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Abstract. This paper proposes a DC-mesh network that allows request-
ing nodes to be put into clusters while the requests are sent to a target
node, as well as is easy to layout on an LSI chip. To organize the DC-
mesh, we use the partitioning in the word space based on the Hamming
code [1]. We introduce an index scheme, (parity-value,information-value),
in the word space, and map it onto a 4-D (dimensional) mesh so that the
Hamming distance between the words in each partition is preserved in
the Manhattan distance between the corresponding nodes on the mesh;
two of the dimensions are contracted for easy wiring. The resultant DC-
mesh consists of a number of local 2-D meshes and a single global 2-D
mesh; all processing nodes linked to one local mesh are connected to one
node of the global mesh via a bus to compensate for the contraction.
A subset of the nodes in a partition organizes a dynamic cluster. The
diameter equals the greater of the diameters of local and global meshes.

1 Introduction

To reduce communication latency in multiprocessors, a cache hierarchy in a static
cluster, of which member nodes are fixed in hardware, is a popular technique.
However, the static cluster cannot adapt efficiently to the change of communica-
tion patterns, due to the contention on per-cluster resources such as the directory
for cache coherence, and because of the complexity of cache protocols.

For hypercube-connected systems, a dynamic cluster can be organized of
which member nodes are determined during the requests are sent to the target
node [2], exploiting the partitioning of the n-bit word space based on the n-
bit Hamming code [1]; one cluster consists of a subset of nodes in a partition.
No per-cluster resource is required for the clustering. The distance between the
representative and another nodes in each cluster is less than three.

The hypercube, however, needs long wires to layout, that will lead to an
unacceptably long signal-delay in a future LSI chip [3]. This paper addresses such
networks that need no long wires, but also can produce dynamic clusters. As a
network with such properties, we propose a DC-mesh (Dynamically Clustering
mesh). To organize the mesh, we map the partitions in the word space [1] onto
a high-dimensional mesh so that the Hamming distance in the word space is
preserved in the Manhattan distance on the mesh as completely as possible.



We start with a 2-D (dimensional) array of the words indexed by their parity
and information values. With a reflected Gray code sequence, we map the array
onto a 4-D mesh, but contract two of the dimensions for easy layout. This leads
to multiple local 2-D meshes and a single global 2-D mesh that are disconnected
with each other. To obtain the DC-mesh, we connect all processing nodes linked
to a local mesh together with one node of the global mesh via a bus.

Related work: Commercial and research systems adopt static clusters:
STiNG [4] and SGI Origin [5] use the ring and an extended hypercube, re-
spectively. The Stanford Dash is configured into the mesh [6]. A research chip,
Hydra [7], has 4 processors and exploits two buses between their caches. A chip
reconfigurable for several types of applications includes 64 processing nodes, that
are connected with each other by the mesh [8].

The Ψ -cube [1] can produce dynamic clusters since it is organized through
recursive partitioning based on the Hamming code. But this network will be
unacceptable in an LSI chip due to its long buses, though it is much easier to
wire than the hypercube. It is possible to organize dynamic clusters in multistage
networks if each network switch has a directory [9]. Dynamic clusters are also
organized by freezing the memory blocks in a specified cache and allowing the
other caches to access the frozen blocks with no cache coherence [10].

A few methods based on the Hamming code and/or other linear codes have
been reported to map the resources such as I/O processors onto the hypercube
so that each node is adjacent to at least one resource [11] or a specified number
of resources [12, 13]. However, those methods exploit none of the properties of
Hamming codes exploited in our partitioning.

In the rest of the paper, Section 2 describes the properties of partitions
[1]. Section 3 organizes the DC-mesh, and describes the routing method for
clustering. Section 4 summarizes the paper and discusses future research.

2 Properties of the Partitions

This section describes the properties of Hamming code-based partitions that are
used to organize the DC-mesh and dynamic clusters; for the detail, see [1].

