
Accurate Emulation of Wireless Sensor Networks

Hejun Wu+ Qiong Luo+ Pei Zheng* Bingsheng He+ Lionel M. Ni+

+ Department of Computer Science
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong, China

{whjnn, luo, saven, ni}@cs.ust.hk

* Department of Computer Science
Arcadia University

450 South Easton Road
Glenside, PA 19038, USA

zheng@arcadia.edu

Abstract. Wireless sensor networks (WSNs) have a wide range of useful, data-
centric applications, and major techniques involved in these applications in-
clude in-network query processing and query-informed routing. Both tech-
niques require realistic environments and detailed system feedback for devel-
opment and evaluation. Unfortunately, neither real sensor networks nor existing
simulators/emulators are suitable for this requirement. In this design paper, we
propose a distributed sensor network emulator, a Virtual Mote Network
(VMNet), to meet this requirement. We describe the system architecture, the
synchronization of the nodes and the virtual time emulation with a focus on
mechanisms that are effective for accurate emulation.

1. Introduction

Wireless sensor networks (WSNs) enable applications to obtain up-to-date informa-
tion about the physical world. This information is especially valuable for environ-
ments in which it is inefficient, difficult or dangerous for people to collect data on site
by themselves. However, such environments also make it hard to study techniques
for data-centric WSN applications in real sensor networks. Furthermore, major tech-
niques in data-centric WSNs, such as in-network query processing [8][11] and query-
informed routing [3], need a realistic development and evaluation environment with
system feedback at a suitable level of detail. In this design paper, we propose to de-
velop an accurate sensor network emulator in order to facilitate studies of techniques
for data-centric WSN applications.

Traditionally, simulators and emulators are useful tools for networking research in
that they simulate or emulate real networking protocols and provide a controllable
environment for studies. This usefulness is even greater for WSN applications, be-
cause real WSNs are in frequent upgrades and their deployment is tightly embedded

mailto:ni}@cs.ust.hk

in the physical environment. As evidence, several sensor network simulators and
emulators [9] have been developed for large-scale WSN studies.

If we focus on developing and debugging WSN applictions in a realistic environ-
ment, existing tools such as TOSSIM [7] and EmStar [4] are excellent choices. How-
ever, with the advance of data-centric WSN applications, such as environmental
monitoring and assisted living, more requirements for simulation and emulation are
posed for developing and evaluating techniques in these applications. For instance,
in-network query processing and query-informed routing, two major cross-layer tech-
niques for data-centric WSN applications, require the WSN to return information
about sensor node power consumption and response time in order to make decisions
for network routing and query processing. Evaluation of alternatives of each tech-
nique also requires this information for performance comparison. Unfortunately,
current WSN simulators/emulators are insufficient to address this need. Specifically,
an accurate emulation of timing and power consumption for node execution and
communication is missing in current WSN simulators and emulators.

Aiming at accurate emulation of a WSN for data-centric applications, we propose a
WSN emulator called a Virtual Mote Network (VMNet). A VMNet consists of vir-
tual sensor nodes connected through a virtual channel. Each virtual sensor node in
turn consists of an emulated CPU as well as emulated hardware peripherals (e.g.,
sensing units and radio frequency units). The emulated CPU executes software that
can run on real sensor nodes and reports execution time at the granularity of the emu-
lated CPU cycle. The emulated hardware peripherals generate interrupts with realistic
delays. The virtual channel is emulated through UDP (User Datagram Protocol) on
networked PCs with emulated bit errors, delays, and packet collision. Putting all
these units together, the timing information of the software under study (e.g., an in-
network query processor or a query-informed router) can be accurately emulated and
be fed back for the execution and evaluation of the software.

The remainder of this paper is structured as follows. Section 2 introduces the
background of our work. Section 3 presents the design of VMNet, including the ar-
chitecture and components. Section 4 discusses related work briefly and Section 5
concludes.

2. Background

2. 1. Terminology

The following terms are used throughout the paper:
Node and Mote: both refer to a sensor node consisting of computation, sensing,

and communication units. The two terms are used interchangeably.
Real (Target) vs. Virtual (Emulated): A real or target component is one in a real

WSN and its counterpart in VMNet is virtual or emulated. For instance, a real CPU is
in a real sensor node and a virtual CPU in a virtual mote. Similarly, we refer to the
execution time of real software being emulated as the virtual time (not the time of
executing the emulation itself).

