Layer Allocation Algorithms in Layered
Peer-to-peer Streaming

Yajie Liu, Wenhua Dou, Zhifeng Liu

School of Computer Science,
National University of Defense Technology, ChangSha, 410073, China
liu_lyj@hotmail.com

Abstract. In layered peer-to-peer streaming, as the bandwidth and
data availability (number of layers received) of each peer node are con-
strained and heterogeneous, the media server can still become overloaded,
and the streaming qualities of the receiving nodes may also be con-
strained for the limited number of supplying peers. This paper identifies
these issues and presents two layer allocation algorithms, which aim at
the two scenarios of the available bandwidth between the media server
and the receiving node, to reach either or two of the goals: 1) minimize
the resource consumption of the media server, 2) maximize the stream-
ing qualities of the receiving nodes. Simulation results demonstrate the
efficiencies of the proposed algorithms.

1 Introductions

Peer-to-peer streaming is cost-effective for it can capitalize the resources of peer
nodes to provide service to other receivers. In general, there exist three prop-
erties on peers: 1) peer’s outbound bandwidth or the bandwidth it willing to
contribute is limited, there always need multiple supplying peers cooperate to
serve a requesting node, 2) different peer nodes can receive and process different
levels of streaming qualities, which means their data availabilities as supplying
peers are also heterogeneous and constrained, 3) peers’ inbound and outbound
bandwidths are also heterogeneous. Layered peer-to-peer streaming has the po-
tential to address the issues of heterogeneities, but under it there also exist some
factors such as the available outbound bandwidths of peers are less than their
inbound bandwidths, the number of supplying peers is limited to the receiver
sometimes, the data availabilities(number of layers received) are constrained and
so on, these factors can lead two results, 1) the media streaming server can still
become overloaded when the system is in large scale, 2) the receiver’s streaming
quality may also be constrained with limited heterogeneous supplying nodes.
We identify these issues and present a layer allocation framework which con-
tains two layer allocation algorithms. Concerning the available bandwidth be-
tween the media server and a receiver, there exist two scenarios, 1) sufficient
available bandwidth, which means all the expected layers of the receiver can
be solely provided by the media server, and a layer allocation algorithm is pre-
sented to minimize the resource consumption of the media server while satis-
fying the streaming quality of the receiver, 2) insufficient available bandwidth,

which means the receiver’s expected layers can not solely be provided by the
media server, and another layer allocation algorithm is presented to maximize
the streaming quality of the receiver. Either of the algorithms is executed on the
receiver side, and we only focus on the situation that a receiver has one or more
candidate supplying peer nodes besides the media server, otherwise the receiver’s
streaming quality will only be determined by the available bandwidth between
the server and the receiver, here we don’t discuss it for the simplicity. In addi-
tion, we suppose that each peer node can cache all the layers that it has received
and each receiving node can identify the available bandwidths between it and
the candidate supplier nodes, and these available bandwidths keep unchanged
without the failures of the supplier nodes.

There has been related work on layered peer-to-peer streaming. For example,
[1] proposed a framework for quality adaptive playback of layered media stream-
ing, the data allocation granularity of it was based on data packets, and ours is
based on layers. To our knowledge, the most closely related work is [2], and the
main differences between it and this paper include, 1) this paper presents an im-
proved layer allocation algorithmin compares to [2], in the scenario of sufficient
and with the assumption that the layer rates are heterogeneous; 2) in addition,
this paper discusses and formalizes the problem in the scenario of insufficient
which is not mentioned in [2], and present a heuristic layer allocation algorithm.