A codeword c of the n-bit Hamming code ψ(n, k) has p-bit parity for k-bit
information, where the p is the smallest integer that satisfies (2p − 1) ≥ n, and
k + p = n. Assuming no or a single-bit error in a received word w, the syndrome
ε = w ·Ht

n indicates the erroneous bit position if ε 6= 0, or no error otherwise,
where Ht

n is the transpose of the parity-check matrix Hn for ψ(n, k).
For partitioning, we exploit not only single-bit errors, but also detectable

double-bit errors for which ε > n. Then, of a pair of erroneous bit positions
(d, f) (d + f = ε, d < f), we fix position f equal to 2p−1; so d = ε ⊕ f . The
number Nd of detectable double-bit errors is equal to (2p − 1− n).

The error vector eε for syndrome ε has bit(s) of 1 at position(s) s (= ε) or
(d, f) (d+f = ε), and bits of 0 in the other positions. Let Tc denote the partition
represented by word c, and put a word w with syndrome ε into partition Tc,
where c = w ⊕ eε and ⊕ is the exOR operation. Then the n-bit word space is



partitioned into 2k partitions each of 2p words. The Hamming distance between
the leader (i.e., the representative) word c and word w is less than 3.

We produce multiple suits of codewords from the original suit S0 of codewords
for the parity-check matrix Hn. Then the suits organize another set of partitions
for the word space, i.e., 2p suits each of 2k (code) words. Partitioned with any
suit, the 2p words in each obtained partition are those in different (2p) suits. Thus
every word belongs to one of the 2p partitions each obtained with a separate suit,
and is the leader when partitioned with the suit including the word.

To avoid traffic congestion on a single leader when clustering the requests for
a target node t (see Section 3), we send the request from a requesting node s to
one (`) of its 2p leaders (each in a separate suit). This routing is based on the
following property: Let S3t be the suit including a word t, and assume that a
word ` is included in both suit S3t and partition Ts. Then word ` is unique and
is obtained by ` = s⊕ eε, where ε is the syndrome for s⊕ t with suit S0.

3 DC-meshes

This section presents an indexed word space, the mapping from the space to the
node-address space of the DC-mesh, and its structure and routing method.

3.1 Indexed Word Space

We assign the index (i, j) to the word, denoted by wi,j , of which parity and
information parts have values i and j, respectively; then an array of 2p rows and
2k columns is organized. We denote the ith row and jth column by Pi and Ij .
Let ψ-neighbors of a word wi,j be the non-leaders in the partition Twi,j

. Recall
that Nd number of double-bit error words have incorrect bits in positions (d, f).
Let d′ denote the position d in the parity part, and Nd′ refer to the number of
double-bit error words with erroneous positions (d′, f). Then,

Theorem 1. Of the ψ-neighbors of word wi,j, k words are in row Pi, (p + Nd′)
words are in column Ij, and (Nd − Nd′) words are at the cross-points of row
Pi⊕ef

and columns Ij⊕ed
(d ∈ information-part), i.e., words wi⊕ef ,j⊕ed

.

Proof. Of the single-bit error words of word wi,j , k words have each an error in
an information bit, so those words are in row Pi. Likewise, p words each with an
error at a parity position are located in column Ij . Moreover, of the double-bit
error words, Nd′ words each with errors at positions (d′, f) are in column Ij , so
a total of (p + Nd′) words are in the Ij . Since (Nd −Nd′) number of double-bit
error words each have a pair (d, f) (d ∈ information-part) of error positions,
those words are located in the cross-points of row Pi⊕ef

and columns Ij⊕ed
.

3.2 Structure of the DC-meshes

The parity size p does not vary so much (equals 3 or 4) for up to the n of 15,
so we map each column Ij onto one local 2-D mesh, i.e., a basic block of the



DC-mesh. Let node (i, j) be the node on which word wi,j is mapped. In parallel
with this mapping, we map each row Pi (0 ≤ i < 2p) onto a 2-D mesh, so that it
consists of the nodes (i, j) (j = 0, . . . , 2k − 1) each of different local meshes for
columns Ij . Then a 4-D mesh is obtained.

