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Abstract. In order to classify data with noises or outliers, Fuzzy support vector 

machine (FSVM) improve the generalization power of traditional SVM by 

assigning a fuzzy membership to each input data point. In this paper, an 

improved FSVM based on vague sets is proposed by assigning a truth-

membership and a false-membership to each data point. And we reformulate the 

improved FSVM so that different input points can make different contributions 

to decision hyperplane. The effectiveness of the improved FSVM is verified in 

credit rating; the experiment results show that our method is promising. 

Keywords: Fuzzy support vector machine (FSVM); fuzzy membership; vague 

sets; credit rating. 

1   Introduction 

Support vector machine (SVM) is based on the statistical learning theory (SLT) 

developed by Vapnik [1]. The formulations of SVM embody the structural risk 

minimization (SRM) principle and VC dimensions theory. Due to their high 

generalization ability SVMs have attracted many attentions and have been accepted 

widely [2, 3]. Credit risk is the primary risk facing commercial banks. With the 

proposed guidelines under the New Basel Accord, financial institutions will benefit 

from better assessing their risks. Statistical methods have been used to estimate credit 

rating, which typically require large data to build the forecasting model. However, 

there are not large data to use in real-life. Huang and Wang have shown that SVMs 

achieved better performance than traditional statistical methods in the field of credit 

rating assessment [4] [8]. 

The aim of SVM is to provide good generalization ability. The optimal hyperplane 

can be determined by only few data points that are called support vectors (SVs). 

Accordingly, SVMs can provide a good generalization performance for classification 

problems despite it does not incorporate problem-domain knowledge. There are some 

advantages of SVMs as follows. The training of SVMs is relatively easy and has no 



local optimal like neural networks. And SVMs scales relatively well to high 

dimensional data and tradeoff between classifier complexity and error. But there are 

some disadvantages in SVMs which need a “good” kernel function and the overfitting 

problem like neural network. These disadvantages impact the generalization ability of 

SVMs in many real applications. 

As remarked in [5, 6, 7], SVMs are very sensitive to outliers and noises. The 

FSVMs proposed in [5, 6] treat the training data points with different importance in 

the training process. Namely, FSVMs fuzzily the penalty term of the cost function to 

be minimized, reformulate the constrained optimization problem, and then construct 

the Lagrangian so that the solutions to the optimal hyperplane in the primal form can 

be found in the dual form. The key part of FSVM is how to construct the membership 

model in the training data set. However, there is no general rule to determine the 

membership of each data point now. Wang proposed the Bilateral-weight fuzzy SVM 

(B-FSVM) to evaluate the credit risk [8]. This method treats each instance as both of 

positive and negative classes, but assigned with different memberships. 

In this paper, we propose an improved fuzzy SVM based on the vague sets. We 

assign a truth-membership and a false-membership for each data point in training data 

set, and reformulate the FSVM. The experiment results show this approach improve 

the generalization performance of traditional SVM.   

The rest of this paper is organized as follows. A brief review of the theory of 

FSVMs, B-FSVMs and Vague Sets will be given in Sections 2. Section 3 presents an 

improved FSVM based on vague sets. Section 4 reports the experiment results and 

analysis. Section 5 presents conclusions and future work. 

2    Fuzzy Support Vector Machines and Vague Sets 

2.1   Fuzzy Support Vector Machines  

SVM has some merits such as multi-local minima and overfitting in neural networks 

seldom occur in SVM and it has a solid theoretical foundation. However, there are 

still some problems in SVM. All training points of one class are treated uniformly in 

the theory of SVM. As shown in [5,6], due to overfitting, the training process is very 

sensitive to those outliers in the training dataset which are far away from their own 

class.  

FSVM is proposed in order to decrease the effect of those outliers. The main idea 

of FSVM is that we can assign a fuzzy membership to each data point, In other words, 

FSVM treats the input data unequally such that different data points can have different 

effects in the learning of the separating hyperplane. We can treat the noises or outliers 

as less importance and let these points have lower fuzzy membership. It is also based 

on the maximization of the margin like the traditional SVM, but FSVM uses fuzzy 

memberships to prevent some points from making narrower margin. This equips 



FSVM with the ability to train data with outliers by setting lower fuzzy memberships 

to the data points that are considered as noises or outliers with higher probability [9].   

We give a briefly introduction about FSVM that are proposed in [5, 6] as follows. 

Suppose we are given a set of labeled training data sets with associated fuzzy 

membership ),,( iii mxy .Each training point N

i Rx ∈  is given a label }1,1{−∈iy and a 

fuzzy membership 1≤≤ imε  with Ni ,...,2,1= , and sufficient small 0>ε . Since the 

fuzzy membership im  is the attitude of the corresponding point ix  toward one class 

and the parameter iξ  is a measure of error in SVM, the term iim ξ  is a measure of 

error with different weighting. Then the optimal hyperplane problem is regarded as the 

solution to 
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Where C is a free parameter that controls the tradeoff between the maximum of 

margin and minimum of classification error. It is noted that a smaller im  reduces the 

effect of the parameter iξ  in problem (1) such that the corresponding point is treated 

as less important. We obtain the following decision function 
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Wang proposed the Bilateral-weight fuzzy SVM (B-FSVM) and presented a new 

approach to improve the FSVM [2]. This new method treats every data point in the 

training dataset as both positive and negative class but with different memberships.    

