n in equation 9. If bw,(n, net) > BW (net)
then too much data are sent to the same node, leading to a buffer overflow
on nodes sending data to node n through network net. Our method gives the
developer the ability to point out network bottlenecks in his mappings. Then
it is possible to remove them by reducing the number of modules on the same

node, by modifying the communication scheme, or by using other networks.
We now study the latency between modules. It represents the time an in-
formation needs to be processed and transported through the mapping. In VR
applications the latency is critical for user interaction and visualization. We de-
termine the latency between two modules m; and ms from the path P between
them. The path P is provided by the developer and contains a set of FlowVR
objects and edges between them. The latency is obtained by adding concurrent

execution times of modules in P and communication times.

L(P)= Z Teezec(m) + Z ﬁiﬁ(e)) + L(Net(e)) (10)
mer NZ:(E;;@

The developer can detect whether the latency corresponds to its requirements,
for example if it is low enough for interactivity. If the latency is too high, the
developer can minimize it by mapping several modules on the same node to
decrease communication latencies. He can also create more instances of parallel
modules to decrease execution times or to use a faster network.

4 Tests

In this section we present several tests to validate our performance prediction
model on simple FlowVR applications. Then we apply our method to a real
application. Tests are performed on a cluster composed of two sets of eight nodes
linked with a gigabit Ethernet network. The first set (nodes 1 to 8) is composed
of nodes with two Opteron processors, each one with two cores. The second one
(nodes 11 to 18) is composed of nodes with dual Pentium4 Xeon processors.

4.1 Test application

We first verify our model on simple FlowVR applications.We first determine
for each module m its Tpzec(m) by running independently each module on the
destination host. Then we run the applications to compare predictions to results.

Synchronizations. We first consider a greedy connection between two modules
m1, ms mapped on different nodes. Results are shown in table 1 and confirm
that greedy connections do not affect module performance. Then we replace
the greedy connection by a FIFO connection. Results are shown in table 2. As
expected Tyt (mga) = Ti(m1). Finally we invert the FIFO connection between my
and mg. In this case we predict a buffer overflow since Teyec(ma) > Tit(my). Our
tests confirm that the application exists with a buffer overflow error.

We turn to consider three modules organized in a synchronous cycle. Since
each module waits for the others, two modules can not run at the same time.
Thus we predict that Teezee = Tegee for each module if they are mapped on
the same node. But we should have a higher Tj; if modules are mapped on
distinct nodes since we have network communications. We first map modules
on distinct nodes. Each module sends 5MB per iteration through a gigabit net-
work (BW=100MB/s) thus we expect that each communication will take around
50ms. We assume that the network latency is negligible compared to this com-
munication time. We have three connections in the cycle so we add 150ms to
the execution times in equation 5. Results shown in table 3 are close to pre-
dictions even with a simple estimation of the network parameters. If we map

Module|Nodes|LD |Tegec|Tit pred.|T;+ real Module|Nodes|LD|Tezec|Tit pred.|T;: real
mi 1 1 |37 37 37 mi 1 1 [37 37 37
ma 2 0.5 (18 18 18 mo 2 0.5 (18 37 37
Table 1. Table 2.
Module|Nodes|LD|Tezec|Tit pred.|Ti; real Module|Nodes|LD|Teyec|Tit pred.|T;: real
mi 1 1 |37 234 240 mi 1 1 |37 84 84
mao 2 0.5 |26 234 240 ma 1 0.5 |26 84 84
ms3 3 0.5 |21 234 240 ms3 1 0.5 |21 84 84
Table 3. Table 4.
Prediction Measure
Mod.|Node|Texee|LD |T1 /0 |Teexec|LDe|Teexec| LD
mi 1 20 1.00(0 48 0.42 |36 0.55
ma |1 16 0.30(11 16 0.30 (19 0.25
msz |1 10 0.50(5 14 0.35 |17 0.44
myg |1 51 0.58(20 51 0.58 |56 0.52

Table 5. (Times are given in ms)

modules on the same node then we only sum the execution times to obtain the
T;: of modules in the cycle from equation 5. Results in table 4 show that Tj; is
correctly predicted by our approach. We note that communication through the
shared memory does not add extra latency.

Concurrency. In this test we consider four different modules mq,mo, ms and
my4 mapped on a dual processor node. These modules are not synchronized to
avoid interdependencies since we want to validate our scheduling model. We
apply our approach to determine Tpezec(m) for each module m. Results in table 5
are close to our predictions. Nonetheless we note that the scheduler gives the
higher priority to mo and m4 but does not give them the necessary load.

4.2 The FluidParticle application

We now apply our approach on our FluidParticle application which is used to
observe typical fluid phenomena like vortices. It contains the following modules :

— fluid : this is an MPI version [6] of the Stam’s fluid simulation [9].

— particles : this is a parallel module which stores a set of particles and moves
them according to a force field.

— wiewer : it converts the particles positions into graphical primitives.

— renderer : it displays informations provided by the viewer modules. In our
study we use a display wall with four projectors thus we use four renderer
modules on four distinct nodes.

— joypad : it is the interaction module which allows the user to interact with
the fluid by adding forces.

Our goal is to obtain an interactive application. We focus our study on syn-
chronization and concurrency effects on performance. A complete example of
network performance analysis can be found in [8]. We first determine Teyec(m)
and LD(m) for each module m (table 6). We note that the joypad module has
load under 1% and is connected to simulation modules through greedy filters to
allow an asynchronous interaction. Consequently it can not involve performance
penalties and we choose to ignore it.

