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Abstract. Because transactions in Grid applications often have dead-
lines, effectively processing real-time transactions in Grid services presents
a challenging task. Although real-time transaction techniques have been
well studied in databases, they can not be directly applied to the Grid ap-
plications due to the characteristics of Grid services. In this paper3, we
propose an effective model and corresponding coordination algorithms
to handle real-time transactions for Grid services. The model can intelli-
gently discover required Grid services to process specified sub-transactions
at runtime, and invoke the algorithms to coordinate these services to
satisfy the transactional and real-time requirements, without users in-
volvement in the complex process. We use a Petri net to validate the
model and algorithms.

1 Introduction

One objective of developing a service Grid is to provide users with transparent
services and hide the complex process from them. The technology for processing
a real-time transaction is a key to determine whether the service Grid can be
widely accepted in commercial use because many Grid applications have time
restrictions and transactional requirements. The real-time transaction for Grid
services [1] differs from conventional real-time database transactions because (a)
Grid services are loosely coupled, and (b) Grid services can dynamically join and
leave the Grid. Therefore, it is important to investigate the real-time transaction
technology in the Grid service environment.

The deadline of a real-time transaction specifies the time by which the trans-
action must complete or else undesirable results may occur. Based on the strict-
ness of deadlines, real-time transactions for Grid services can be classified into
three types, similar to those in the traditional distributed systems [2].

– Hard real-time transaction. This is the strictest real-time transaction. If these
transactions miss their deadlines, there are catastrophic consequences.

3 This paper is supported by 973 project of China(No.2002CB312002), and grand
project of the Science and Technology Commission of Shanghai Municipal-
ity(No.03dz15027).
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– Firm real-time transaction. It is of no value to complete a firm real-time
transaction after its deadline but catastrophic results will not occur if a firm
real-time transaction misses its deadline.

– Soft real-time transaction. Satisfaction of the deadline is primarily the per-
formance goal. Unlike a firm real-time transaction, however, there still are
some benefits for completing a soft real-time transaction after its deadline.

In this paper, we focus on the soft and firm real-time transactions. Our moti-
vation is to provide a model, with the key component of the real-time transaction
service (GridRTS) so application programmers can use GridRTS to easily ma-
terialize real-time applications.

2 Related Work

To process a transaction in a distributed environment, a common agreement is
generally achieved by negotiations between a coordinator and the participants.
DTP(Distributed Transaction Processing)[3] is a widely accepted model in dis-
tributed transaction processing. It defines three kinds of roles (Application Pro-
gram, Transaction Manager and Resource Manager) and two kinds of interfaces
(TX interface between Application Program and Transaction Manager, and XA
interface between Transaction Manager and Resource Manager). However, DTP
does not support the real-time transaction.

The real-time transaction schemes have heavily been researched in the database
area. Abbott [4] presented a new group of algorithms for scheduling real-time
transactions that produce serializable schedules. A model was proposed for schedul-
ing transactions with deadlines on a single processor disk resident database sys-
tem. The scheduling algorithms have four components: a policy for managing
overloads, a policy for assigning priorities to tasks, a concurrency control mech-
anism, and a policy for scheduling I/O requests. Some real-time transaction
scheduling algotirhms were proposed in [5], which employ a hybrid approach,
i.e., a combination of both pessimistic and optimistic approaches. These proto-
cols make use of a new conflict resolution scheme called dynamic adjustment of
serialization order, which supports priority-driven scheduling, and avoids unnec-
essary aborts.

This paper extends these previous results to the Grid service environment by
providing the GridRTS with a set of interfaces for Grid application programmers.

3 Real-Time Transaction Model

The real-time transaction model we present here is based on the Globus Toolkit
3. The core component GridRTS, as shown in Fig. 1, consists of the following:

– Service Discovery. It discovers the required Grid services that can complete
the sub-tasks for a real-time transaction.
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Fig. 1. The real-time Grid transaction model

– Deadline Calculation. It calculates deadlines of (sub)transactions to coordi-
nate these activities.

