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Abstract. This paper discusses the application of object-oriented and
generic programming techniques in high performance parallel computing,
then presents a new message-passing interface based on object-oriented
and generic programming techniques — GOOMPI, describes its design
and implementation issues, shows its values in designing and implement-
ing parallel algorithms or applications based on the message-passing
model through typical examples. This paper also analyzes the perfor-
mance of our GOOMPI implementation.

1 Introduction

One of the most important distinction between parallel computing and nor-
mal sequential computing is the complexity and diversity of parallel computing
models. From the view of programming, there are three main parallel computing
models — the data-parallel model, the shared-variable model and the message-
passing model [1].

The data-parallel and shared-variable models are concise and intuitive in pro-
gramming, however, they often require tight-coupled parallel computers based
on shared memory, e.g. parallel vector machines or SMPs, while it is difficult to
implement them directly and efficiently on more popular architectures based on
distributed memory, such as MPPs, COWs and SMP clusters.

The message-passing model is more intuitive and easy to implement on par-
allel computing environments based on distributed memory.

Typical message-passing libraries include the Parallel Virtual Machine (PVM)
[2] and the Message Passing Interface (MPI) [3]. Both of them can be easily im-
plemented in homogeneous or heterogeneous distributed environments, and so
became prevailing.

Parallel programs using message-passing libraries are often able to gain a
fairly more excellent performance than that using other models through elabo-
rate handcrafted optimizations on messages sending and receiving between par-
allel processes.



However, coding a parallel program based on message-passing is more diffi-
cult than that based on data-parallel or shared-variable models. It often takes
people much time to deal with the part of a program concerning with messages.
When handling only messages of primitive data types or their arrays, the effort
is still acceptable. However, the effort becomes far more considerable and the
complexity of the message-passing part of the program increases significantly
when passing complex dynamic data structures such as binary trees, graphs,
or large sparse matrices stored in orthogonal lists. It then becomes difficult to
guarantee the correctness and efficiency of the program.

Worst of all, the complexity of the message-passing part always obscures
the structure of the algorithm and the program itself. These programs tend to
fall into implementation details and lose their abstraction and genericity. It also
causes great obstacle in reading, maintaining and extending parallel programs.

In one word, it is difficult to map a parallel algorithm into a message-passing
based parallel program rapidly and intuitively. It is the problem that the paper
tries to solve.

In the last decade, object-oriented (OO) techniques gain great success in
program and software system construction. As a complement paradigm to OO,
generic programming techniques aided with inlining and template metaprogram-
ming gain genericity and extensibility through compile time parametric polymor-
phism. The C++ Standard Template Library (STL) [5] is a milestone of generic
programming techniques.

Many works have been doing on applying OO and generic programming
techniques to HPC areas, such as POOMA [6], Janus [7] and HPC++ [8], etc.
The GOOMPI presented in this paper also takes advantage of those techniques,
trying to provide programmers a unified generic message-passing interface, effec-
tively simplifying the development process of parallel programs and dramatically
improving their abstraction, genericity as well as flexibility.

The rest sections of this paper are organized as follows: in Sect. 2, a full
discussion on our GOOMPI is presented with some design policy and imple-
mentation detail; then in Sect. 3 we outline a well known matrix multiplication
example using the GOOMPI; also the performance evaluation of GOOMPI com-
pared to normal MPI is given in Sect. 4; in the last two sections, we show some
issues about the related work and provide our conclusions on what we have
experienced.

2 The Design and Implementation of GOOMPI

2.1 The Layered Structure of GOOMPI

As an attempt of applying OO and generic programming techniques to high
performance parallel computing, we developed a generic object-oriented message-
passing library — GOOMPI. It adopts MPI, a currently widely used library in
high performance parallel computing areas, as its underlying implementation
basis. By using OO and generic programming techniques, it constructs a generic



high performance message-passing framework to effectively support the transfer
of user-defined dynamic data structures of arbitrary complexity.

GOOMPI provides a complete framework for message-passing. It includes a
set of well-designed interfaces and class hierarchies, and consists of two layers —
the serialization layer and the message-passing layer.

The layered communication architecture of GOOMPI is depicted in Fig. 1.
Further explanation is presented in the following sections.
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Fig. 1. Layered Communication Architecture of GOOMPI

2.2 Message-Passing Layer

The first layer of GOOMPI, the message-passing layer, uses the Iostream Li-
brary to abstract the underlying MPI communication functions and isolate its
implementation details.

The iostream library is an important part of the C++ standard library. Its
architecture is efficient and excellent for extension.

