
Further Optimized Parallel Algorithm of Watershed
Segmentation Based on Boundary Components Graph1

Haifang Zhou1, Xuejun Yang1, Yu Tang2, Nong Xiao1

1 Institute of Computer, National University of Defense Technology, Changsha, China
2 Institute of Electronic Technology, National University of Defense Technology

{haifang_zhou, yutang18}@sina.com

Abstract. Watershed segmentation/transform is a classical method for image
segmentation in gray scale mathematical morphology. Nevertheless watershed
algorithm has strong recursive nature, so straightforward parallel one has a very
low efficiency. Firstly, the advantages and disadvantages of some existing par-
allel algorithms are analyzed. Then, a Further Optimized Parallel Watershed
Algorithm (FOPWA) is presented based on boundary components graph. As the
experiments show, FOPWA optimizes both running time and relative speedup,
and has more flexibility.

1 Introduction

Watershed segmentation/transform is a classical and effective method for image seg-
mentation in gray scale mathematical morphology. This method, with a wide perspec-
tive, has been applied successfully into some fields like remote sensing images proc-
essing of satellite and radar, biomedical applications and computer vision. However,
watershed transform is a relatively time consuming task for its low efficiency, and in
above fields, such as in remote sensing applications large size images,
e.g. 10241024 × , 30003000× or larger, are not uncommon and must be processed in
real time usually. Therefore, to study watershed algorithm easy to be paralleled is
meaningful in real applications.

2 Related Work

Meijster and Roerdink had proposed a three-stage parallel watershed algorithm (M-R
algorithm for short) in [1] based on components graph, which was designed for a
ring-architecture with shared memory. But there are some potential logic errors/limits
in M-R algorithm, as shown in [2]. Therefore, [2] pointed out an improved parallel

1 This work is partially supported by the National 863 High Technology Plan of China under

the grant No. 2002AA1Z201, 2002AA104510 and 2002AA714021, and the Grid Project
sponsored by China ministry of education under the grant No. CG2003-GA00103.

watershed algorithm (IPWA for short) for distributed memory system, which got
better performance. With the further study, we find that the adaptability of these two
algorithms is limited: 1) The parallel efficiency of two algorithms is very low when
they meet images with content of large size objects. 2) They are only designed for the
segmentation of the images containing many plateaus with large area. 3) Because of
simplified computation of plateaus, algorithms probably end up with images that
contain thick watersheds, which need post-processing.

Moga and Cramariuc etc. had given some parallel methods of watershed transform
based on definition by topographical distance [3]. We have learned from [4] that the
proposed method based on Ordered Queue (OQ for short) is derived from optimal
sequential watershed algorithm, but its scalability is quite limited. While an alterna-
tive solution, namely image integration by sequential scanning, introduced by [5],
provides an equitable work load on multiprocessors, and hence a better relative
speedup, but the absolute running time of this algorithm is very long. And then litera-
ture [6] proposed a method named rain-falling or hill-climbing simulation, which
reduced re-scanning overhead through computing lower-complete image, but intro-
duced undesirable overhead caused by the lower distance computation and preserved
data dependent character of the algorithm. In addition, these algorithms do not con-
struct watershed lines, but only labeled regions [3], needing post-processing.

3 An Optimized Parallel Method: FOPWA

Considering positive and negative contributions of above algorithms we proposed a
Further Optimized Parallel Watershed Algorithm (FOPWA) based on definition of
watershed transform by topographical distance. Topographical distance based water-
shed transform is started by detecting minima of the input data (called seed-pixels);
ordered region growing is then performed according to lower distance. Lower dis-
tance is formally defined as following:

Definition 1. Let 2ZD ⊆ , f be a digital gray value image in domain D, and G be
underlying grid of f.)(pf denotes the gray value of pixel p. Lower distance d is
defined as: 0)(=pd if p is a minimum; otherwise,)(pd equals the length of the
shortest path { }qpppp s == ,...,, 10 from p to a pixel q such that { }si ,...,2,1∈∀ ,

Gpp ii ∈−),(1 ,)()(pfqf < , and, if { })()(,1,...,2,1,1 1−=−∈∀> ii pfpfsis .
Each non-seed pixel is put into different catchments (regions) in an increasing or-

der of gray levels. This recursive label propagation is called flooding. We define a 2D
ordering relation to satisfy parallel requirement for flooding.

Definition 2. 2D ordering relation can be formulated by two conditions: Condition
1. If)}()(|)({min)(

)(
pfrfrfqf

pNr G

<=
∈

, then q is the preceding-pixel of p (also called

p is flooded by q), and)()(qLpL = . (.)L denotes the output label image. Condition 2.
If)()(qfpf = and 1)()(+= qdpd , then)()(qLpL = .Where)(pd stands for lower
distance of p with initial value ∞ ()(pd =∞), which denotes a maximum value, and

)(pNG for the set of neighboring pixels of p with respect to surrounding pattern.

We also assigned a unique label to each of boundary pixels with preceding-pixels,
which are looked as seed-pixel like minima. Consequently, based on this 2D ordering
relation, each processor can correctly and exhaustively delimit the extent of regions
crossing the local sub-domains, regardless of what is happening in other processors;
hence parallel computing could be realized. We name these additional seed-pixels as
pseudo seed-pixels. Then, we define a Boundary Components Graph (BCG) to record
the ordering relation between pseudo seed-pixel and its preceding for flooding and
merging in later steps. Note that BCG is only related to boundary pixels of each sub-
domain, not all pixels in the input image, so the size of components graph is reduced.

