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Abstract. The study resulting in this paper applied a parallel algo-
rithm based on a fourth-order compact scheme and suitable for parallel
implementation of scientific/engineering systems. The particular system
used for demonstration in the study was a time-dependendent system
solved in parallel on a 2-head-node, 224-compute-node Apple Xserve G5
multiprocessor. The use of the approximation scheme, which necessitated
discretizing in both space and time with h, space width and h; time step,
produced a linear tridiagonal, almost-Toeplitz system. The solution used
p processors with p ranging from 3 to 63. The speedups, sp, approached
the limiting value of p only when p was small but yieldd poor com-
putations errors which became progressively better as p increases. The
parallel solution is very accurate having good speedups and accuracies
but only when p is within reasonable range of values.

1 Introduction

Finite difference methods are among the commonest approximation schemes
used for numerical solution of ordinary and partial differential equations, mainly,
because of their simplicity of use and the fact that they lend themselves quite
easily to the Taylor series analysis of any incurred errors. Other approxima-
tion methods exist, and they include finite elements, finite volumes, and spectral
methods. While there are a number of problems, for example, elliptic systems,
which can be solved with low-order approximation methods (second or lower)
with reasonable accuracies, there is also a large class of problems, including those
of acoustics [1-3], and of fluid dynamics [5-7,9,13,14], the solutions of which
typically require higher order approximation solution schemes for higher levels
of accuracy.

A solution method is said to be of order A", where h is the mesh size of
the problem domain, when its truncation error varies as h™. In a second order
approximation scheme, for instance, where error ~ h?, halving the mesh size
(h) reduces the error by a factor of approximately four. Low order approxima-
tions generally require compact stencils which utilize three nodal points in any
direction. Thus 1-D, 2-D, or 3-D compact stencils require 3,3 x 3, or 3 x 3 x 3



grid nodes respectively. Any approximation method which involves grid nodes
outside those of a compact stencil is said to be non-compact. Higher order finite
difference approximations (that is, those with approximation error ~ h", where
n > 2) are possible but these methods typically require non-compact stencils,
and application of non-compact stencils at or near boundaries of the problem
domain usually requires inclusion of fictitious nodes thus complicating the result-
ing numerical formulations, and the usual consequences of those complications
include increases in the overall number of grid points as well as increases in
the bandwidths of the resulting system matrices. The latter problem, namely,
increases in the bandwidths, precludes the use of implicit methods for solution
of the resulting systems because those systems are usually not of tridiagonal
form. Lastly, non-compact approximation methods do not easily allow for ap-
proximations with non-uniform grids thus excluding solution of certain problems
notably boundary-layer, driven-cavity, and turbulent flow problems which typi-
cally involve wide ranges of space and time scales.

Approximation schemes which must retain a high accuracy without incur-
ring most of the complications of non-compact methods must of necessity be
compact, although they too must somehow deal with the problems imposed by
having to apply the stencils at or near the problem boundaries and to come up
with a numerical formulation with a high accuracy result. Gustafsson [15,16]
has demonstrated that such a compact method must have boundary closures in
which the boundary- and near-boundary points have about the same accuracy
as that of the interior points or at most one order less. Abarbanel and Cher-
tock [17] have successfully used a five-order boundary closure in their solution of
hyperbolic initial boundary value problems in 1-D and 2-D spatial domains us-
ing a sixth-order compact difference scheme. In summary, a compact differencing
scheme requires more work per grid point, but the result is higher approximation
accuracy, a few grid points to compute with, and less computer memory require-
ments to store the computed result. As a result, compact approximation schemes
are more efficient than both non-compact methods of the same order and also
than low-order solution methods in general [18-20]. As stated by Orszak [21],
at the cost of slight computational complexity, fourth-order compact schemes
can achieve results in the 5% accuracy range with approximately half the spatial
resolution in each space direction when compared with the second-order schemes.

The compact difference approximation methods that treat the approximated
function and its derivatives as unknowns at grid points are fourth-order and
they produce tridiagonal systems. These compact schemes generally fall into
two classes. The first class consists of those solution methods which are best
suited for uniform grids, and they include the Kreiss and Oliger’s approximating
scheme [18,22], and the Mehrstellen’s scheme [1]. The second class consists of
methods that allow for variable grids. These include the cubic spline methods of
Rubin and Khosla [23, 24] and the hermitian finite difference methods of Adam’s
[25,26]. Also belonging in this class are the fourth-order compact schemes for
solution of incompressible viscous flow problems the most notable of which being
the fourth-order, three-nodal stencil compact scheme of Gupta [27, 28] useful for



solution of convection diffusion equations. Gupta’s compact scheme, which does
not seem to suffer excessively from the spurious oscillatory behavior as do other
methods, has been applied by Yavneh to solve convection-diffusion problems [29],
and also by Weinan to solve unsteady viscous flow problems [30].