The iostream library also separates I/O operations into two functional layers
— the formatting layer and the transferring layer. In order to effectively perform
message-passing using MPI under the architecture of iostream, we write a new
transferring layer by deriving a basic mpi buf class from std::basic streambuf.
It supports messages of both the XDR format [10] (for heterogenous environ-
ments) and native format (for homogenous environments). It follows the buffered
iostream manner, and also provides optional ability to do communication with-
out extra copies to or from buffers to make efficient large bulk of consecutive
data transfer possible. Besides improved performance, it also results in more
scalability. Unlike some implementations of MPI, our library supports transfer-
ring messages of arbitrary size due to the extensible architecture of the iostream
library, and this requirement is common in scalable high performance scientific
computing.



Besides standard-mode send and receive, MPI provides many other commu-
nication modes such as buffered mode, synchronous mode and ready mode, as
well as nonblocking communications and a variety of collective communications
(broadcast, scatter, gather, reduce, all-to-all, etc.). We choose to adopt policy-
based design strategy [11] to support these variations without code duplication or
loosing efficiency. Actual communication operations are encapsulated uniformly
in operation policies as template parameter of basic mpi buf.

GOOMPI provides several pre-defined communication operation policies:
send recv, isend recv, bcast, scatter, gather, reduce, all to all, etc. Each
policy has two member functions:

void send(const void* addresses[], std::size_t sizes[], int nplayers = 2);

void recv( void* addresses[], std::size_t sizes[], int nplayers = 2);

For example, policy send recv implements these two member functions using
MPI Send and MPI Recv, while bcast using MPI Bcast correspondingly.

Two classes mpi ostream and mpi istream derived from std::basic ostream

and std::basic istream respectively wrap up the basic mpi buf class to pro-
vide a convenient stream interface.

2.3 Serialization Layer

In order to support message-passing based on arbitrary data types, MPI does
provide a mechanism to facilitate user-defined types by using data structures
like MPI Datatype and functions such as MPI Address, MPI Type struct and
MPI Type commit. However, it is tedious and cumbersome to use. More unfortu-
nately, it still limited to manipulate simple Plain Old Data (POD) types such
as C-style structs.

We introduce necessary serialization and deserialization of any objects. That
is, when sending object of any type, the message content includes the object
memory layout which is converted into a specific stream with some format; when
receiving, the information extracted from the message forms a stream of that
format, then a copy of the original object can be easily reconstructed.

We choose the Boost Serialization Library (BSL) [9] as the implementation
basis of GOOMPI’s serialization part. BSL supports noninvasive serialization.
It can easily serialize primitive types as well as STL containers. BSL exploits
a layered design approach, taking a stream as a parameter of its archive class
to specify the actual storage and transmission of serialized objects. The archive
itself only concerns with the serialization-related issues while cares nothing about
how to store or transfer the serialized objects. This design makes it convenient
for us to combine BSL with MPI’s message-passing functionality through our
MPI streams.

GOOMPI customized two high performance archive classes, mpi oarchive

and mpi iarchive to serialize and deserialize objects of POD types as well as
non-POD types (for example, which have nontrivial constructor / destructor)
and transfer them through MPI streams. However, under homogenous environ-
ments, extra optimizations are provided for commonly used POD types such as



C style structs, arrays of POD types, and even std::vectors with POD type
elements. Especially, for large arrays and std::vectors of POD types, unneces-
sary copy operations to or from buffers are avoided. These optimizations result
in high performance and little abstraction overhead of GOOMPI programs.

2.4 Stream Style User Interface

Finally, GOOMPI provides a port class as a facade [12] incorporating all the
classes above, and exposes a concise iostream style interface for message-passing.

We borrow from OOMPI the notion of port. A port represents a communi-
cation channel between parallel processes. Any C++ objects with appropriate
serialization support or data of primitive types can be transferred as messages
through the channel.

Users of GOOMPI need not to know the internals of a port. However, one
may want to customize some of the behaviors of a port before using it.

There are three aspects of port’s communication behavior:

1. The communication operation of the port can be blocking or nonblocking,
point-to-point or collective. It can be implemented by choosing appropriate
communication policy of basic mpi buf.

2. The port can be an input-only, output-only as well as supports both input
and output.

3. The port can transfer any type of data or only messages of specific data
types, or in specific sequence.

Accurately, the last two aspects are restrictions on the behavior of a port.
Restrictions do not always mean limitations. In fact, it is helpful for detecting
logical errors of a program at compile time or runtime by imposing restrictions
on the port class. In specific cases, useless functions can be removed from a port
by the programmer from the beginning to eliminate the possibility of making
mistakes. For example, performing an input operation on a output-only port will
cause compile time error immediately.