2.2. Overview of a Target WSN

Fig. 1 shows a typical WSN. The sensor mote in the WSN is MICA2 by crossbow
[2]. We choose MICA2 as the target because it is most commonly used.

Data collecter

RS232
cable

Interface board

Sensor

gateway

Wired
network

 User node

Data proxy

cable

Sensor mote

Sink

Wired
network

 User client

Fig. 1. A Typical WSN

The WSN in Fig. 1 consists of several components, each of which performs differ-
ent functions. Table 1 lists these components and their composition. Each sensor
node in the WSN runs application software (e.g., a query processor) developed using
TinyOS [3]. The sink node acts as the root of the WSN and communicates with the
data proxy. The data proxy in turn communicates with the user client. Note that the
data proxy and the user client can be on the same PC.

Table 1. Components of a WSN

Components Composition
Sensor mote
(MICA2)

A main board (MPR410) with the Atmega 128, 8 bit, 7.3827MHz CPU and the
Chipcon CC1000, 38kb/s, CSMA radio circuit, and a sensor board (MTS300)

Sink node A main board (MPR410) and a PC interface card with a serial port
Data proxy A PC that communicates with the sink node via a serial port
User client A PC that runs the user interface program

The operation of the WSN is as follows: Use the user client to post commands and

queries. These queries are parsed by the data proxy and are disseminated via the sink
node to the network. If a mote acquires data that satisfy a query, it sends the sensory
data tuples to the data proxy through the sink node. The data proxy forwards the
result to the user client.

3. VMNet Design

Our VMNet is designed via a divide-and-conquer approach. First, we analyze the
target WSN, and divide the WSN into components. Second, we design the architec-
ture of the emulator based on the architecture of the real WSN. Third, we design each
emulated component based on its counterpart in the real WSN.

3.1. VMNet Architecture

The architecture of VMNet (Fig. 2) resembles that of a real WSN. It consists of the
virtual sink node (VM 0) and other virtual motes connected through virtual channels.
Real application software runs on the virtual motes for sensing, processing, and rout-
ing. Emulated radio signals travel on the virtual channels. Additionally, the Applica-
tion User Interface (AUI) and the Network Manager (NM) reside on VM0 for applica-
tion management (corresponds to the data proxy and the user client in the real WSN)
and network emulation management respectively.

 VM 1 VM 2 VM k

…

PC 1

 VM 0 (virtual sink)

…Virtual Channel

Virtual Channel

LAN

 Application
User Interface

Gateway

Virtual
 hardware

Network
Manager

VM m+1 VM m+2 VM m+k PC n

Real
software
Virtual

 hardware

EM

Real
software
Virtual

 hardware

EM

Real
software
Virtual

 hardware

EM

EM

Real
software
Virtual

 hardware

EM

Real
software
Virtual

 hardware

EM

Real
software
Virtual

 hardware

EM

…
Virtual Channel

VMNet is designed to be a dis
high accuracy and scalability. I
emulate the wireless network. E
program running on the LAN. F
ture that VMNet adopts has show
wireless networks.

In brief, the architecture of VM
though VMNet can only emulate
architecture makes it easy to switc

3.2. Virtual Mote

A virtual mote (VM) has three c
and the Emulation Manager (EM)

Fig. 1. VMNet architecture
tributed system in order to achieve fast emulation,
t employs a wired Local Area Network (LAN) to
ach real mote in the target WSN is emulated by a
rom our past experience [13], this parallel architec-
n high fidelity and scalability in emulating general

Net abstracts the common features of WSNs. Al-
one type of WSNs at one time, the generality of its
h to other WSNs.

omponents: the virtual hardware, the real software
. Fig. 3 shows the structure of a VM.

 Virtual Mote

Executable mote
binary codes

Virtual
Sensor
Board

Virtual
Clock

Virtual Radio
Frequency

Module

Virtual
UART

(Virtual
Sink only)

Virtual CPU

Em
ulation M

anager

Virtual
hardware

Fig. 2. Structure of a VM

The virtual hardware is the emulation of a mote’s hardware (MICA2 in this paper).
It is composed of the following units: a virtual CPU with a virtual clock, a Virtual
Radio Frequency Module (VRFM) and a virtual sensor board. In the virtual sink
node, there is a virtual UART, which emulates the serial port of the sink node. The
virtual hardware units are the same type as their corresponding real hardware. For
instance, the virtual CPU emulates the Atmega 128 CPU of MICA2 mote.

