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Abstract. A notable requirement of clusters is to maximize its process-
ing performance. Lots of work in this area has been done to optimize
the system performance by improving certain metric such as reliability,
availability, security and so on. However, most of them assumes that the
system is running without interruption and seldom considers the system’s
intrinsic characteristics, such as failure rate, repair rate and lifetime. In
this paper, we study how to achieve high availability based on residual
lifetime analysis for the repairable heterogeneous clusters with makespan
constraints. First, we provide an availability model based on addressing
the cluster’s residual lifetime model. Second, we give an objective func-
tion about the model and develop a heuristic scheduling algorithm to
maximize the availability the makespan constraint. At last, we demon-
strate these advantages through the extensive simulated experiments.
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1 Introduction

With the advent of new high-speed networks, it is now possible to link together
a collection of distributed, cost-effective and possibly heterogamous resources
in the form of a cluster [1]. Heterogeneous cluster is the coordinated use of
different types of computers, networks and interfaces to meet the requirements of
widely varying application. In fact, most components of such system are different
in many aspects such as total running time, processing performance, expected
residual lifetime and other physical conditions with respect to circumstances.
These differences have a strong impact on the task processing performance for
clusters. In order to achieve high performance, some metrics, which can affect
system availability, must be considered carefully. Our work is to improve the
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availability of clusters without sacrificing conventional system quality of services
(QoS) metrics. With QoS constraints, we address a novel scheduling strategy to
endeavor to maximize the availability from the system residual lifetime’s point
of view.

For a job consisting of m tasks t1, t2, ..., tm, how to allocate these tasks to
each computing node is a critical problem. Some previous researches focus on
the conventional measures about system qualities of service, such as the response
time, finishing time, load balancing, etc. In an actual computing environment,
however, it seems that how to complete the entire job successfully is more impor-
tant than how to finish the job as quickly as possible. That is, the availability of
system to processing tasks maybe a more important performance metric than the
system’s response time. For example, consider the residual lifetime of each com-
puting node for cluster at time t, see Fig. 1. The time interval Ri, (i = 1, 2, ..., n)
is the residual lifetime of corresponding node at time t. For a task assignment
scheme with the goal to maximize the system performance, intuitively, it may
be better to allocate the task with longer execution time to the node which has
longer residual lifetime. That is, under such task assignment, there’s a decrease
in the number of the worse cases that the node failed before the task processed
by the node is finished.
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Fig. 1. Residual lifetime distribution of
cluster at time t.

Fig. 2. A typical evolution of a failure-
repair progress for a computing node .

In this paper, we propose a novel model to describe the availability for re-
pairable heterogeneous cluster based on its expected residual lifetime with the
tasks’ makespan constraints. Then we employ the model to put forward a task
scheduling strategy, which can minimize the cluster availability, by allocating
the tasks with longer execution time to the nodes with longer expected residual
lifetime. At last, we conduct a series of simulated experiments to illustrate our
task distribution strategy which is efficient to balance the availability and the
makespan of heterogeneous clusters.

The rest of this paper is organized as follows. In section 2, we briefly introduce
related work. Section 3 extends the availability model based on analyzing the
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residual lifetime and then gives the objective function for optimization. We pro-
vide a scheduling algorithm to maximize the availability and with the makespan
constraint for the cluster in section 4. Section 5 presents the simulation results of
the algorithm and gives the experimental results. Section 6 concludes the whole
paper and presents our future work in this field.