– Coordinator or Participant. It is dynamically created by the scheduler of
GridRTS and lives until the end of a global transaction. The scheduler of
GridRTS creates a coordinator or a participant when it receives a request to
initiate a global transaction or perform a sub-transaction.

– Scheduler. It takes charge of scheduling above modules.
– Interfaces. The OGSA interfaces are responsible for service management such

as creating a transient Grid service instance while the TX interfaces are used
to manage transactions.
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Fig. 2. A simple real-time Grid transaction

Definition 1. A real-time transaction is a 6-tuple={T, D, S, R, DL, P},
where T is the set of sub-transactions and each sub-transaction Ti is completed
by several alternative functional services; D is the set of data operated by the
real-time transaction; S is the state set; R is the set of relationships between
(sub)transactions, defined as R={AND, OR, Before, After}; DL is the set of
deadlines; and P is the priority set.
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The AND relationship means that all the sub-transactions Ti of a global
transaction T must be completed before their deadlines d(Ti), i.e., T=T1 AND
T2 AND. . . AND Tm. Each sub-transaction Ti is performed by n alternative
functional services. The OR relationship means that Ti is completed if any Tij

finishes before the deadline of Ti, i.e., Ti = Ti1 OR Ti2 OR . . . OR Tin (see Fig.
2). Before and After specify the execution order between sub-transactions.
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Fig. 3. The execution flow of the real-time Grid transaction.

4 Coordination of the Real-Time Grid Transaction

4.1 The Process of the Real-Time Grid Transaction

In the Grid service environment, a typical real-time transaction includes the
following steps, as shown in Fig. 3.

– Step 1: GridRTS initiates a global transaction on behalf of a real-time Grid
application, discovers and selects required Grid services to serve as partici-
pants, using the service discovery module as described in [6].

– Step 2: The scheduler creates a coordinator and broadcasts the Coordination-
Context (CC) messages to all selected remote participants, that are created
locally and return Response messages to the coordinator.

– Step 3: The created coordinator and participants interact to control the
transaction execution, including the correct completion and failure recovery.
The detail is described in the following subsection.
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4.2 Coordination Algorithms

As described above, a sub-transaction is completed by a set of alternative func-
tional services from an alternative functional service group (AFSG). The mem-
bers of the AFSG execute the same sub-task in parallel. If one member of the
AFSG can complete successfully and reports a Committable message, the AFSG
is considered committable and other members are aborted.

In the preparation phase, each alternative functional service executes a spec-
ified sub-task in its private work area (PWA). On receipt of the Abort message,
the service rollbacks the operations taken previously, by releasing the PWA. In
the commit phase, the Commit message notifies the participants that have re-
ported Committable messages to the coordinator. These participants are called
committable participants and actually commit sub-transactions (see Fig. 4).

Algorithm of Coordinator

Input:service references of all functional
alternative services Si and d(T)

Output:result of T or failure
{

for all Si in all AFSGs
send Prepare messages to them;

end for
while (t≤ d(T)){

wait and record incoming messages;
for each AFSG
if (receive a Committable)

send Abort to others in this AFSG;
end for
if (all AFSGs receive Committable)

send Commit to committable
Participants;

else
send Rollback to them;

} }

(a) Coordinator algorithm

Algorithm of Participant

Input: d(Ti)
Output: result of Ti or failure
{ while (t≤ d(Ti)) {

wait & record incoming messages;
if (receive a Prepare){
execute sub-task in PWA;
if (successfully)
report Committable;

else { report Uncommittable;
rollback; } }

Case (receive a message)
Commit: {
actually commit sub-transaction;
send Committed; }

Abort:
rollback and send Aborted;

Rollback:
rollback and send Rollbacked;

EndCase } }

(b) Participant algorithm

Fig. 4. Coordination algorithms of the real-time Grid transaction

Fig. 5 illustrates the state transformation diagram of the real-time Grid trans-
action. The solid rectangles indicate the states of both the coordinator and
participants. The Dashed rectangle denotes the state of participants. The trans-
action enters Prepared state only when the coordinator receives a Committable
message from each AFSG before the deadline d(T). Otherwise, the coordinator
sends Rollback messages to undo the effect produced by the previous operations.
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Fig. 5. The state transformation diagram of the real-time Grid transaction