Memberships are assigned to both classes for every data point. This means it increases 

the number of training data points from the original N to 2*N. i.e. from },{ ii yx  to 

}1,1,{},,1,{ iiii mxmx −− . The classification problem is modeled by the following 

programming 
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The problem can be transformed into its dual form 
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Let )()(),( j

T

iji xxxxK φφ= . In order to transform this into a quadratic programming 

problem, we let iii βαγ −= . The previous optimization becomes 
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After solving this quadratic programming problem, we obtain the following 

classifier 
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2.2   Vague Sets 

Since the theory of fuzzy sets was proposed in 1965 by Zadeh [10], it has been used 

for handling fuzzy decision-making problems and the study of the aggregation 

processes. 

Definition 1. (Fuzzy Set) Let U be the universe of discourse, { }nxxxU ,...,, 21= . A 

fuzzy set  
{ }]1,0[)(,|))(,( ∈∈= xAxxxA AA µµ  

The grade of membership of an element ix  in a fuzzy set is denoted as )( iA xµ , 

Uxi ∈ . It is represented by a real value between zero and one.  Fuzzy sets assign each 

object a single value. This single value combines the evidence for Uxi ∈  and the 

evidence against Uxi ∈  , without indicating how much there is of each. The single 

number tells us nothing about its accuracy. 

Vague set theory, introduced by Gau and Buehrer in 1993 [11], extends and 

improves fuzzy set theory. The membership ranging between zero and one in fuzzy set 

theory is extended to a continuous subinterval of [0, 1]. 



Definition 2. (Vague Set)  Let U be the universe of discourse, with a generic 

element Uxi ∈  . A vague set V in U is characterized by a truth membership function 

Vt  and a false membership function Vf , )( iV xt  is a lower bound on the grade of 

membership of ix  derived from the evidence for ix  , and )( iV xf  is a lower bound on 

the negation of ix  derived from the evidence against ix  . )( iV xt and )( iV xf  both 

associate a real number in the interval [0,1] with each point in U , where 

1)()( ≤+ iViV xfxt .  

This approach bounds the grade of membership of ix  to a subinterval [ )( iV xt , 1 - 

)( iV xf ] of [0, 1]. The vague value can be divided into three parts: the truth-

membership part )( iV xt , the false-membership part )( iV xf , and the unknown part 

)()(1 iViV xfxt −− . 

3   FSVM Based on Vague Sets (VS-FSVM) 

A vague set is a further generalization of a fuzzy set. Instead of using point-based 

membership as in fuzzy sets, interval-based membership is used in a vague set [12]. 

The interval-based membership in vague sets is more expressive in capturing 

uncertainty and vagueness of data. In this paper, we use vague sets to define the 

membership in FSVMs. 

Given a training datasets Niforyx ii ,...,1,},{ = , }1,1{−∈iy , we transform the 

original data sets into a new training datasets 

Niforfxtx iiii ,...,1,},1,{},,1,{ =− . 

it  is the truth-membership of each data point in the training datasets with positive 

class. 

if  is the false-membership of each data point in the training datasets with negative 

class. 

1,1 ≤≤ ii ft  and 1≤+ ii ft . 

Let iii ftm −−=1 , which is the unknown part indicating the probability of each data 

point without positive class or negative class in the training datasets. 

We propose an improved fuzzy SVM based on vague sets and deduce the 

formulation as follows.  
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Where iθ  is a slack variable of im , λ  is a free parameter less than 1 which 

segments the unknown part, we process it with experiential value .To solve the 

previous optimization problem, letting the corresponding Lagrange multipliers to the 

condition be iα , iβ , iµ , iν and iτ , we construct the Lagrangian function 
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And we find the saddle point of L, where 0,0,0,0 ≥≥≥≥ iiii νµβα and 0≥iτ . These 

parameters must satisfy the following conditions 
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From the Kuhn-Tucker Theorem, the following conditions are also satisfied 
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According to (10), we obtain 
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We define E and F as  
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Apply E and F into (9) 
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From (15) and (16), we get E=F=0, and (22) be transformed into  
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Taking the difference between the sum of (15) and (16) from i=1to N, we obtain 
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Apply (24) into (23), we obtain 
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Apply (19) into (25), we obtain 
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The original classification problem can be transformed into its dual form 
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Let j

T

iii xxxxK =),( , in order to transform (27) into a quadratic programming 

problem, we let iii βαγ −= . The previous optimization becomes 
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After solving this and substituting ∑
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classification problem, we obtain the following classifier:  
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4   Experiments Results and Analysis 

4.1   Data Sets and Criteria 

We used real life home loan data to conduct the experiment and selected one thousand 

sample data from a major commercial bank of China. The attributes of these data 

consisted of the customer information and the other information of the loan 

application form. There are 16 attributes listed in Table 1.  