Since a 4-D mesh is generally difficult to layout, we contract the 2p number
of 2-D meshes for rows into a separate 2-D mesh, called global mesh, that is
produced by contracting all 2p nodes (i, j) (i = 0, . . . , 2p − 1) in the local mesh
for each column Ij into a single node, denoted by ∗j, of the global mesh. Then
we obtain 2k local meshes for the columns and one global mesh for the rows;
note that these meshes have no connection with each other.

The DC-mesh is organized as follows: We connect one processing node to a
node of a local mesh by a direct link, and all processing nodes connected with the
local mesh for Ij together to node ∗j of the global mesh by a bus. Moreover, to
preserve the ψ-neighbor relation of the word space on the DC-mesh as completely
as possible, we exploit the Gray code as the mapping function (see Definition
1) in the word-to-node mapping described above, since this code allows the
adjacency relation in the word space to be preserved on the mesh [14].

Let i(r1) and i(c1) be the upper r1 bits and the lower c1 (r1 + c1 = p) bits
of index i. Likewise, the upper r2, middle c2, and lower d2 (r2 + c2 + d2 = k)
bits of index j are denoted by j(r2), j(c2), and j(d2), where d2 equals (n − 8)
if n > 8 or 0 otherwise, and keeps the size of global mesh small, i.e., less than
or equal to 4 × 4. Let ∗(j/2d2) denote the set of (words in the) 2d2 columns of
which indices j are the same in the r2-bit and c2-bit portions, but are different
from each other in the d2-bit portion. Indices (xg, yg) and (x`, y`) are used for
the nodes in the global mesh Mg and the local mesh M `

xg,yg,zg
, respectively. We

denote the mth code in the sequence of len-bit Gray codes by G(m, len).

Definition 1. (Mapping Method) We map word wi,j in column Ij on the node
(x`, y`) of the local 2r1 × 2c1 mesh M `

xg,yg,zg
, and map the set ∗(j/2d2) of 2d2

columns on the node (xg, yg) of the global 2r2 × 2c2 mesh Mg, where x` =
G−1(i(r1), r1), y` = G−1(i(c1), c1), xg = G−1(j(r2), r2), yg = G−1(j(c2), c2),
zg = j(d2), and G−1 is the inverse of G.

The mapping when n = 6 (and hence, k = p = 3) is shown in Fig. 1. A
mesh node is shown by the rectangle, outside of which the node index is shown
(only for M `

0,0 and Mg, for space). The two-digit integer ij for M ` or ∗j for Mg

inside the node represents the index, (i, j) or ∗(j/2d2) (2d2 = 1, in this case), of
the word or column-set mapped on the node. Each column Ij is mapped onto
a 2 × 4 M ` (r1 = 1 and c1 = 2). Word w5,0 (i = 5) in column I0, for instance,
is mapped on node (G−1(5(r1), r1), G−1(5(c1), c1)) = (1, 1) of M `

0,0. The 2 × 4
Mg (r2 = 1 and c2 = 2) for rows is obtained by mapping the set ∗j of a single
column (since d2 = 0) onto node (G−1(j(r2), r2), G−1(j(c2), c2)). For example,
column ∗3 is mapped on node (0, 2) of Mg.

The mapping when n = 10 (so p = 4 and k = 6) is shown in Fig. 2. In this
case, r1 = c1 = 2 and r2 = c2 = d2 = 2, so both M ` and Mg are of 4×4; one M `

is shown by the rectangle. Indices xg and yg for M ` meshes (and hence, of the Mg



nodes) are shown in the left-most and upper-most parts. Since 2d2 = 4, the set
∗(j/4) of four columns, denoted by ∗(j/4)zg (zg = 0, . . . , 3) in the M ` box (j/4 is
expressed by a hexadecimal number), are mapped on the node ∗(j/4) with index
(G−1(j(r2), r2), G−1(j(c2), c2)) of the Mg; this leads to the quintuplet of four
M `s with indices (G−1(j(r2), r2), G−1(j(c2), c2), zg) (zg = 0, . . . , 3) and the Mg