5 Algorithm Validation

5.1 Modeling Algorithms with Petri Net

A Petri net is an abstract and formal modelling tool. It models systems’ events,
conditions and the relationships among them. The occurrence of these events
may change the state of the system, causing some previous conditions to cease
holding and other conditions to begin to hold [8]. In this work we model the coor-
dination algorithms with a Petri net to verify their correctness. In the model, the
transitions indicate actions taken by participants, and the places represent the
states of the coordinator and/or participants or the receipt of the coordination
messages from the coordinator.

Assume that a real-time Grid transaction consists of two sub-transactions
and each sub-transaction is completed by two Grid services. We use PI1, PI2

and PII1, PII2 to represent the first and second AFSGs respectively. Without
losing the generality, we let PI1 and PII1 first return Committable messages and
finally commit while PI2 and PII2 are aborted. The Petri Net model RTPNM of
this real-time transaction is depicted in Fig.6, where PI1 and PII1 are illustrated
by S1, and PI2 and PII2 by S2. The weights of the arcs indicate the number of
changed tokens whenever a firing happens (i.e. added or removed).

5.2 Analysis of the RTPNM

Let M=(M1, M2,. . . , M13) be a marking, where Mi is the number of tokens in
place Si. The RTPNM has two initial markings:

– M0s=(2,2,4,0,0,2,0,0,0,2,0,0,0), when PI1 and PII1 commit while PI2 and
PII2 are aborted, and
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Fig. 6. The Petri net model of the real-time Grid transaction(RTPNM)

– M0f=(2,2,4,0,0,0,0,0,0,0,0,4,0), when at least one AFSG can not prepare for
commit, resulting in all four services are rolled back.

The Petri net model can analyze the behavioral properties, which depend on
the initial marking, including reachability, boundedness, liveness, coverability,
reversibility, persistence and so on. For a bounded Petri net, however, the cover-
ability tree is called the reachability tree and all above problems can be solved
by the reachability tree [7]. Peterson [8] also pointed out that in Petri nets, many
questions can often be reduced to the reachability problem. In this paper, we
focus on the boundedness and reachability using the reachability tree, which is
not illustrated here because it is too large. By analysis of the reachability tree
of the RTPNM, we can draw following conclusions.

Theorem 1. RTPNM is bounded.
Proof: A Petri net (N, M0) is said to be k-bounded or simply bounded if

the number of tokens in each place does not exceed a finite number k for any
marking reachable from the initial marking, i.e., Mi ≤ k for every place Si and
every marking M∈R(M0)[7], where M0 is an initial marking and R(M0) is the set
of all possible markings reachable from the M0. By inspection of the reachability
tree of the RTPNM, we have found that ω (represent an arbitrarily large value)
does not occur anywhere, and the number of tokens in each place is no more
than 4. Therefore, the RTPNM is bounded and k is 4.

Theorem 2. RTPNM is L1-live.
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Proof: A transition is L1-live if it can be fired at least once in some firing
sequences. A Petri net is L1-live if all its transitions are L1-live. For a bounded
Petri net, the reachability tree contains all possible markings. After inspecting
the reachability tree of the bounded RTPNM, we have found that every marking
is reachable and every transition Ti (1 ≤ i ≤ 9) can be fired at least once from
M0s or M0f . Therefore, the RTPNM is L1-live.

Theorem 2 indicates that the RTPNM is a deadlock-free as long as the firing
starts with M0s or M0f . Therefore, the coordination algorithms are correct.

6 Conclusions and Future Works

We have presented a real-time Grid transaction model. Its core component
GridRTS can intelligently discover required Grid services as participants to per-
form specified sub-transactions, and coordinate multiple Grid services to achieve
real-time and transactional properties. Using the Petri net tool, moreover, we
have validated the correctness of the coordination algorithms, whether a real-
time transaction is successful, starting with M0s, or failed, beginning with M0f .

In our future work, we will add a security mechanism to enable it to adapt
to the actual commercial environment.
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