2 System Model and Layer Allocation Algorithms

Let p denote a receiving node, pyp denote the media server, Iy, s, ..., [; denote
the layers of the stream that p will request, with [; as the base layer and others
as the enhancement layers, these layers are accumulative, i.e., [; can be only
decoded if layers [through [;_; are available. Let r; denote the streaming rate of
l; and the layer rates are heterogeneous, L = {l, la, ..., I} (m < 1) denote the
expected layer set that p expects to receive according to its inbound bandwidth
and the layer rates. Let P = {p1, p2, ..., pn} denote the candidate supplying
peer node set of p, b(p;, p) (0 < j < n) denote the available bandwidth between
p; and p, a; denote the number of layers that p; has cached, z; ; denote whether
l; will be provided by pj, if will then assigned to 1 otherwise assigned to 0. Let
L(p;) denote a subset of L where the layers are provided by p;.

2.1 The Scenario of Sufficient

In this scenario, the goal of the layer allocation problem is to maximally save the
resource consumption of the server. We can formalize this problem as follows:

m n
Mazximiz E E Tij*T (1)
i=1 j=1

Subject to Zw” =1, i=1,2,....,m (2)
§=0

Zwi7jri Sb(pjap)a .]:17 27 e, (3)
i=1
wi7]~*i§a]~.i:1,2,...,m,j:1,2,...,n (4)

Formulation (1) indicates that the goal is to maximally allocate the expected
layers to the peer set P. Equation (2) indicates each layer can only be allocated
to a candidate supplier. Inequation (3) indicates the sum rate of the layers that
allocated to a peer node can not exceed the available bandwidth between the
peer node and p. Inequality (4) indicates the layers that a peer can provide can
not exceed what it has cached.

From the formulations (1)-(4) we can see that this optimal allocation prob-
lem belongs to the integer programming (IP) problems, it is NP-Hard for these
constraints especially each variable x; ; must be 0 or 1. Here we present an ap-
proximation algorithm for this problem which includes three steps: 1) relax the
integrality of each z; ;, and thus make the IP problem become a linear program-
ming (LP) problem, 2) solve the LP problem by a maximum flow algorithm on a
constructed directed graph, 3) adjust the flow value on the graph until each z; ;
becomes 0 or 1. Next we will describe this approximation algorithm in details.

We first relax the integrality of each variable z; ; and make this optimization
problem become a LP problem. As the dimension of the matrix that correspond-
ing to the LP problem’s constraints is large, here we don’t try to solve it using
the traditional simplex or dual-simplex algorithms, but convert it to a maximum
flow problem on a directed graph G(V, E). G(V, E) is constructed as follows: the
vertex set V' = LUPU({s, t} where s is the source, t is the sink, L and P keep the
meanings mentioned above; for each [;, direct an arc from s to [;, its capacity is
assigned r;; for each I; and each pj, if p; has cached I; and b(p;, p) is not less than
ri, then direct an arc e(l;, p;) with capacity r; from [; to p;; for each p;, direct an
arc form p; to ¢, its capacity is assigned b(p;,p). From G(V, E)’s construction,
we can conclude that the maximum sum rate of the layers that allocated to the
peers in P can not exceed the maximum flow value through G(V, E).

Definition 1. To any arc e(l;, p;) that belongs to {e(l;,p;)|1 <i<m, 1<
Jj <n} of G(V,E), if the flow value on e(l;,p;) equals to r; or 0, then call this
arc an integral arc, otherwise a fractional arc.

After constructing the directed graph, the next step of the algorithm is to
calculate the maximum flow on G(V, E), here we use the classical algorithm
MPM [3] to calculate the maximum flow and let w(l;,p;) denote the flow value
on e(l;,p;). After this calculation each variable z; ; is assigned to w(l;,p;)/r;.
If z; ; equals to 1, then add I; to the set L(p;). If each arc of {e(l;,p;)|1 <i <
m, 1 <j <n}isintegral at this time, then end this algorithm for it has got an
optimal allocation result; otherwise further adjust the flow on G(V, E) as follows.

Construct a edge-induced subgraph G(V',E') of G(V,E), G(V',E’) is in-
duced by those fractional arcs from the arc set {e(l;,p;)|1 <i<m, 1<j<n}
of G(V, E), all parameters on these arcs are kept unchanged in the construction.