2 Related work

Scheduling Strategies for cluster have been extensively studied in previous work
both experimentally and theoretically. Besides widely investigated task alloca-
tions that improve system performance by optimizing the conventional perfor-
mance measures, such as makespan or completion time [2], a few established task
allocation models attach importance to system reliability, availability, safety and
robustness, etc. Shatz et al deal with the task allocation with the goal of maxi-
mizing the system reliability [3]. Srinivasan et al describe a method to determine
an allocation that introduces safety into a heterogeneous distributed system and
at the same time attempts to maximize its reliability. Xie and Qin integrate tasks’
availability requirements into stochastic scheduling so as to achieve a good bal-
ancing between system availability and throughput measured as average response
time [4]. Schmidt [5] reviews results related to deterministic scheduling problems
where machines are not continuously available for processing. [6] and [7] refers to
a resource allocation’s tolerance to uncertainty as the robustness of that resource
allocation. It presents a stochastic robustness metric suitable for evaluating the
likelihood that a resource allocation will perform acceptably. In [8], Dogan and
Ozguner present two different cost functions which can guide a matching and
scheduling algorithm to produce task assignments so that failures of the net-
work resources will have less effect on the execution of application. Topcuoglu et
al introduce two scheduling algorithms for a bounded number of heterogeneous
processors with an objective to simultaneously meet high performance and fast
scheduling time [9]. In [10], Hariri and Raghavendra provide two optimization
algorithms for allocating the functions of a given distributed task so that the
reliability is maximized and the communication delay is minimized.

In these researches introduced above, more attention is put on the metrics
of reliability and availability. For instance, the maximum reliability is achieved
by straightly optimizing the system reliability function, e−λt , with respect to
the accumulative execution time and the intertask communication cost in [3]
and [11]. An availability deficiency is defined which represents the discrepancy
between the availability of a node and the availability requirements of tasks allo-
cated to the node. By balancing the availability discrepancy and the makespan,
a stochastic scheduling scheme is developed [4]. Our work is different from these
methods above. We try to find a task allocation scheme to optimize the sys-
tem availability by maximizing the objective function based on nodes’ expected
residual lifetime as much as possible. Furthermore, the heterogeneous cluster
we considered is repairable which has been neglected by most researches above.
That is, we believe that the computing node is a failure-repair system, and al-
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ternates times and again between the up state and down state. Objectively, such
failure-repair system is suitable in most actual cases.

3 Scheduling strategy model

3.1 Assumption and system model

In this paper, cluster is assumed to consist of a set of heterogeneous computing
nodes, N = {n1, n2, ..., nk, k = 1, 2, ..., n}, connected via a high-speed intercon-
nection network. The computing nodes only have local memory and do not share
any global memory. We assume every computing node has different failure and
repair rate. During an interval, all nodes might have undergone one or more
failures inevitably, including either instantaneous failures or permanent failures.
We suppose when the instantaneous failure occurs the node can auto-resume
by re-configuring the system parameters or rebooting the machine. While the
permanent failure occurs, the failed nodes are made operational by repairing or
replacing. Therefore, it can be described as a Poisson stochastic process. See
section 3.2. We also assume that a task can be interrupted at any time when
failure occurs and continued after repair is finished.

Given a job consists of m independent tasks T = {t1, t2, ..., tm} arriving at
the scheduler of cluster, it is the duty for the scheduler to allocate each task to
one of the n computing nodes. Different task assignments have diverse efficiency
of task processing for cluster. Successful implementation of a job requires every
task of it to be finished reliably by corresponding computing nodes. At the same
time, some QoS constraints, for example the makespan, must be considered. In
our study, we present an objective cost function with the makespan constraint
for the cluster availability. The main notations and definitions will be used in
the rest of paper specified as Table 1.

Table 1. Main notations and definitions .

ti ith task of a job

ni ith computing node

X A m× n matrix corresponding to a task assignment

pij An element of X. It equals 1 if ti is assigned to nj ; otherwise it equals 0

eij Accumulative execution time for task ti running on processor nj

τk The total computing time of node k for all tasks allocated to it

λi Failure rate of the ith node

µi Repair rate of the ith node

Uk The length of the kth operation period

Dk The length of the kth repair/replacement period

B(τ) Prob.(node is up, residual lifetime > t) at time τ

A(τ) Availability function of cluster

Clearly, we have the equation τk =
∑m

i=1 pikeik , and the job finishing time,
makespan, is Max{τk|k = 1, 2, ..., n}. Now, our goal is to find an optimal task
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assignment X, under which we can maximize the system availability function
A(τ) and minimize the value of makespan.

