

ALiCE: A Scalable Runtime Infrastructure for

High Performance Grid Computing

Yong-Meng TEO1,2 and Xianbing WANG2

1Department of Computer Science, National University of Singapore, Singapore 117543

2Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
{teoym, wangxb}@comp.nus.edu.sg

Abstract. This paper discusses a Java-based grid computing middleware,
ALiCE, to facilitate the development and deployment of generic grid
applications on heterogeneous shared computing resources. The ALiCE
layered grid architecture comprises of a core layer that provides the basic
services for control and communication within a grid. Programming
template in the extensions layer provides a distributed shared-memory
programming abstraction that frees the grid application developer from the
intricacies of the core layer and the underlying grid system. Performance of
a distributed Data Encryption Standard (DES) key search problem on two
grid configurations is discussed.

1 Introduction

Grid computing [4, 8] is an emerging technology that enables the utilization of shared
resources distributed across multiple administrative domains, thereby providing
dependable, consistent, pervasive, and inexpensive access to high-end computational
capabilities [5] in a collaborative environment. Grids can be used to provide
computational, data, application, information services, and consequently, knowledge
services, to the end users, which can either be a human or a process.

Grid computing projects can be hierarchically categorized as integrated grid
systems, application(s)-driven efforts and middleware [1]. NetSolve [3] is one
example of an integrated grid system. It is a client/server application designed to
solve computational science problems in a wide-area distributed environment. A
NetSolve client communicates, using Matlab or the Web, with the server, which can
adopt any scientific package in the computational kernel. The European DataGrid
[12] is a highly distinguished instance of an application-driven grid effort. Its
objective is to develop a grid dedicated to the analysis of large volumes of data
obtained from scientific experiments, and to establish productive collaborations
between scientific groups based in different geographical locations. Middlewares
developed for grid computing include Globus [6], Legion [11]. The Globus
metacomputing toolkit attempts to facilitate the construction of computational grids
by providing a metacomputing abstract machine: a set of loosely coupled basic
services that can be used to implement higher-level components and applications.
Globus is realigning its toolkit with the emerging OGSA grid standard [7]. Legion is
a metacomputing toolkit that treats all hardware and software components in the grid

as objects that are able to communicate with each other through method invocations.
Like Globus, Legion pledges to provide users with the vision of a single virtual
machine.

This paper presents ALiCE (Adaptive and scaLable Internet-based Computing
Engine), a grid computing core middleware designed for secure, reliable and efficient
execution of distributed applications on any Java-compatible platform. Our main
design goal is to provide developers of grid applications with a user-friendly
programming environment that does away with the hassle of implementing the grid
infrastructure, thus enabling them to concentrate solely on their application problems.
The middleware encapsulates services for compute and data grids, resource
scheduling and allocation, and facilitates application development with a
straightforward programming template [15, 16].

The remainder of this paper is structured as follows. Section 2 describes the design
of ALiCE including its architecture and runtime system. Section 3 discusses the
ALiCE template-based distributed shared-memory programming model. Section 4
evaluates the performance of ALiCE using a key search problem. Our concluding
remarks are in Section 5.

2 System Design

2.1 The Objective of ALiCE

Several projects, such as Globus and Legion, attempt to provide users with the vision
of a single abstract machine for computing by the provision of core/user-level
middleware encapsulating fundamental services for inter-entity communications, task
scheduling and management of resources. Likewise, ALiCE is a portable middleware
designed for developing and deploying general-purpose grid applications and
application programming models. However, unlike Globus toolkit which is a
collection of grid tools, ALiCE is a grid system.

ALiCE is designed to meet a number of design goals. ALiCE achieves flexibility
and scalability through its capability to support the execution of multiple applications
concurrently and the presence of multiple clients within the grid. ALiCE enables grid
applications deployment on all operating systems and hardware platforms due to its
implementation in the platform independent Java language, unlike systems such as
Condor [9], which is C-based and executes only on WinNT and Unix platforms.
ALiCE also offers an API to achieve generic runtime infrastructure support, allowing
the deployment of any distributed application: this is a major feature a middleware
has to provide, which distinguishes itself from application-driven efforts that are
problem-specific, like SETI@Home [14].

2.2 Architecture

The AliCE grid architecture as shown in Figure 1 comprises of three constituent
layers, ALiCE Core, ALiCE Extensions and ALiCE Applications and Toolkits, built
upon a set of Java technologies and operating on a grid fabric. The ALiCE system is
written in Java and implemented using Java technologies including Sun

Microsystems’ JiniTM and JavaSpacesTM [13] for resource discovery services and
object communications within a grid. It also works with GigaSpacesTM [10], an
industrial implementation of JavaSpaces.