Definition 3. Considering the input image f as a direct valued graph G = (V, E, f),
in which V is the set of pixels in the graph, and E is the set of edges of the graph
defining the connectivity. BCG),,(**** fEVG = (ff =*) can be defined as fol-
lowing: 1) If H)(=∧∈ vLVv or)H)()(,(H)(=∧∈∧∈∃∧≠ pLvNpVppvL G ,

then ∗∈Vv . 2) ∗∈∀ Vvu, , if ,H)(H)(=∧≠ vLuL and u and v satisfies Condition 1

or Condition 2 described above, then ∗∈Evu),(. 3) ∗∈∀ Vvu, , if

∞==∧=∧=∧≠)()()()(H)(H)(** vdudvfufvLuL , then ∗∈Evu),(.
For the implementation, the global domain D of size YX × is split among N proc-

essors in sub-domains iD ; FOPWA has four stages: 1) Detecting real and pseudo
seed-pixels and building local BCGs. 2) Local flooding. We use Ordered Queue (OQ)
to realize the local watershed transform, for OQ is derived from optimal serial water-
shed algorithm that can obtain relatively shorter running time of local tasks. 3) Global
merging. We use similar process to merging components graphs as IPWA [2]. 4)
Broadcasting the merging result to each processor to updating the local results.

4 Experiments and Conclusion

0

4

8

12

16

20

24

28

1 2 4 8 16 32

N

sp
FOPWA(YH)
FOPWA(Cluster)
IPWA(YH)
IPWA(Cluster)

0
4

8
12

16

20

24

28

1 2 4 8 16 32

N

sp
FOPWA(YH)
FOPWA(Cluster)
IPWA(YH)
IPWA(Cluster)

Fig. 1. The comparison of FOPWA and IPWA in speedups. The left is the speedup curves of
two algorithms for the test image Lena with size of 512×512. The right is for the test image
Airport with size of 1024×1024

Firstly, we realized FOPWA and IPWA [2] on two parallel platforms, and tested for
various images with different size (256/512/1024/2048). Moreover, performance of

FOPWA is also compared with existing algorithms in running time and speedup. One
of the two parallel platforms is a Cluster system with 16 nodes. Another parallel plat-
form is YinHe supercomputer (YH for short), which includes 32 processors.

Fig.1 compares FOPWA with IPWA in speedup on two different platforms
(dashed curves represent speedup trend for Cluster system when number of proces-
sors is over 16). From this figure, we can draw some conclusions: 1) FOPWA outper-
forms IPWA, and has better scalability. 2) FOPWA is less data dependent. 3) The
result got from YH is better than that from Cluster for YH has better network.

FOPWA outperforms other existing parallel algorithms by combining the advan-
tages of components-graph based method and distance based method but not intro-
ducing additional overhead. Table 1 compares performance of FOPWA with some
existing parallel algorithms. As the experiments show, FOPWA optimizes both run-
ning time and relative speedup, and has more flexibility and adaptability, compared
against old methods.

Table 1. The comparison of FOPWA and other parallel algorithms in serial time and speedups
on YH. Test image is Airport with size of 1024×1024, N is the number of nodes in system.

Algorithms Serial time (s) Speedup(N=16) Speedup(N=32)
Rigid OQ-based 11.402 5.548 7.358
Sequential scanning 52.882 14.964 26.296
Rain-falling 5.958 2.877 4.532
Connected component 11.883 11.777 21.527
IPWA 1.445 9.658 11.709
FOPWA 1.312 13.299 24.876

References

1. Meijster, A., Roerdink, J. B. T. M.: A proposal for the implementation of a parallel water-
shed algorithm. In Hlavac, V., Sara, R. (eds.): Computer Analysis of Images and Patterns.
New York. (1995) 790-795.

2. Zhou, H. F., Jiang, Y. H., X.J. Yang, X. J.: An Improved Parallel Watershed Algorithm for
Distributed Memory System. In Zhou, W. L. (ed.): Proceedings of the 5th International
Conference on Algorithms and Architecture for Parallel Processing. IEEE Computer Soci-
ety. Los Alamitos (2002) 310-314.

3. Zhou, H. F., Jiang Y. H., Yang, X. J.: Researches on serial and parallel strategies of water-
shed transform. Journal of national university of defense technology. Vol. 24(6). (2002)71-
76. (in Chinese, cited by EI)

4. Moga, A. N., Viero, T., Dobrin, B. P.: Implementation of a distributed watershed algorithm.
In Serra, J., Soille, P. (eds.): Computational Imaging and Vision Mathematical Morphology
and Its Applications to Image Processing. Dordrecht, the Netherlands. (1994) 281-288

5. Moga, A. N., Viero, T., Gabbouj, M., et al.: Parallel watershed algorithm based on sequen-
tial scannings. In Pitas, I. (ed.): Proceedings 1995 IEEE Workshop on Nonlinear Signal and
Image Processing, Vol. II. Neos Marmaras, Greece. (1995) 991-994

6. Cramariuc, B., Gabbouj, M.: A parallel watershed algorithm based on rain falling simula-
tion. In Proceedings 12th European Conference on Circuit Theory and Design, Vol. 1. Is-
tanbul, Turkey. (1995) 339-342.