We now describe communication and synchronization between modules. The
fluid module is connected synchronously with the particles module. The parti-
cles module is also connected synchronously with the viewer module. Finally the
viewer and the renderer modules are connected through a greedy filter. This al-
lows to change the user point of view and to update data from the viewer module
asynchronously. If we remove greedy connections then the graph is splitted into

Module Nodes Prediction Measure
LD |Tewec|Teewec|Tit|LDc|Teewec|Tit| LD,
fluid 1,...,8[0.97 [70 70 70 10.97 |73 73 10.97
particles|15, ..., 18|0.97 |20 20 70 (0.28 |21 73 (0.30
viewer |15, ..., 18|0.97 |28 28 70 10.40 (28 73 10.38
renderer|11, ..., 14{0.97 |57 57 57 10.97 (60 60 |0.97
joypad 1|<0.01|<1 |0 0 |0 0 0 |0

Table 6. (Times are given in ms)

two components. The first one contains the fluid, the particles and the renderer
modules while the second one contains the renderer modules.

We turn to study synchronization and concurrency between modules for two
mappings. We first propose a mapping with the fluid, particles and renderer mod-
ules on the same dual processor nodes. In this case we detect an interdependency
since we have a cycle with a directed edge between the fluid and the particles
modules, and a bidirected edge between the renderer and the fluid modules. The
particules module is synchronized with the fluid module and have a lower exe-
cution time. The renderer module is the single module in its component and is
consequently a predecessor. Since both the renderer and the fluid modules have a
load of 97%, the particles module always have the highest priority. Consequently
renderer or the fluid module will be mapped with the particles module on the
same processor. But we can not order these two modules. Thus the scheduler
may change their mapping on the two processors dynamically. Indeed our tests
confirm that their Tieqze. vary. We now propose a different mapping.

To obtain an interactive visualization we should map the renderer modules on
dedicated processors. We also need to avoid concurrency for the fluid module to
obtain the fastest simulation. Thus we propose to map modules as described in
table 6. In this mapping we use nodes 1 to 8 for the simulation and we distribute
four modules on each node to take advantage of the four processors. Then we map
the renderer module on four nodes connected to four projectors to visualize the
simulation on our display wall. Four nodes, with two processor on each one, are
still available for the particles and viewer modules. Consequently we distribute
them on these nodes to reduce their execution time. In this last case we have a
cycle with only modules from the same synchronous component on each one of
these nodes. Moreover we do not have a predecessor mapped with them. Thus
we are able to determine their Tj;. Results of this mapping are shown in table 6.
We note that it confirms the predicted performance. However in this mapping
each module is mapped on a dedicated processor to avoid interdependencies. We
note that, if we want to optimize the use of the cluster, we can bind modules
on processor to avoid interdependencies. Moreover, we have Te...(particles) +
Tewec(viewer) < Ty (fluid). This means that each message from the fluid module
is processed by the particles module which then sends a message to the viewer
and waits for a new message. Then the message is processed by the wviewer
module which then waits for a new message from the particles module. But a
new message is not yet available from the simulation. Consequently the next
particles iteration can not start before the end of the viewer iteration. Thus the
particles and the viewer modules are never concurrent and we can bind them
to the same processor. We propose to modify the previous mapping by moving
the particles and viewer modules to nodes 1 to 4 and to bind them on the
second processor to avoid an interdependency with the renderer module. Our
tests confirm that we obtain the same performance with this mapping.

We have applied successfully our approach on our interactive simulation. In
each case we take into account synchronization and concurrency to determine
performances of modules. We also detect mappings with poor performance.

5 Conclusion

We have shown in this paper that our approach is able to predict performances
for distributed FlowVR applications. Thus the developer can determine if its
mapping offers for each module the frequency he expected. He can also compare
the execution time of a module to the concurrent execution time and then ob-
serve the effects of concurrency between modules. For each node we are able to
compute the load of each processor. If the developer needs more performances
our approach allows to point out modules which could be optimized. Then he
can choose to map modules on nodes with lower processor loads or to distribute
a module on several nodes. But this can generate more communications on the
network. Nevertheless our method allows to determine consequences of such
choices. We can point out modules which generates buffer overflow due to syn-
chronizations. We can also locate bottlenecks on network links.

This approach brings to the FlowVR model a way to abstract the perfor-
mance prediction from the code. Nevertheless it is not limited to FlowVR appli-
cations and is sufficiently general to consider applications developed with other
distributed middleware. The next step in our approach is to enhance the schedul-
ing of concurrent modules to improve performance. We also plan to provide au-
tomated tools based on our model to assist the developer in his mapping creation
and optimization.

Acknowledgment

This work is supported by the Region Centre.

References

1. J. Aas. Understanding the linux 2.6.8.1 cpu scheduler.
http://citeseer.ist.psu.edu/aas05understanding.html.

2. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and S. Robert.
Flowvr: a middleware for large scale virtual reality applications. In Proceedings of
FEuro-par 2004, Pisa, Italia, August 2004.

3. J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing pre-rendering com-
putations on a net juggler pc cluster. In Proceedings of the IPT 2002, Orlando,
Florida, USA, March 2002.

4. J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running large vr applications on a pc
cluster: the flowvr experience. In Proceedings of EGVE/IPT 05, Denmark, October
2005.

5. D. P. Bovet and M. Cesati. Understanding the Linux Kernel, Third Edition, chap-
ter 7. Oreilly, 2005.

6. R. Gaugne, S. Jubertie, and S. Robert. Distributed multigrid algorithms for inter-
active scientific simulations on clusters. In ICAT, 2003.

7. E. Melin J. Allard, V. Gouranton and B. Raffin. Parallelizing pre-rendering com-
putations on a Net Juggler PC cluster. In IPTS 2002, 2002.

8. S. Jubertie and E. Melin. Multiple networks for heterogeneous distributed applica-
tions. In Proceedings of PDPTA’07, Las Vegas, 2007. To appear.

9. J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game Developer
Conference, March 2003.