Grid Fabric

JVM, JiniTM, JavaSpacesTM, GigaSpacesTM, JNI, RMI

Compute Grid
Services

Data Grid
Services

Monitoring and
Accounting

Object Network
Transport Architecture

Security
Infrastructure

Programming
Template

Runtime
Support

Data Services

Java
Technologies

DES
Key
Search

Ray
Tracer

Satellite Image
Processing

Biosequence
Comparison

ALiCE
Core

ALiCE
Extensions

ALiCE
Applications
& Toolkits

Figure 1: ALiCE Layered Grid Architecture

The ALiCE core layer encompasses the basic services used to develop grids.
Compute Grid Services include algorithms for resource management, discovery and
allocation, as well as the scheduling of compute tasks. Data Grid Services are
responsible for the management of data accessed during computation, locating the
target data within the grid and ensuring multiple copy updates where applicable. The
security service is concerned with maintaining the confidentiality of information
within each node and detecting malicious code. Object communication is performed
via our Object Network Communication Architecture that coordinates the transfer of
information-encapsulated objects within the grid. Besides these grid foundation
services, a monitoring and accounting service is also included.

The ALiCE extensions layer encompasses the ALiCE runtime support infrastructure
for application execution and provides the user with a distributed-shared memory
programming template for developing grid applications at an abstract level. Runtime
support modules are provided for difficult programming languages and machine
platforms. Advanced data services are also introduced to enable users to customize
the means in which their application will handle data, and this is especially useful in
problems that work on uniquely formatted data, such as data retrieved from
specialized databases and in the physical and life sciences. This is the layer that
application developers will work with.

The ALiCE applications and toolkits layer encompasses the various grid
applications and programming models that are developed using ALiCE programming
template and it is the only layer visible to ALiCE application users.

2.3 Runtime System

Figure 2 shows ALiCE runtime system. It adopts a three-tiered architecture,
comprising of three main types of entities: consumer, producer and resource broker,
as described in the following:

Producer Consumer

Consumer/
Producer

Consumer/
Producer

Consumer Producer

Resource
Broker

Resource
Broker

Data
Server

Task Farm
Manager
(Java/C –

Sparc Solaris)

Task Farm
Manager
(Java/C –

Intel Solaris)

Task Farm
Manager
(Java/C –

Intel Linux)

Task Farm
Manager
(Java/C –

Intel Windows)

Internet / LAN

Data
Server

Figure 2: ALiCE Runtime System

• Consumer. This submits applications to the ALiCE grid system. It can be any
machine within the grid running the ALiCE consumer/producer components. It is
responsible for collecting results for the current application run, returned by the
tasks executed at the producers, and is also the point from which new protocols and
new runtime supports can be added to the grid system.

• Resource broker. This is the core of the grid system and deals with resource and
process management. It has a scheduler that performs both application and task
scheduling. Application scheduling helps to ensure that each ALiCE application is
able to complete execution in a reasonable turnaround time, and is not constrained
by the workload in the grid where multiple applications can execute concurrently.
Task scheduling coordinates the dissemination of compute tasks, thereby
controlling the utilization of the producers. The default task scheduling algorithm
adopted in ALiCE is eager scheduling [2].

• Producer. This is run on a machine that volunteers its cycles to run ALiCE
applications. It receives tasks from a resource broker in the form of serialized live
objects, dynamically loads the objects and executes the encapsulated tasks. The
result of each task is returned to the consumer that submitted the application. A
producer and a consumer can be run concurrently on the same machine.

• Task Farm Manager. ALiCE applications are initiated by the Task Farm Manager
and the tasks generated are then scheduled by the resource broker and executed by
the producers. The task farm manager is separated from the resource broker for
two principal reasons. Firstly, ALiCE supports non-Java applications that are

usually platform-dependent, and the resource broker may not be situated on a
suitable platform to run the task generation codes of these applications. Secondly,
for reasons of security and fault tolerant the execution of alien code submitted by
consumers is isolated from the resource broker.

3 Grid Programming

ALiCE adopts the TaskGenerator-ResultCollector programming model. This model
comprises of four main components: TaskGenerator, Task, Result and
ResultCollector. The consumer first submits the application to the grid system. The
TaskGenerator running at a task farm manager machine generates a pool of Tasks
belonging to the application. These Tasks are then scheduled for execution by the
resource broker and the producers download the tasks from the task pool. The results
of the individual executions at the producers are returned to the resource broker as
Result object. The ResultCollector, initiated at the consumer to support visualization
and monitoring of data collects all Result objects from the resource broker.