Programmers can also choose to apply no restriction on their port classes for
more functionality or just for convenience. In the latter case, they also lose the
opportunity for the compiler to help detecting program errors earlier at compile
time.

We use policy-based method again to design the port class. There are three
policies correspondingly:

Operation Policy is the same as the operation policy of MPI streams and
basic mpi buf. It specifies blocking or nonblocking, point-to-point or collec-
tive communication operations. The default is standard mode point-to-point
operation.

Direction Policy specifies communication direction of the port to be in, out or
inout. The default is inout. Attempts to communicate in invalid direction
will be detected at compile time.



Message Type Policy specifies the allowed data types to be transferred by the
port. The allowed types can be specified conveniently using a mechanism
called Type Patterns which is developed by authors of this paper. (For ex-
ample, pattern MyClass means the port can only transfer messages of a type
named MyClass; pattern seq type(A, B, C) guarantees the port can trans-
fer messages of type A, B and C in sequence; while set type(A, derived(B))

means types A or all types derived from B. Leave it blank means any type is
allowed.

The formal definition of port is as follows:

CommChannel ::= port<OperationPolicy, DirectionPolicy,

MsgTypePolicy>

OperationPolicy ::= P2PComm | CollectiveComm

P2PComm ::= send recv | isend recv | ...

CollectiveComm ::= bcast | scatter | gather | all to all | ...

DirectionPolicy ::= inout | in | inout

MsgTypePolicy ::= TypePattern

TypePattern ::= TypeName | any type | set type(TypeList)

| seq type(TypeList) | derived(TypeName) | ...

For example, programmers can define an output port which broadcasts mes-
sages of type Matrix like this:

goompi::port<bcast, out, Matrix> p(...);

At most time, a common port can be defined as follows, if one simply wants
to use an ordinary point-to-point communication:

goompi::port<> p(...);

Such a port uses all its default polices.

2.5 Other Features of GOOMPI

Besides communication, GOOMPI also provides other useful generic components
to facilitate parallel programming:

Virtual Topology of Parallel Tasks GOOMPI presents several components
to support virtual topologies of parallel tasks. For example, class templates
mesh view, graph view and tree view represent Descartes space topologies of
any finite dimensions, ordered tree and generic graph structures respectively.
They all provide convenient functions to specify neighbors (such as the left,
right, up and down neighbors, etc.) of each task or particular task groups (for
instance a particular row, column or block of tasks). Users can also extend
existing topologies or define new topologies when necessary.

Parallel I/O Real world parallel applications always have to deal with a
large amount of data, for example, very large matrices or vectors. Storing and
retrieving such data efficiently in parallel is a practical requirement. GOOMPI
provides C++ iostream style components to support parallel I/O. Large objects
can be serialized and deserialized using GOOMPI’s parallel I/O streams.



3 Case Study: Implementing Cannon’s Algorithm for

Matrix Multiplication with GOOMPI

We choose to implement a classic parallel algorithm — the Cannon’s algorithm
for Matrix Multiplication [13] to illustrate the usage of GOOMPI. To represent
matrix data structures, we make use of the Matrix Template Library (MTL)
[20], which is an excellent C++ template library that supports a variety of
matrix representations as well as many linear algebra functionality. Owe to the
extensibility of generic programming, it is convenient to integrate MTL with
GOOMPI to effectively divide and transfer various matrices data types.

The GOOMPI program exploits a master / worker paradigm. The master
scatters matrices to all worker tasks (including itself), after SPMD style compu-
tation, the result is eventually gathered by the master. Suppose there are P ∗P

parallel tasks, torus view<2> is used for representing the 2D-torus topology of
these tasks. Source code of the master is as follows:

template <typename MatrixA, typename MatrixB, typename MatrixC>

void cannon(const MatrixA& A, const MatrixB& B, MatrixC& C) {
torus view<2> self(P, P); // global 2D-torus view of P∗P tasks

port<scatter> q(self);

port<gather> r(self);

blocked view<MatrixA> VA(A, P, P); // create blocked views of matrices

blocked view<MatrixB> VB(B, P, P);

blocked view<MatrixC> VC(C, P, P);

q << VA << VB; // scatter VA and VB

cannon worker<MatrixA, MatrixB, MatrixC>(); // act as a worker

r >> VC; // gather the result

}

The following is the source code of workers:

template <typename MatrixA, typename MatrixB, typename MatrixC>

void cannon worker() {
torus view<2> self(P, P); // global 2D-torus view of P∗P tasks

port<scatter> q(self);

port<gather> r(self);