While over the years there have been a large number of approximating
schemes constructed for solution of many classes of scientific problems, the litera-
ture has reported relatively a few successful solution paradigms designed to fully
exploit the capabilities of modern supercomputers for efficient solution of prob-
lems with these approximating schemes. The reported paradigms all attempt
to solve complicated scientific problems in parallel harnessing the supercomput-
ing resources in the process, and, if all goes well, the result is often an efficient
solution in terms of both time (speed) and space (memory) requirements. The
earliest parallel solution methods were designed for solution of fine-grained prob-
lems, that is, problems with n & p, where n is the size of the problem and p the
number of processors (of a supercomputer), and, also, the methods were based on
high-speed solution using tridiagonal solvers. The most known of these methods
include the recursive-doubling reduction method of Stone [31] and its improved
version [32], the odd-even or cyclic reduction technique of Hockney [33, 34], and
recently, the prefiz scheme by Sun [35,36], which is a variation of the cyclic
reduction method. Each of the cited parallel solution method is capable of solv-
ing n-dimensional tridiagonal system in Olog(n) time using n processors. More
recent efforts are geared toward problem solution in various parallel computing
environments, not just fine-grained. These include the methods of Lawrie and
Sameh [37], Wang [38] designed for median- (that is, p < n) to course-grained
(that is, p € n).

The thrust of this study is to apply the Kreiss and Oliger’s fourth-order com-
pact scheme to solve in parallel a time-dependent parabolic differential equation
with Neumann boundary conditions. The focus is strictly computational. It is
not concerned with developing another solution methodology, nor with modifi-
cation of an existing one to solve any problem. Given the dearth of utilization
of supercomputing resources to solve the kinds of problems mentioned here, the
study clearly and painstakingly demonstrates the steps needed to numerically
solve a given problem in parallel on a supercomputer in full consideration of
both the inherent parallel properties of the problem and the architecture of the
supercomputer involved.

2 Kreiss and Oliger’s Fourth Order Compact Scheme

Kreiss and Oliger [18] suggested a fourth-order compact difference method in

which the first (f') and second (f") derivatives for constant mesh size (hy) are
approximated by

' D,
fn = (W) fns (1)
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Multiplying equations (1) and (2) with the respective denominators and simpli-
fying yields
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Each of the above approximations utilizes a 1-D 3-node compact stencil

{1 a 1}

where a € {4,10}. When (3) and (5) are correctly applied to approximate first
or second order partial derivatives respectively, the system

results in which ¢, cé) result from boundary conditions, and z € { f, f”}, c €
{4,10}, whereas the conventional fourth-order scheme results in systems with
larger bandwidths. A conventional fourth-order scheme approximating the same
system with, for instance,

" 1
fn= Toh (=fr—2+16fn—1 —30fn + 16 fot1 — fri2)

applies a non-compact stencil (5-node stencil:
{-1 16 —-30 16 -1} (6)

in this case).



3 Parallel Solution

There are a number of parallel algorithms for solution of system (5). The most
known among them are the cyclic reduction algorithm by Hockney, [34], the
recursive doubling by Stone [32], and the prefized method by Sun [36]. In this
study, we used the cyclic reduction method as we found this algorithm to be
very easily implementable on our supercomputing system.

A vparallel cyclic reduction, which assumes availability of p processors where
p and n (the system’s order) need not be equal, uses ! reduction levels, 1 <1 <
log2(n'). Every process, p;, has 3 4-vectors, myVec, left Vec, and right Vec, where
for any such vector (vec), vec[0] <+ d, vev[l] « e, vec[2] « f, and vec[3] + k,
where d, e, f are the row components of A and k of (5). At a reduction level [,
there is data transfer to process p; from 2 processes with ranks fromLProc and
fromRProc, and from p; to 2 processes with ranks toLProc and toRProc. The
interprocessor data transfers can be facilitated with the use of data structure:

toLproc toRproc

fromLproc| | fromRproc

Another data structure is the array D which holds rows |d[e[flk|] of A and k of
(6). In this implementation, the first row of D contains a special vector [0[1]0[0],
the second row of D contains the first row of A and of k, and so forth. Without
the first row of D containing the special vector, the inter-process data transfers
may not be correct or, if correct, at an unacceptable cost.