Table 1. Samples’ Attributes 

Index Attributes  

A01 Year of birth 

A02 Number of children 

A03 Number of other dependents 

A04 Is there a home phone 

A05 Education Level 

A06 Applicant’s Occupation 

A07 Spouse’s income 

A08 Applicant’s income 

A09 Applicant’s employment status 

A10 Residential status 

A11 Value of home 

A12 Mortgage balance outstanding 

A13 Monthly repayment of mortgage 

A14 Year of Mortgage 

A15 Outgoings on loans 

A16 Outgoings on credit cards 



In order to construct a two-class classification task, “good” customer and “bad” 

customer were taken into consideration. The “good” customer is the borrower who 

repayment on time. The “bad” customer is the one that did not pay one instalment 

over a period of three months. The “good” customer is labeled “1” and the “bad” 

customer is labeled “–1”. These data is typically from a sample of applicants who 

have been granted bank credit already. 

The estimation of loan defaults is a two-class classification task. Accuracy is the 

typical performance measure for two-class classification schemes. However, two 

learning algorithms can have the same accuracy, but the one which groups the errors 

near the decision border is the better one. 

In order to appraise the performance of the classifier, Default Accuracy and Normal 

Accuracy are selected as standard criteria. We define them as follows  

samplesdefault  total

classified samplesdefault 
AccuracyDefault =  (30) 

samples normal total

classified samples normal
Accuracy Normal =  (31) 

The advantage of the default accuracy and normal accuracy is that they are a good 

indicator of whether the errors are close to the decision border or not. Given two 

classifiers with the same accuracy, the one with high default accuracy and normal 

accuracy is the better one. This definition is equivalent to the definitions of False 

Alarm and Miss Rate in [13]. 

4.2   Generating Vague Memberships 

The key step of our experiment is to generate vague membership from the result of the 

loan classification system which is adopted in Chinese commercial banks widely. The 

loan classification system which is a risk-based approach provides a five-classification 

management on loan quality. The loans are classified into five categories, that is, pass, 

special-mention, substandard, doubtful and loss, the last three categories are 

recognized as non-performing loans (NPLs). The definitions of the five categories are 

as follow [14]. 

Pass: borrowers can honor the terms of the contracts, and there is no reason to 

doubt their ability to repay principal and interest of loans in full and on a timely basis. 

Special-mention: borrowers are still able to service the loans currently, although the 

repayment of loans might be adversely affected by some factors. 

Substandard: borrowers' ability to service loans is apparently in question, cannot 

depend on their normal business revenues to pay back the principal and interest of 

loans and certain losses might incur even when guarantees are executed. 

Doubtful: borrowers cannot pay back principal and interest of loans in full and 

significant losses will incur even when guarantees are executed. 



Loss: principal and interest of loans cannot be recovered or only a small portion can 

be recovered after taking all possible measures and resorting to necessary legal 

procedures. 

The five-category classification of loan records all status in the management 

process of loans. The special-mention category is a transitional status between 

performing loan and non-performing loan. We use the results of five-category 

classification of loan to generate the vague membership. Then the truth-membership 

of a borrower is the pass category (performing loan) in proportion to all his loans 

classifications. The false-membership of a borrower is the non-performing loan 

category (i.e. substandard, doubtful and loss) in proportion to all his loans 

classifications. And the special-mention category indicates the unknown part. 

4.3   Experiment Results   

To decrease the bias due to the choice of split between training datasets and test 

datasets, we randomly divide the original data into two sub-datasets evenly, one half 

for training and the other half for testing, this is referred to as 50-50 split experiment. 

The training dataset includes 500 samples with 120 “bad” customers and 380 “good” 

customers.  

We compare our VS-FSVM with the traditional SVM, FSVM and B-FSVM on the 

same training dataset. Then we predict the same test dataset using their classification 

model respectively. Table 2 shows the comparison of the predicting result of these 

algorithms. 

Table 2. The comparison of predicting result 

Classification Algorithm Normal Accuracy Default Accuracy Overall Accuracy 

SVM 88.95% 69.17% 84.20% 

FSVM 89.47% 70.83% 85.00% 

B-FSVM 90.26% 72.50% 86.00% 

VS-FSVM 91.84% 75.00% 87.80% 

It is obvious in Table 2 that total accuracy of VS-SVM is better than other SVMs, 

that is, the predicting accuracy can increase just 2%. Our future direction of the 

research will focus on how to improve the Default Accuracy especially in the test 

dataset. 

5   Conclusions 

In this paper, we propose an improved FSVM based on vague sets by assigning a 

truth-membership and a false-membership to each data point. And we reformulate the 

improved FSVM so that different input points can make different contributions to 

decision hyperplane. In order to verify the performance of the improved FSVM, we 



apply it to credit assessment. The experiment results show that our method is 

promising. Our future direction of the research will focus on how to improve the 

default accuracy. We believe that deeper data preprocessing and more suitable 

parameters selection will improve the performance of generalization. Extending the 

two-class classification to multi-class classification is also our future research work. 
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