Definition 2. To any vertex that belonging to P of G(V',E"), if a vertex’s
in-degree equals to 1, then call this vertex a singleton vertesz.

Repeat the following substeps until all the arcs of G(V', E') are removed: if
there does not exist any singleton vertex, then adjust the flow according to the
rounding rule 1, else adjust the flow according to the rounding rule 2.

(&) d<¢ (b) §>¢

Fig. 1. The flow adjustment on G(V', E")

Rounding rule 1: Ignore the edge directions of G(V', E') and find a longest
path on G(V', E’). As at this time there does not exist any singleton vertex,
the two end vertices of the longest path must belong to L, otherwise leads a
contradiction. Suppose the two end vertices of the longest path are [; and [,
denote the longest path as I; ~ [;. Let ¢ denote the minimum flow value of all
the arcs comprised in I; ~ [}, e(l;,p,) denote the arc whose flow value equals
to 6 on l; ~ ;. Let € denote the minimum remaining capacity of all the arcs
comprised in I; ~ 1, and e(ly,py) denote the arc whose remaining capacity
equals to € on l; ~ l;. Execute either the following branches on l; ~ I;: (i) If
0 < e, adjust the flow as illustrated in Fig.1(a), we can see that the flow value
on the arc e(l;,p,) will become zero, which means at least an arc (e(l;,py))
will become an integral arc after this type adjustment; (ii) if § > ¢, adjust the
flow as illustrated in Fig.1(b), we can see that the flow value on the arc e(lg, py)
will equal to its capacity, which means at least an arc (e(lx, py)) will become an
integral arc after this type adjustment. At last remove some arcs of G(V’, E') as
follows: to each arc (suppose e(ly,py)) of the path I; ~ [}, if its flow value equals
to zero, then remove it from G(V', E'); if its flow value equals to its capacity,
then add I, to L(p,), remove all the arcs that associated with [,. We can see
after the above adjustments, the flow value through each p;(1 < j < n) keeps
unchanged, the flow value on each arc does not exceed its capacity.

Rounding rule 2: Select a existent singleton vertex on G(V', E'), suppose it
is pj. p;’s single neighbor vertex must belong to L, suppose it is [;. Remove all
arcs that associated with I;, add I; to L(p;), construct a subset of L(p;) that the
layer’s sum rate of this subset does not exceed the available bandwidth b(p;, p)
but is nearest to b(p;,p), substitute this subset for L(p;).

The maximum flow on G(V, E) can be computed in 0(|V]?) time. At least
an arc will be removed in either the rounding rules, and there at most exist

m *n arcs on G(V' E'), so this layer allocation algorithm is a polynomial time
algorithm.

2.2 The Scenario of Insufficient

In this scenario, as the receiving node’s expected layers can not solely be supplied
by the media server, the goal of the layer allocation algorithm is to maximize
the streaming quality of the receiving node. Considering that a layer [; can only
be decoded if layers [; through [;_; are available, we first define a special layer
subset of L before formalize the allocation goal of this scenario.

Definition 3. Suppose S is a subset of L, we call S a prefived-subset of L if
and only if the following condition satisfied: if layer 1;(1 < i < m) belongs to S,
then all the layer(s) {I;]1 < j < i} must also belong to S.

Suppose S is a prefixed-subset of L to be constructed, the allocation goal can

be formalized as

Magzimize |S)| (5)
Subject to Zx” =1,4i:; €S (6)
j=0
Z Ti,jTi S b(pjap)a .7 = 07 27 ey (7)
w:l; €S
wi7j*i§aj.i:1,2,...,m, j:1,2,...,n (8)

Formulation (5) indicates the goal is to maximize the size of S, which means to
maximize the receiver’s streaming quality by optimally allocating layers to the
candidate supplying node set P U {po}. Equation (6) indicates each layer in S
must be allocated to a node of P U {py}. The meanings of the formulation (7)
and (8) are similar to the meanings of the formulation (3) and (4).