4 Computational Environment

The computational environment used for all parallel computations in this study
is the Bowie State University’s supercomputer facility locally dubbed Xseed. At
the core of Xseed is Mac OS X Server operating system running a cluster con-
figuration presently consisting of 2 ultradense, 1U rackmount XServe G5 servers
and 224 G5 compute nodes each of which a dual, 64-bit, 2.0 GHz processor with
2 GB RAM and local store of 80 GB capacity. The 224 G5 compute nodes are
clustered into shared-memory nodes with dual gigabit Ethernet on the mother-
board which, in combination with the high bandwidth system control, effectively
reduces contentions in both the network and i/o traffics. The 2 servers are the
XSeed’s administrative nerve center which is responsible for coordinating all
computations and data routings, as well as managing data storage. XSeed is ca-
pable of theoretical performance rate of 2.104 Tflops and has a combined work



storage space of over 6 TB.

XSeed is ideal for scientific and high performance computing as well as image
rendering operations. Each G5 processor’s superscalar, super-pipelined archi-
tecture supports up to 215 simultaneous instructions with a high-bandwidth
execution core offering over 12 discrete functional units, including dual floating-
point units and dual integer units, to process an immense number of instructions
in parallel with 64-bit precision on 64-bit wide paths! Also XSeed is fully grid-
enabled running a complete package of functioning Globus Alliance’s Globus
Toolkit middleware (version 4.0.1). Thus packed with enormous floating-point
computational muscle, plenty of memory for work space, and updated Grid in-
frastructure, XSeed is truly a distributed, self-contained, net-centric computing
environment primed to harness (and share) federated computational resources
globally for parallel solution of any type of scientific and engineering problems.

5 Application

An application of the Kreiss and Oliger’s compact difference scheme for approxi-
mation solutions was demonstrated with a parabolic partial differential equation

Ou _ 0%
ot "ox2

having an initial condition prescribed at t = 0,

0<z<3 £>0,¢>0, (7)

u(z,0) = f(z), 0<z<7, (8)

and Neumann boundary conditions (for positive k)

ou

% v—o0 - gl(oat)7 (9)
ou ~

9 . = ¢92(Z, t). (10)

To solve (7) computationally, discretization in both time and space is needed.
Discretization in time is done by performing the Taylor’s series expansion of (7)
in time to obtain

0?u?
ut =l 4 khy 8%2 ) (11)

in which n corresponds to a time level, and z a spatial location. Introducing a
spatial mesh width, h,, obtainable by dividing the given interval [0, Z] into N
sub-intervals, that is, h, = % (where N > 0 is some integral value), and also
the notations



where i =0,---,N,and j =0,1,---, then (11) can be rewritten as

0%ul,
2

wlt =wd 4+ khy (13)

z—zh

The solution of (13) involves discretizing the spatial derivative g—; with the
compact second-derivative operator provided in (2) to obtain the tridiagonal
system (5), solving the resulting system by the parallel cyclic reduction whose
code design and implementation are detailed above, substitutmg that solution
into (13), and, finally, solving the resulting system to obtain u’+ .

6 Experiments and Results

We solved (13) for case of Z = 2, ¢1(0,t) = ¢2(2,t) = 0 using 0 < fe’“ <1 (to
avoid onset of instabilities in order to focus on the numerical solutlon the ob-
jective of this study) for several h,. A solution with a given value of p required
time marching, and each time-step advance required a single compact solve in
parallel. In order to be able to compare the parallel solutions to sequential so-
lutions, we also solved (13) at the same time step, h;, using the best sequential
method, the LU decomposition:

Lg =k, (14)
Uu =g, (15)

where L and U are the lower and the upper triangular matrices respectively.
Lastly, to compare approximate solutions to the true solutions, we first solved
(7) analytically to obtain

@2n+1)(n(z - 1) o= 0-3738(2n+1)%¢
2 b)

> 1
u = 800 Z TOT 1)2003
n=0

and, second, we encoded and then solved the equation at time levels ¢ to obtain
analytical (true) results, Ugctnar- Executions were carried out with the number
of processors, p, equal to 3, 7, 15, 31, and 63. All codes — parallel cyclic reduction
and LU decomposition — were appropriately instrumented for execution param-
eters notably time. The results are given in Figure 4, Figure 5, and Figure 6
below. The parameters in the the solution figures are explained as follows:

1. P is the number of processors, n the order of the system, hence,p =n =n'—1,
n' =g

2. sp is speedup given as s, = i—; (1 < sp < p), where t; is the time it took
to execute the resulting tridiagonal system by the LU decomposition, ¢, the
time of solution of the same system with the parallel cyclic reduction with
P Processors.