node. Index zg (shown in the parentheses near the two M `s in two quintuplets,
for space) of M ` equals 0, 1, 2, and 3 respectively for the upper-left, upper-right,
lower-left, and lower-right meshes in each quintuplet. To increase the bandwidth
in Mg, adjacent nodes of the Mg are connected by four (= 2d2) links.
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Fig. 1. The 64-node DC-mesh.
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Fig. 2. The 1k-node DC-mesh.



3.3 Routing and Clustering in the DC-mesh

Assume a source and a target addresses, ((xg(s), yg(s), zg(s)), (x`(s), y`(s))) and
((xg(t), yg(t), zg(t)), (x`(t), y`(t))), of a massage in the DC-mesh. Then the message
is sent according to the following XY-routing:

Definition 2. (Routing Method) The message is sent to the target in the lo-
cal mesh M `

xg(s),yg(s),zg(s)
if the global indices of the source and target are the

same; (xg(s), yg(s), zg(s)) = (xg(t), yg(t), zg(t)). Otherwise, it is first sent to node
(xg(s), yg(s)) of the global mesh Mg via the local bus zg(s) of the source, next to
node (xg(t), yg(t)) on the Mg if xg(s) 6= xg(t) or yg(s) 6= yg(t) (this step is not
required if xg(s) = xg(t) and yg(s) = yg(t)), last to the target (x`(t), y`(t)) in the
local mesh M `

xg(t),yg(t),zg(t)
via the target’s local bus zg(t).

Theorem 2. The Manhattan distance required for a message transfer equals
|x`(s) − x`(t)| + |y`(s) − y`(t)| if (xg(s), yg(s), zg(s)) = (xg(t), yg(t), zg(t)), |xg(s) −
xg(t)|+ |yg(s) − yg(t)| if xg(s) 6= xg(t) or yg(s) 6= yg(t), or 0 otherwise.

Proof. This is clear since the message is sent via the local mesh in the first case,
through the global network in the second case, and via the local buses otherwise,
assuming that the connection, such as a point-to-point link and a bus, between
a network node and a processing node is not counted in the distance.

Thus the diameter of DC-mesh is equal to the greater of the diameters of
local and global meshes. For the clustering, we use the value of word wi,j mapped
on node (i, j) as its address. The word value is easy to obtain by i = G(x`, r1) ◦
G(y`, c1), and j = G(xg, r2)◦G(yg, c2)◦zg, where ◦ is concatenation. A dynamic
cluster is produced of a subset of the nodes in a partition. Let Cx be a dynamic
cluster produced from the partition Tx represented by node x; note that node x
may not be in the Cx, but we say that it is represented by node x. Recall that
S3t denotes the suit of words that includes word t. Then,

Theorem 3. (Dynamic Clustering) If a node s requesting for a service from a
target node t sends the request to node ` = s ⊕ eε included in both partition Ts

and suit S3t, then node s is put into the cluster C`, where ε is the syndrome for
s⊕ t with suit S0. Moreover, node s is put into different clusters, C`1 and C`2 ,
for separate targets, t1 and t2, if they are in different suits, S3t1 and S3t2 .

Proof. There is a unique node ` included in both partition Ts and suit S3t (see
Section 2). Since all requesting nodes send their requests to one of the nodes in
suit S3t, those nodes are partitioned into clusters . Particularly, node s is put
into cluster C`. For different target nodes, t1 and t2, such that S3t1 6= S3t2 , node
s belongs to separate clusters, C`1 and C`2 , because leader nodes, `1 (= s⊕ eε1)
and `2 (= s⊕ eε2), are in different suits, S3t1 and S3t2 , where ε1 and ε2 are the
syndromes for s⊕ t1 and s⊕ t2 both with suit S0.