3.2 Residual lifetime modeling

In the reliability engineering [12], the expected residual lifetime is a random
variable representing the remaining life of a system at time t. Considering one
repairable node k of the heterogeneous cluster, each node has two-states and is
assumed to undergo random failures with time elapsing independently. Simul-
taneously, each failure entails a random duration of repair before the node is
put back into service. Also, we assume that the duration of the failing node
is independent of the states of other nodes. Due to the random nature of the
component failures, the Poisson process is an appropriate model to employ. Let
Uk, k ∈ N represents the length of the kth operation period, and let Dk, k ∈ N
represents the length of the kth repair/replacement time for the node as shown
in Fig. 2. We denote H(t) and Y (t) as the probability distribution function of
Uk and Dk, respectively, and λ and µ are the failure rate and the repair rate
of the node respectively. As is known, 1/λ is the mean time to failure (MTTF)
of the node while 1/µ is the mean time to repair (MTTR) of the node. In our
study, we assume that H(t) is exponential distribution, then we have the lifetime
distribution function of the node, H(t) = 1 − e−λt , and the survival function,
H(t) = 1−H(t) = e−λt.

Let Sn denote the nth failure time, then Sn = U1 +
∑n−1

k=1(Uk +Dk+1). Obvi-
ously, the Sn sequence generates a delayed renewal process N(t). The U1 has the
distribution function H. All other interarrival times have the same distribution
function H ∗Y with mean 1/λ+1/µ, where * represents convolution. Given that
the node is up at time t, the residual lifetime W (t) represents as follows:

W (t) = SN(t)+1 − t. (1)

The probability that node is up and residual lifetime is greater than ω, ω > 0,
at time t is given as:

B(t, t+ω) = P (node is up,W (t) > ω) = H (t + ω)+
∫ t

0

H(t−x+ω)dm (x) . (2)

where m(x) =
∑∞

n=1(H ∗Y )(n)(x), and (n) is the n-fold convolution of H ∗Y
with itself. The proof of equation (2) can be seen in [12].

From the Key Renewal Theorem [13], we can give the equation:

B(ω) = lim
t→∞

P (node is up, W (t) > ω) =

∫∞
ω

H(x)dx

1/λ + 1/µ
. (3)

with H(x) = e−λt, we can calculate the probability:

B(ω) =
µe−λω

λ + µ
. (4)
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3.3 Objective function

We define the model for each node according to equation (4), indexed by ”k”.
Then for the node k, we have the probability that the node is up and its expected
residual lifetime at time t is greater than τk which is given as follows:

Bk(τk) =
µke−λkτk

λk + µk
. (5)

where τk is the total computing time of node k for all tasks allocated to it,
and λk, µk are the failure rate and repair rate of node k respectively.

Now we define availability function A(τ) as the geometric mean of all Bk(τk),
so A(τ) represents the average probability that every nodes’ residual lifetime is
longer than corresponding τk. Then, we have the equation:

A(τ) = n

√√√√
n∏

k=1

Bk(τk) = n

√√√√exp(−
n∑

k=1

λkτk)
n∏

k=1

µk

λk + µk
(6)

Clearly, A(τ) reflects the cluster’s availability of performing all tasks based on
the node’s residual lifetime property. We regard A(τ) as the objective function.
Thus, our goal of scheduling is to find a task assignment X = {pij |1 ≤ i ≤
m, 1 ≤ j ≤ n} to make the value of A(τ) maximum and simultaneously reduce
the makespan of cluster as much as possible. Without question, maximizing
A(τ) is equivalent to minimizing the function RLcost(τ) =

∑n
k=1 λkτk, since

λk and τk are constant for every node. Now, what we will do is to find a task
assignment X, which can maximize the cluster performance as follows:

Min RLcost(τ) =
∑n

k=1

∑m
i=1 λkpikeik;

Min makespan = max{∑m
i=1 pikeik|1 ≤ λ ≤ n};

s.t.