The virtual CPU and the virtual clock in a VM are critical for the accuracy of emu-
lation, because they control execution and timing. The virtual CPU parses the execu-
table binary codes of a mote and executes them. It also interacts with other virtual
hardware units via the virtual I/O ports. The virtual clock is incremented by the vir-
tual CPU per mote CPU clock cycle and records the virtual time in a VM.

The emulation manager manages mote emulation and logs the emulated actions,
the execution time of various modes and runtime status of these units.

VM 0 (the virtual sink) is different from other VMs in that it has the virtual UART
but no virtual sensor board. The difference is emulated by the gateway software,
which operates on the virtual UART and disregards the virtual sensor board.

All three components – the virtual hardware, the real application software and the
emulation manager, are separate from one another in a VM. There is a clear interface
between the three components. This design ensures the reusability of our emulator
when the target application or hardware changes. It also provides a reasonable solu-
tion to the conflict between the generality and the accuracy (specificity) of emulation.

3.3. Virtual Channel

The virtual channel generates network effects using three software modules: the bit
error module, the delay module and the collision module (shown in Fig. 4). Let us
first describe the transmission process of data on a virtual channel connected with a
VM. When outgoing bits are sent from the Virtual Radio Frequency Module (VRFM)
of the VM to the virtual channel, they pass through the three modules and stay in a

buffer (in the lower right corner of Fig. 4) for wrapping. When all bits of a packet
arrive in the buffer, the virtual channel wraps them into a packet and sends out the
packet via UDP. When an incoming UDP packet arrives at the virtual channel, it is
put into a queue (lower left of Fig. 4) and is decomposed into bits to be sent to the
VRFM of the VM via another buffer (on the left of Fig. 4).

 To VRFM From VRFM Collision signal
to VRFM

Delay

Module
Bit error
Module

Collision
Module

Bits

Control messages To/From
Network Manager (NM)

UDP packet from other
VMs via LAN

UDP packet to other
VMs via LAN

Queue

Fig. 3. Virtual Channel

The bit error module uses an experiential radio signal error data model to generate
the error rate. The bit error rate model is a table with two attributes: distance and bit
error rate, which is defined as: (number of error bits received by the receiver) / (num-
ber of total bits sent by the sender). The module randomly generates the bit error at a
rate that the table specifies.

The transmission delay module adds a delay to the virtual time of the outgoing
packet. The collision module emulates radio signal collision by performing two op-
erations: carrier sense and collision. Both operations need information about the
virtual time and the data transmission status of all VMs. This information is kept in
the Network Manager.

In the carrier sense operation, the collision module asks the network manager
whether if a sending VM can hear any VMs that are transmitting data. If so, the send-
ing VM will wait a random time defined by the network protocols. In the collision
operation, the collision module destroys the current bit to be sent on one of the two
conditions: (1) another VM is transmitting and the sender of the bit can hear that
transmitting VM, or (2) another VM is sending to the same destination as this sender.

3.4. Virtual Time

The major criterion for the accuracy of our emulation is the emulated time, or the
virtual time. Mathematic models are one way to estimate time, but it is hard to
achieve a high accuracy with simple models. In VMNet, we follow the approach of
real execution. That is, the emulator executes the real software and measures the
virtual time of the execution.

We have described the timing mechanism in the virtual CPU with a virtual clock in
Section 3.2. Moreover, the working time of hardware peripherals such as sensing
time and transmitting time are also emulated. Let us take the virtual sensor board as
an example. When the virtual sensor board receives a command from the virtual CPU,
it checks the virtual clock and after a delay (the length of delay is based on measure-

ments in real systems) sends an interruption signal to the interruption port connected
to the virtual CPU. When the virtual CPU receives the interruption signal, it executes
the sensor data interruption service program. Therefore, the virtual time together with
the interruption is accurately emulated. The timing and the interruption of RFM and
other hardware peripherals are emulated similarly.

Since the sleep mode of real motes is important for power efficiency, accurate
emulation of WSN should consider the sleep mode. After the virtual CPU executes
the “sleep” instruction, it should sleep until there is a timer interruption The VM ad-
vances its virtual clock by the sleep time, reports its status to the network manager
and waits for synchronization.

Up to this point, we have discussed time emulation for individual VMs. Because
VMs run simultaneously, synchronization is needed to ensure that the messages and
the operations of VMs are in the same order with that of the target WSN.