MatrixA a; // local submatrices of A and B

MatrixB b;

q >> a >> b; // receive submatrices from master

MatrixC c(a.nrows(), a.ncols()); // local result



port<isend recv> s; // nonblocking send to avoid deadlock

if (self.i) { // initial alignment

s(self.left(self.i)) << a;

s(self.right(self.i)) >> a;

}
if (self.j) {

s(self.up(self.j)) << b;

s(self.down(self.j)) >> b;

}

for (int i = 0; i < P; i++) {
mtl::mult(a, b, c); // c += a ∗ b

s(self.left()) << a; // cyclic left shift a

s(self.right()) >> a;

s(self.up()) << b; // cyclic up shift b

s(self.down()) >> b;

}

r << c; // send back result to master

}

4 Performance Comparison of MPI and GOOMPI

We tested the performance of LAM MPI [15] and GOOMPI on a 16-node PC
Cluster connected with Ethernet. The result is presented in Fig. 2.

Fig. 2 (a),(b) and (c) show that on trasferring arrays or std::vectors of
primitive data types or POD structs using both point-to-point and collective
communication operations (such as broadcast), there is almost no abstraction
penalty. GOOMPI shows a notable performance on par with MPI. Fig. 2 (d)
suggests that GOOMPI is much faster when transferring a doubly linked list.

In fact, GOOMPI is especially good at supporting any irregular dynamic
data structures. In many situations where complex data structures can not be
well fit into primitive types or C arrays, GOOMPI allows more natural and intu-
itive representations, while corresponding MPI program, is tedious and clumsy.
For example, it is boring to reconstruct pointers in dynamic data structures
explicitly.

5 Related Work

MPI-2 [4] does have a C++ binding, unfortunately they are just simple class
wrappers of MPI C functions. It does not support full object-oriented or generic
programming paradigm.

A similar work to GOOMPI is the Object Oriented MPI (OOMPI). It is an
object-oriented approach to MPI. It supports messages composed of user-defined
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types which are derived from a common base class called OOMPI User type, with
specific data members and default constructors defined in them. This invasive
approach implies that it is impractical to pass messages based on STL containers
or classes from other existing libraries using OOMPI.

The Generic Message Passing Framework (GMP) [16] [17] is an attempt
which follows generic programming techniques to present a single message-passing
programming model for SMP clusters. The GMP provides a brand-new message-
passing library which is similar to MPI’s message-passing part, with optimiza-
tions for communications between threads within a SMP node.

6 Conclusion and Future Work

GOOMPI makes full use of object-oriented and generic programming techniques
to support passing messages based on user-defined dynamic data structures in
C++. It has many advantages:

Abstraction Programmers using GOOMPI are able to pay more attention to
the algorithms and overall structure of parallel programs, instead of running
into the boring and error-prone implementation details of message packing
/ unpacking and sending / receiving.

Extensibility By supporting noninvasive serialization of user-defined types, it
can be used in conjunction with C++ STL as well as other libraries (such
as MTL and the Boost Graph Library (BGL) [21]) easily.

Efficiency In virtue of generic programming techniques, there is almost no
overhead introduced by abstraction. Programs written in GOOMPI have a
performance on par with or even better than that of their MPI counterpart
written in languages such as C or FORTRAN.

Standard Conforming GOOMPI does not depends on language extensions. Fur-
ther, it adopts a standard iostream-style interface for message-passing. The
implementation of MPI streams and parallel I/O streams all follow the lay-
ered design strategies of standard stream classes. Hence GOOMPI is able to
support passing messages of arbitrary size.

Type Safety Message type checking policy in GOOMPI enables type checking at
both compile time and runtime. This reduces the possibility for programmers
to make mistakes on message-passing. GOOMPI programs are likely to be
more robust and less error-prone.

With the help of GOOMPI, programmers can map parallel algorithms into
high quality parallel programs intuitively, rapidly and effectively. GOOMPI is
also of help in the design of parallel algorithms.

Future work includes further enhancements and optimizations of GOOMPI.
We are considering about building a generic library and framework based on
GOOMPI to support generic parallel and distributed data structures, and facil-
itate the parallelization of existing generic libraries such as MTL, Boost.uBLAS
[18] and Blitz++ [19], etc.



We also prepared to integrate GOOMPI with a thread-level lightweight paral-
lel library called Parallel Multi-Thread Library (PMT) developed by the authors
to provide both a unified message-passing model as well as a unified data-parallel
model for aiding parallel algorithm design and implementation on different par-
allel architectures.
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