Theorem 1. The optimal layer allocation problem in the scenario of insufficient
is NP-Hard.

Proof: Consider a decision problem that corresponds to the optimal layer
allocation problem in the scenario of insufficient. Regard any prefixed-subset
L' = {l1,ls, .., 1 }(k < m) of L as an item set, each item [; is associated with
a size r;; regard the candidate supplier set P U {pp} as a bin set, each bin
p;(0 < j < n) is associated with a capacity b(p;,p); for the simplicity let a; =
as = ... = a, = m which means any item is allowed to be placed into any bin.
Then the decision problem can be described as: if all the items of L' can be
put into the bin set P U {po} while the sum size of the item(s) that placed into
each bin does not exceed the bin’s capacity. As the 3-partition problem can be
regarded as a special case of this decision problem and the 3-partition problem
is NP-Complete [6], so the above decision problem is NP-Complete, and the
corresponding optimal layer allocation problem is NP-Hard.

Here we propose an heuristic algorithm (Fig.2) for this optimization problem,
its main idea is to allocate the layers from the base layer to the enhancement

layers in turn and allocate each layer to a best suitable supplier. The algorithm’s
complexity is 0(mn).

1. let U @, L(p;) « @ (0 < j < mn);
2. for i <1 tom do
3. for j < 0 ton do

4. if a;j > ¢ and b(pj,p) > ri then U + U + {p; };

5. end for

6. if |U| =0 then

7. return ¢ — 1 and exit; /* ¢ — 1 is the number of allocated layers */
8. if |U| =1 then /* suppose U equals to {p;}*/

9. L(p;) < L(p;) +{li}, b(pj,p) < b(p;j,p) —ri;

10. if |[U| > 1 then

11. select the supplier(s) that with the least available bandwidth to p ;
12. if multiple such suppliers exist, then

13. select a supplier which cached the least number of the layers;
14. if the selected supplier is p; then

15. L(p;) <= L(p;) +{l:}, b(pj,p) < b(pj,p) —7i ;

16. let U « &;

17. end for

Fig. 2. The heuristic algorithm to maximize a receiver’s streaming quality

2.3 Fault-tolerance Mechanism

Node departures can happen frequently in peer-to-peer community. Our fault-
tolerance mechanism that adapts to this can be described as follows: when a
receiving node detects that a supplying node has ceased to provide the media
data, it sends a request to the media server and tries to get the missing layers
from it; if the receiving node’s request can be satisfied by the media server, then
it will get the missing layers from the media server; otherwise, on the side of the
receiving node the algorithm that described in Section 2.2 will be executed to
reallocate the layers to the candidate suppliers thus try to maximize the receiving
node’s streaming quality.

3 Simulation Results

In this section, we present simulation results to evaluate the performance of
the proposed algorithms. A 6-layered encoding mode whose layer rates are from
64kbps to 192kbps and a 10-layered encoding mode whose layers rates are from
64kbps to 128kbps are used in the simulation, both with the sum rate 768kbps
(denoted as Rp). The topology used in the simulation has three levels: the first
two levels are generated using the GT-ITM Generator [5] which contain 400

routers, and 1000 host nodes are attached to the stub routers as the lowest level.
The media server is attached to a transit router. The link bandwidths of the first
level are assigned 100M, and are chosen in the range [IM, 10M] of the second
level. The available inbound bandwidths of nodes are distributed in the range
[128K, 1M], the outbound bandwidth that each node willing to contribute is
distributed in the range [0.1Rg, 0.6Ro] which reflects the diversity in the P2P
community [4].

As [2] had proposed a greedy layer allocation algorithm which had the similar
goal and assumptions to the algorithm presented in Section 2.1, and in the
simulation we will compare the performance of the two algorithms, and name the
algorithm in [2] as GEBALAM (GrEed Based Approximation Layer Allocation
algorithM) and ours as FABALAM (Flow Adjustment Based Approximation
Layer Allocation algorithM) in the simulation.