The template abstracts methods for generating tasks and retrieving results in
ALiCE, leaving the programmers with only the task of filling in the task
specifications. The Java classes comprising the ALiCE programming template are:
a. TaskGenerator. This is run on a task farm manager machine and allows tasks to be

generated for scheduling by the resource broker. It provides a method process that
generates tasks for the application. The programmer merely needs to specify the
circumstances under which tasks are to be generated in the main method.

b. Task. This is run on a producer machine, and it specifies the parallel execution
routine at the producer. The programmer has to fill in only the execute method
with the task execution routine.

c. Result. This models a result object that is returned from the execution of a task. It
is a generic object, and can contain as many user-specified attributes and methods,
thus permitting the representation of results in the form of any data structure that
are serializable.

d. ResultCollector. This is run on a consumer machine, and handles user data input
for an application and the visualization of results thereafter. It provides a method
collectResult that retrieves a Result object from the resource broker. The
programmer has to specify the visualization components and control in the collect
method.

4 Performance Evaluation

We have developed several distributed applications using ALiCE. These include life
science applications such as biosequence comparison and progressive Multiple
Sequence Alignment [16], satellite image processing [15], distributed equation solver,
etc. In this paper, we present the results of the DES (Data Encryption Standard) key
search [18]. DES key search is a mathematical problem, involving the use of a brute
force method to identify a selected encryption key in a given key space. A DES key
consists of 56 bits that are randomly generated for searching, and 8 bits for error

detection. In the algorithm, a randomly selected key, K, is used to encrypt a known
string into a ciphertext. To identify K, every key in the key space is used to encrypt
the same known string. If the encrypted string for a certain key matches with the
ciphertext, then the algorithm converges and the value of K is returned. This problem
requires immense computational power as it involves exhaustive search in a
potentially huge key space.

The test environment consists of a homogeneous cluster and a heterogeneous
cluster with all nodes running RedHat Linux. The 64-node homogeneous cluster
(Cluster I) consists of dual processors Intel Xeon 1.4GHz processors with 1GB of
memory. The nodes are connected by a Myrinet network. The 24-node heterogeneous
cluster (Cluster II) consists of sixteen nodes Pentium II 400MHz with 256MB of
RAM, and eight nodes Pentium III 866MHz with 256MB of RAM. These nodes are
connected via 100Mbps Ethernet switch.

Our performance metric is the execution time to search the entire key space. The
sequential execution time grows exponentially with increasing key sizes. The DES
key problem can be partitioned into varying number of tasks with a task size
measured by the number of keys and its execution time can be estimated using the
time from the sequential run. Table 1 shows the task characteristics for varying task
sizes and problem sizes. The table was used to select an appropriate task size for the
experiments to be carried out in the two grid configurations.

32-bit Key 36-bit Key 40-bit Key
Est. Time/Task

(secs)
est. time/task

(secs)
est. time/task

(secs)

task size

(keys)
no.
of

tasks cluster I cluster II

no. of
tasks cluster I

no. of
tasks cluster I

5,000,000 859 20.8 32.9 13,744 20.8 219,902 430.3
10,000,000 429 41.1 65.4 6,872 43.4 109,951 862.4
30,000,000 143 122.9 196.6 2,291 127.8 36,650 2587.7
50,000,000 86 201.9 322.0 1,374 211.4 21,990 4314.3

100,000,000 43 395.4 641.2 687 420.1 10,995 8629.5

Table 1: Estimated Task Execution Times for Varying Task Sizes
For our experiments conducted, we selected a task size of 50 million keys per task

and a problem size of 36-bit keys for Cluster I and 32-bit keys for Cluster II. Table 2
shows the results for 4 to 32 producer nodes. The execution time for key search
reduces significantly with increasing number of nodes, resulting in greater speedup.