3. €, is efficiency computed as €, = %” (% <e <1). .

hm

4. Given h,, the corresponding time step, hy, is computed as hy = %7.



5. Maz.E, is the mazimum relative error determined from all solutions, u,
during a system solve with p processors at a given time level. Here, E, =
Ractual “Uepproe | where Ugetual, Uapproz L€ the analytical solution and approx-

Uactugal

imate solution respectively.

ha he |p| sp ep |Mazx.E,
0.2500{0.8250| 3 | 2.9103 [0.9701| 0.072
0.2500{0.2063| 7 | 6.5727 [0.9390| 0.051
0.1250{0.0515|15(13.6581| 09105 | 0.020
0.0625(0.0129|31|27.2871|0.8802| 0.001
0.0313/0.0032|63|54.1605|0.8597| 0.000

Fig. 1. Execution results for p = 3,7,15, 31, and 63
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Fig. 2. Results for p = 3,7,15,31, and 63

7 Observations

1. The Kreiss and Oliger’s fourth order compact scheme produced very accurate
solution results only when solved with reasonably small spatial and time
steps and when the solution was within the stability regimes, that is, m,’z‘—é <

%, but inaccurate results with error as large as 10% when the steps in time

and space became large. More specifically, when h, became large (implying

N

small p because p = ;- — 1), the results at all time levels were unacceptably



poor with the worst errors occuring at h, = 0.5 or p = 3, that is, Maz.FE3 ~
10%. But as h, became small, the errors became correspondingly small until
perfect results occured at about h, = 0.0313 with p = 63, that is, Max.Eg3 ~
0%).

2. When p < 7, the speedups s, were very high approaching their limiting
values of p, but as p increased (with decreasing h;), the speedups became
smaller tending to a limiting (but acceptable) value of about 82.5%.

3. For n > 15, the parallel cyclic reduction completed reduction computation,
(that is, with every process i obtaining its final vector, , at log,n—1
levels, that is, one level short of the theoretical maximum of log, n.

Time

Fig. 3. Efficiency versus Time

8 Conclusion

1. Solution of the tridiagonal system resulting from application of the Kreiss
and Oliger’s compact appromation scheme produced very high speedups but
very inaccurate results at small values of p, and produced low speedups but
very accurate results at high value of p. The reason for this is that, although
the parallel cyclic reduction exhibits 100% load balance at every reduction
level,

(a) there is no parallelism between reduction levels, that is, level-level com-
putation is purely sequential supported by MPI_Barrier and similar
freeze commands which ensure completion of all reduction operations by
all processes at the current level before the same operations are started
at the next reduction level,



(b) even at a reduction level where computation is parallel at 100% load
balance, the interprocessor inter-communication is quite high
thus contributing to low speedups and corresponding low efficiencies.

. The time for inter-process communication (for data exchanges), tcomm, which

was quite significant when p was high, dominated the actual computation
time, tcq1c, at all reduction levels and this accounted for low speedups and
efficiencies at high p, but, at low p, t.q;c dominated t.omm, thus resulting in
high speedups but at the expense of accuracy.

. The solution methods used in this study are highly recommended for parallel

solution of time-dependent systems provided such solutions use reasonable
number of processors and appropriate steps in time and space whose range
can be determined from observations. (For the system used in the study,
solutions at 7 < p < 31 were deemed reasonable with error range of 10% <
Maz.Ey1 < 1%, speedup range of 95% < s, < 88%). On the other hand,
solutions with p < 7 yielded very inaccurate results, while solutions with
p > 31 were excessive resulting in waste of computational resources with
little gain in accuracy.)

. On account of the fact that the cyclic reduction is best suited for fine-grained

parallel solution such as the one used in this study, we conclude that the
parallel solution of problems approximated with the fourth compact scheme
would yield even better results if solved with a massively parallel processor
instead of a distributed processor as is the case in this study.
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