The Hamming distance between node s and leader ` is less than 3 since
s ∈ C` ⊆ T` (or ` ∈ Ts). The type of a request sent from leader ` to target t and



its issue timing depend on the applications. For instance, leader ` relays the first
received request to the target for cache coherence, or produces a request after
receiving all requests and sends it to the target for barrier synchronization.

Last we describes how the ψ-neighbor relation is preserved in the partitions
(and clusters) produced on the DC-mesh. We denote the Hamming and Man-
hattan distances between indexes i and i′ by HD(i, i′) and MD(i, i′).

Theorem 4. (Preservation of the ψ-Neighbor Relation) The ψ-neighbor relation
in the partitions of the word space is almost preserved in the partitions on the
DC-mesh. Strictly, the Hamming distance of 1 in the word space is preserved in
the Manhattan distance on the mesh, while the Hamming distance of 2 is mapped
to the Manhattan distance greater than 0.

Proof. Let’s consider the ψ-neighbors of node (i, j). Then the (p + Nd′) num-
ber of ψ-neighbors are in the M ` for column Ij (Theorem 1). Each of the p
nodes has an index (i′, j) (for a single-bit error in the parity part), and hence,
HD(i, i′) between the nodes (i, j) and (i′, j) equals one. So MD(i, i′) = 1 for
those node, owing to the mapping function G. Likewise, each of the Nd′ number
of ψ-neighbors has an index (i′′, j) (for an error in double bits both on parity
positions), so that HD(i, i′′) = 2. Generally, MD(i, i′′) ≥ 2 even with the map-
ping function G (though MD(i, i′′) = 2 for the mesh of which size is less than
or equal to 4× 4 such as shown in Figs. 1 and 2). Since each of the k number of
ψ-neighbors has an index (i, j′) (for a single-bit error in the information part),
it is in the M ` for column Ij′ . So the distance HD(j, j′) of 1 is preserved in
the distance MD(j, j′) because the message is then sent from node ∗j to node
∗j′ on the Mg. Each of the (Nd − Nd′) number of nodes has an index (i′, j′)
(for an error in double bits, one of which is in the information part). Then
the HD between nodes (i, j) and (i′, j′) equals HD(i, i′) + HD(j, j′) = 2, but
MD(i, i′) + MD(j, j′) = 1 since MD(j, j′) = 1 and MD(i, i′) = 0; the latter is
the distance from node ∗j′ of the Mg to node (i′, j′) via the bus.

4 Conclusions

We have proposed the DC-mesh for the dynamic clustering of nodes, as well as
for easy layout on an LSI chip, exploiting the properties of partitioning based on
the Hamming code. We first arranged the word space into an array so that the
word with the parity value i and the information value j has index (i, j). Next,
we mapped the indexed word space onto the node space of a 4-D (dimensional)
mesh, according to the inverse of Gray code. Last, we contracted two dimensions
of the obtained mesh for an easy layout.

The resultant DC-mesh consists of multiple local 2-D meshes and a single
global 2-D mesh; each local mesh is connected to a node of the global mesh by a
bus to compensate for the contracted dimentions. The diameter of the DC-mesh
is equal to the maximum of the diameters of local and global meshes.

A dynamic cluster for a service in a target node is organized in a partition
if its member node sends a request to its leader node, that is determined by



the addresses of the member and target nodes. Since the effective number of
dimensions of the DC-mesh is greater than 2, the Hamming distance, that is less
than 3, between the leader and non-leader words in each partition of the word
space is almost preserved in the Manhattan distance between the corrsponding
nodes on the DC-mesh.

To increase the bandwidth between the local and global meshes, we can
exploit multiple buses and hence, multiple global meshes, leading to a fat DC-
mesh. Another approach to DC networks is to connect the nodes in each partition
with each other by a single bus, leading to a bused fat-hypercube (fat due to the
connections corresponding to double-bit errors). In any case, we need to evaluate
the performance of these DC networks by simulation with real applications.
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