The synchronization procedure is as follows: At the startup time, the network man-
ager initializes its table of network status information including the total number of
VMs n and the value of the virtual clock of each VM: vt0, vt1… vtn-1. Whenever the
VMs run for a predefined interval T, which is called the synchronization interval, they
pause and report to the network manager. After every VM has reported to the net-
work manager that its virtual clock has advanced by T, the network manager sends
out a broadcast message to inform the VMs to resume running.

It is possible that when the fastest VMs (with a virtual time vt) are waiting, other
VMs may exceed the fastest VMs. This does not matter as the message order is not
affected and the exceeded time will be synchronized in next interval. In order to en-
sure correct ordering of messages, the virtual channel queues received UDP packets.
The packets are sorted by their virtual time in the ascending order. This queue
method avoids the semantic error: When a message is processed, it finds there is an-
other message in the buffer that should be processed earlier.

In summary, the virtual time is carefully emulated in VMNet for accuracy. VMNet
adopts a virtual CPU with a virtual clock for each VM to manage the timing. The
virtual hardware peripherals of a VM generate interruptions with realistic delays. The
sleep mode of a VM is considered and is gracefully handled. Synchronization of
multiple VMs is performed periodically to ensure the correctness of emulation.

4. Related Work

Previous work, including Glomosim [12], Maisie[10] and SWiMNET [1], has shown
that parallel and distributed architectures can speed up simulations. In this direction,
our effort on VMNet is an outgrowth of our previous work on a distributed wire-line
and wireless network emulation framework EMPOWER [13]. Our previous work
EMWIN [14] gives the experiences in emulating wireless networks.

In the area of sensor network simulation and emulation, UC Berkeley’s TOSSIM
[7] simulates the network at the bit level. It is useful for debugging applications but it
has not provided detailed timing information of the target. UCLA’s EmStar [4][6] is
another simulator of WSNs. It has not focused on detailed performance evaluation of
the target WSN yet.

5. Conclusions and Future Work

We have presented our design of VMNet, a distributed emulator for WSNs with accu-
rate system feedback. We are currently implementing VMNet, with a focus on the
accurate estimation of application execution time. We plan to add power consump-
tion emulation as well as mobility emulation to VMNet in the near future.

Acknowledgement

This work is part of the BLOSSOMS project [5]. Funding for this work is provided
by the Hong Kong Research Grant Council through Grants HKUST6158/03E and
HKUST6161/03E.

Reference:

[1] Azzedine Boukerche, Alessandro Fabbri. Partitioning Parallel Simulation of Wireless
Networks. The 2000 Winter Simulation Conference (WSC), 2000.

[2] Crossbow Technology, Inc. http://www.xbow.com/.
[3] Robert Castañeda, Samir R. Das. Query Localization Techniques for On-Demand Routing

Protocols in Ad Hoc Networks. Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, 1999.

[4] EmStar. http://cvs.cens.ucla.edu/emstar/.
[5] Wen Gao, Lionel M. Ni, Zhiwei Xu. BLOSSOMS: A CAS/HKUST Joint Project to Build

Lightweight Optimized Sensor Systems on a Massive Scale. The IFIP NPC'04 Workshop
on Building Intelligent Sensor Networks (BISON'04), 2004.

[6] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ramanathan,
Deborah Estrin. EmStar: a Software Environment for Developing and Deploying Wireless
Sensor Networks. USENIX, 2004.

[7] Philip Levis, Nelson Lee, Matt Welsh, David Culler. TOSSIM: accurate and scalable
simulation of entire TinyOS applications. The first international conference on Embedded
networked sensor systems, 2003.

[8] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong. The design of an
acquisitional query processor for sensor networks. SIGMOD, 2003.

[9] NS-2: The Network Simulator: http://www.isi.edu/nsnam/ns/.
[10] Joel Short, Rajive Bagrodia, Leonard Kleinrock. Mobile wireless network system simula-

tion, Wireless Networks 1, 1995.
[11] Yong Yao, Johannes Gehrke. Query Processing in Sensor Networks. CIDR 2003.
[12] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: a library for parallel simula-

tion of large-scale wireless networks. The 12th Workshop on Parallel and Distributed
Simulations (PADS), 1998.

[13] Pei Zheng, Lionel M. Ni. EMPOWER: A Network Emulator for Wireless and Wired
Networks. INFOCOM, 2003.

[14] Pei Zheng and Lionel M. Ni. EMWIN: Emulating a Mobile Wireles Network using a
Wired Network. The International Workshop on Wireless Mobile Multimedia, 2002.