A experiment is simulated as follows with first setting a lower-limit: each
node joins the system by submitting a request to the server in random order;
the server constructs a candidate supplying peer set P as a response to a request
that received according the statuses of peers that have joined, each peer in P can
at least supply a expected layer of the requesting node; if the size of P is larger
than the lower-limit setting, then P and py will be returned to the requesting
node, and either of the algorithms presented in this paper will be executed on
the requesting node side according to either the scenarios; otherwise only po is
returned and the requesting node will begin to get data from pp; each node will
become a peer node when it begins to receive the media data; after all nodes have
joined the system, we repeat the above procedure but substitute the algorithm
GEBALAM for FABALAM . Each experiment is performed 10 times, and the
simulation results are averaged over all results.

50 100
g
48 < 80
b S
_) W :
® 46 7 % 60
° 3
T v v v
@ o444 v VOV vV M)
A4 g
" —e— FABALAM ‘g 20 = 10-layered encoding
v GEBALAM g === G-layered encoding
Q
40 3: 0 [W[T W7 W7 W W[
200 400 600 800 1000 2 3 4 5 6 7 8 9
Node Number Lower-limit Setting
(a) Performance comparision on (b) Performance on maximizing the
saving server's bandwidth consumption streaming qualities of receiving nodes

Fig. 3. Performance of the proposed algorithms

Fig.3(a) shows the performance comparison results on saving the server’s
bandwidth consumption of the two algorithms with the lower-limit 6 and the 10-

layered encoding mode. The axis « denotes the number of nodes that have joined
the system. The y axis denotes the ratio of the server’s bandwidth consumption
to the sum of the bandwidths that consumed by the joined nodes. It shows that
our proposed algorithm can save more bandwidth consumption (2%~3%) of the
media server than the corresponding greedy algorithm proposed in [2].

Define a metric streaming quality satisfaction as the ratio of the sum rate of
the layers that a node actually receives to the sum rate of its expected layers. We
select these allocation samples in each experiment where the available bandwidth
between a receiving node and the media server is insufficient and let the average
streaming quality satisfaction of all the samples to denote the performance of the
algorithm that presented in Section 2.2. From Fig.3(b) it can be seen that the
streaming qualities of these receiving nodes keep at high levels, furthermore, the
larger the lower-limit setting, the higher the steaming qualities, this is because
the more the number of candidate supplying peer nodes, the more likely it is
that a receiving node can receive more expected layers.

4 Conclusions

This paper presented a layer allocation framework for layered peer-to-peer stream
ing. Considering the constraints of the supplying peer nodes and the increasing
trend of the server’s bandwidth consumption, this framework comprised two
algorithms according to the different scenarios of the available bandwidth be-
tween the media server and a receiving node to reach either or two of the goals:
1) minimize the resource consumption of the media server, 2) maximize the re-
ceiving node’s streaming quality. Simulation studies show the efficiency of the
layer allocation framework. Qur fault-tolerance mechanism is the initial result of
the work, we plan to explore more mechanisms such as the buffer management,
standby peer selections and so on which constitute the possible directions of our
future work.

References

1. Rejaie, R., Ortega, A.: PALS: Peer-to-Peer Adaptive Layered Streaming. In Proc.
of ACM NOSSDAV, 2003.

2. Cui, Y., Nahrstedt, K.: Layered Peer-to-Peer Streaming. In Proc. of ACM NOSS-
DAV, 2003.

3. Malhotra, V. M., Kumar, M. P., Maheshwari, S. N.: An O(|V|3) Algorithm For
Finding Maximum Flows in Networks. In Information Processing Letters, 1978.

4. Saroiu, S., Gummadi, P. K., Gribble, S. D.: A Measurement Study of Peer-to-Peer
File Sharing Systems. In Porc. of MMCN, San Jose, 2002.

5. Calvert, K., Doar, M., Zegura, E.: Modeling Internet Topology. In IEEE Commu-
nication Magazine, pages 35:160-163, 1997.

6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. 1979.