No. of Producers Cluster I
(36-bit Key)

Cluster II
(32-bit Key)

1 (Est. Sequential) 78 hr 23 min 8 hr 43 min
4 23 hr 36 min 3 hr 43 min
8 11 hr 6 min 2 hr 7 min
10 8 hr 34 min 1 hr 42 min
12 7 hr 21 min 1 hr 26 min
16 5 hr 11 min 1 hr 7 min
32 2 hr 29 min -

Table 2: Execution Time for Varying Number of Producer Nodes

We define speedup as Ts/Tp, where Ts is the execution time of the sequential
program and Tp is the execution time of the derived parallel program on p processors.
As shown in Figure 5, a speedup of approximately 32 is attained for key size 36-bits
on Cluster I and 8 for 32-bits on Cluster II. We consider these results highly
encouraging, although the performance of key search needs to be further evaluated
with more key space sizes and nodes. The effects of using other scheduling
algorithms in the resource broker must also be studied, as it may result in different
overheads to the execution time.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

No. of Producers

Sp
ee

du
p

Figure 3: Speedup vs Varying Number of Producers

5 Conclusions and Further Works

We discussed the design and implementation of the Java-based ALiCE grid system.
The runtime system comprises of consumers, producers and resource broker. Parallel
grid applications are written using programming template that supports the
distributed-shared memory programming model. We presented the performance of
ALiCE using the DES key search problem. The result shows that a homogeneous
cluster yields greater speedup than on a heterogeneous cluster for the same task size.
A homogeneous cluster generally has a better load balance than a heterogeneous
cluster which is made up of different platforms and capabilities.

Much work still needs to be done to transform ALiCE into a comprehensive grid
computing infrastructure. We are in the process of integrating new resource
scheduling techniques and load-balancing mechanisms into the ALiCE core layer to
reduce the overhead in running applications [17]. Task migration, pre-emption and
check-pointing mechanisms are being incorporated to improve the reliability and
fault-tolerance ability of the system.

References

1. Baker, M., Buyya, R. and Laforenza, D., Grids and Grid Technologies for Wide-Area

Distributed Computing, International Journal of Software: Practice and Experience
(SPE), 32(15), Wiley Press, USA, November 2002.

2. Baratloo. A, Karaul. M, Kedem. Z and Wyckoff. P, Charlotte: Metacomputing on the
Web, Proceedings of the 9th International Conference on Parallel and Distributed
Computing Systems, 1996.

3. Casanova, H. and Dongarra, J., NetSolve: A Network Server for Solving Computational
Science Problems, International Journal of Supercomputing Applications and High
Performance Computing, 11(3), 1997.

4. De Roure, D., Baker, M. A., Jennings, N. R. and Shadbolt, N. R., The Evolution of the
Grid, Research Agenda, UK National eScience Center, 2002.

5. Foster, I., Computational Grids, Morgan Kaufmann Publishers, 1998.
6. Foster. I and Kesselman. C, Globus: A Metacomputing Infrastructure Toolkit,

International Journal of Supercomputing Applications, 11(2), pp 115-128, 1997.
7. Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S., The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration, Proceedings of
CGF4, February 2002, http://www.globus.org/research/papers/ogsa.pdf.

8. Foster, I., Kesselman, C. and Tuecke, S., The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15(3), 2001.

9. Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S., Condor-G: A Computation
Management Agent for Multi-Institutional Grids, Journal of Cluster Computing, 5, pp.
237-246, 2002.

10. GigaSpaces Platform White Paper, GigaSpaces Technologies, Ltd., February 2002.
11. Grimshaw, A. and Wulf, W., The Legion Vision of a Worldwide Virtual Computer,

Communications of the ACM, 40(1), January 1997.
12. Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. and Stockinger, K., Data

Management in an International Data Grid Project, Proceedings of the 1st IEEE/ACM
International Workshop on Grid Computing (GRID2000), Bangalore, India, pp. 17-20,
December 2000.

13. Hupfer, S., The Nuts and Bolts of Compiling and Running JavaSpaces Programs, Java
Developer Connection, Sun Microsystems, Inc., 2000.

14. SETI@Home: Search for Extraterrestrial Intelligence at Home,
http://setiathome.ssl.berkeley.edu.

15. Teo., Y.M., S.C. Tay and J.P. Gozalijo, Geo-rectification of Satellite Images using Grid
Computing, Proceedings of the International Parallel & Distributed Processing
Symposium, IEEE Computer Society Press, Nice, France, April 2003.

16. Teo Y.M. and Ng Y.K., Progressive Multiple Biosequence Alignments on the ALiCE
Grid, Proceeding of the 6th International Conference on High Performance Computing for
Computational Science, Springer Lecture Notes in Computer Science Series, xx, Spain,
June 28-30, 2004 (accepted for publication).

17. Teo Y.M., X. Wang, J.P. Gozali, A Compensation-based Scheduling Scheme for Grid
Computing, Proceedings of the 7th International Conference on High Performance
Computing, IEEE Computer Society Press, Tokyo, Japan, July 2004.

18. Wiener, M., Efficient DES Key Search, Practical Cryptography for Data Internetworks,
William Stallings, IEEE Computer Society Press, pp. 31-79, 1996.