{∑n
k=1 pik = 1, 1 ≤ i ≤ m

pik = 0 or 1, 1 ≤ i ≤ m, 1 ≤ k ≤ n
It is a multi-object optimization problem (MOP). Finding a optimal solution

of the problem is known as a NP-hard problem [14], since the optimizing objects
conflict each other when optimizing them. Therefore, we develop a heuristic
algorithm to find a trade-off solution which minimizes the function RLcost(τ)
as well as the function makespan.

4 Scheduling algorithm

In order to determine probability vector X, which corresponds to a task schedul-
ing policy, we propose a heuristic algorithm to achieve a trade-off solution. In
respect that our preferred goal is to maximize the availability, our heuristic al-
gorithm finds the minimum value of RLcost(τ) first and then tries to satisfy the
need of makespan constraint. The full algorithm is depicted in Table. 2.

The algorithm has m rounds calculation. In each round, Pareto efficient so-
lution is chosen and reserved for the next turn calculation, so the algorithm
converges at the overall optimal solution [15].
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Table 2. Trade-off algorithm

1. pij ← 0, for all i and j;
2. Arbitrarily order the tasks of a set T = {t1, t2, ..., tm};
3. Arbitrarily order the computing nodes of a set; N = n1; n2, ..., nn

4. Create a set ST (ST will hold the tasks that have been allocated to nodes);
5. While (T 6= φ) do
6. Get task ti from T in turn, move it into ST ;
7. Find node nj in N , whose value of is the minimization among all of nodes’;

8. if (
Pi−1

s=1 ps1es1 =
Pi−1

s=1 ps2es2 = ... =
Pi−1

s=1 psnesn) then Goto 10

9. if ((
Pi−1

s=1 psjesj + eij) > max(
Pi−1

s=1 ps1es1, ...,
Pi−1

s=1 psnesn)) then

j ← {k|(Pi−1
s=1 pskesk + eik) = min(

Pi−1
s=1 ps1es1 + ei1, ...,

Pi−1
s=1 psnesn + ein)};

10. pij ← 1;
11. End While;
12. Output X.

At first, for every task ti, step 7 endeavors to minimize the value of corre-
sponding RLcost(τ) through finding the node nj which has the minimum value
of λjeij . In succession, step 8 and 9 decide if the choice of nj can make all al-
located tasks’ execution time (makespan) minimum. If it does, we believe that
nj is the best choice for task ti. Otherwise, we have to find a node n

′
j , which

corresponds to the minimum makespan if allocate ti to it. What must be no-
ticed is that makespan here is the executing time for all the tasks that has been
allocated. Note that step 8 ensures getting the maximum availability when all
nodes makespan are equal. After doing that, node n

′
j will be selected, and then

task ti will be ultimately allocated to it. It’s worth noting that n
′
j and nj may

be one and the same at some occasions.
Time complexity of this algorithm is O(m3n). However, it can be improved

by sacrificing some space complexity. If we conserve the value of
∑i−1

s=1 pskesk in
memory for the next round computing at ith round, i.e. if we can use the ith
round computing result to calculate the value of (i+1)th round, time complexity
of the algorithm will be reduced to O(m2n).

5 Experiment and discussion

In this section, we will use some experiential data to compute the values of A(τ)
and makespan by a simple example. In this example, the repairable heteroge-
neous cluster has three computing nodes and their failure rates and repair rates
are shown as Table 3. The matrix of execution times is given in Fig. 3, whose
entity eij represents the execution time of ti on node nj . We must point out
that all the data we use in our simulation are not actual figures but approximate
values choosed empirically. It does not affect the simulation results, because the
algorithm is independent of the input figures. Our aim is only to evaluate the
algorithm’s performance for the proposed model.
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Fig. 3. Matrix of execution time for all tasks .

