
Productivity in HPC Clusters

Bob Kuhn

Intel Corp.
Email: bob.kuhn@intel.com

Abstract. This presentation discusses HPC productivity in terms of: (1)
effective architectures, (2) parallel programming models, and (3) applications
development tools. The demands placed on HPC by owners and users of
systems ranging from public research laboratories to private scientific and
engineering companies enrich the topic with many competing technologies and
approaches. Rather than expecting to eliminate each other in the short run, these
HPC competitors should be learning from one another in order to stay in the
race. Here we examine how these competing forces form the engine of
improvement for overall HPC cost/effectiveness. First, what will the effective
architectures be? Moore's law is likely to still hold at the processor level over
the next few years. Those words are, of course, typical from a semiconductor
manufacturer. More important for this conference, our roadmap projects that it
will accelerate over the next couple of years due to Chip Multi Processors,
CMPs. It has also been observed that cluster size has been growing at the same
rate. Few people really know how successful the Grid and Utility Computing
will be, but virtual organizations may add another level of parallelism to the
problem solving process. Second, on parallel programming models, hybrid
parallelism, i.e. parallelism at multiple levels with multiple programming
models, will be used in many applications. Hybrid parallelism may emerge
because application speedup at each level can be multiplied by future
architectures. But, these applications can also adapt best to the wide variety of
data and problems. Robustness of this type is needed to avoid high software
costs of converting or incrementally tuning existing program. This leads to
OpenMP, MPI, and Grid programming model investments. Third, application
tools are needed for programmer productivity. Frankly, integrated programming
environments have not made much headway in HPC. Tools for debugging and
performance analysis still define the basic needs. The term debugging is used
advised because there are limits to the scalability of debuggers in the amount of
code and number of processors even today. How can we breakthrough?
Maybe through automated tools for finding bugs at the threading and process
level? Performance analysis capability similarly will be exceeded by the growth
of hardware parallelism, unless progress is made.