The trade-off algorithm introduced above is running with the parameters
and we achieve a task assignment X1, as shown in Fig. 4(a). We calculate the
makespan and A(τ) using the model introduced in section 3 under the assign-
ment X1. In order to identify the validity of the algorithm, we also figure out
the extremes of makespan and A(τ) respectively. The former, X2 (Fig. 4(b)), is
achieved by maximizing the availability without considering makespan. And the
latter, X3 (Fig. 4(c)) is achieved by exhaustively enumerating all task assignment
to find the minimum makespan without considering A(τ). See Table 4.
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Fig. 4. Tasks assignment with different preferences . (a) The trade-off solution
(b) Maximizing the availability without considering makespan (c) Minimizing
the makespan without considering availability

Compared with X2, the assignment X1 reduces the availability of cluster
0.058% and improves the makespan about 15%. Contrarily, X1 raises the avail-
ability 0.012% and degrades the makespan about 42% than X3. We take note
of that the variation range of availability is very small and reverse happens to
makespan. The reason is that the failure rate of cluster we choosed is very small,
i.e. the cluster is reliable enough and it is difficult to improve its availability, just
as cluster shows in most practical situations. On the contrary, makespan is in-
terrelated with the number of tasks and their execution time, which result in
the distinct fluctuation of the execution time for cluster under different task
assignment.
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Table 3. Failure rate and repair rate for
all computing nodes.

n1 n2 n3

λ 0.0050 0.0030 0.0070

µ 1.1900 1.2410 1.1100

Table 4. Simulation results.

RLcost(τ) makespan A(τ)

X1 0.0160 1.7000 0.8665

X2 0.0120 2.0000 0.8670

X3 0.0167 1.2000 0.8664

Furthermore, we address the effect on the tradeoff algorithm by varying the
numbers of nodes and tasks, and compare it with the algorithm which only
maximizes availability without considering makespan. We suppose that the value
of availability and makespan computed by using the tradeoff algorithm are A1

and m1 respectively, and corresponding values are A2 and m2, which computed
by using the algorithm without taking into account the makespan, respectively.
We denotes A1/A2 as the ∆A and (m2 −m1)/m2 as ∆m. Thus, we can acquire
the variety of ∆A and ∆m, as Fig. 5 and Fig. 6 shows.

Fig. 5 illustrates the variation of ∆A and ∆m with the tasks number in-
creasing from 1 to 1000, while there are 3 computing nodes. Fig. 6 illustrates the
variation of ∆A and ∆m with the nodes number increasing from 1 to 50, while
there are 1000 tasks.

Fig. 5. 3 nodes, ∆A and ∆M vary with
the number of tasks increasing .

Fig. 6. 1000 tasks, ∆A and ∆M vary
with the number of nodes increasing .

6 Conclusion and future work

The residual lifetime is a very important factor for cluster availability. In this pa-
per, we have presented task allocation to maximize availability with the makespan
constraint. We have analyzed the residual lifetime of the computing node and
addressed the stochastic model for cluster availability. In order to incorporate
availability and makespan into task scheduling, we have proposed a trade-off
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scheduling algorithm. Our algorithm can improve the performance in availabil-
ity as much as possible with the makespan constraint. At last we have given
some experimental results and simple analysis about that.

In the future, we will improve our availability model through considering
the effects of tasks inter-communication channel’s lifetime model which have
not been involved in this paper. By applying the model and algorithm to the
real cluster systems, we can evaluate its performance and improve it. We will
also make use of existing algorithms, such as genetic algorithm and evolutionary
algorithm, to find the solution of our model. Based on those, a more efficient
algorithm would be proposed, since the algorithm represent here is not efficient
enough for large scale clusters.
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