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Abstract. Building intrusion detection model in an automatic and online way is 
worth discussing for timely detecting new attacks. This paper gives a scheme to 
automatically construct snort rules based on data captured by honeypots on line. 
Since traffic data to honeypots represent abnormal activities, activity patterns 
extracted from those data can be used as attack signatures. Packets captured by 
honeypots are unwelcome, but it appears unnecessary to translate each of them 
into a signature to use entire payload as activity pattern. In this paper, we pre-
sent a way based on system specifications of honeypots. It can reflect serious-
ness level of captured packets. Relying on discussed system specifications, only 
critical packets are chosen to generate signatures and discriminating values are 
extracted from packet payload as activity patterns. After formalizing packet 
structure and syntax of snort rule, we design an algorithm to generate snort 
rules immediately once it meets critical packets.  

1   Introduction 

Techniques in an intrusion detection system (IDS) can usually be classified into two. 
One is anomaly detection and the other misuse detection. Anomaly detection views 
behaviors deviated significantly from normal profile as attacks, e.g., [6] [7]. Misuse 
detection systems detect attacks by finding the activities matched with attack signa-
tures, which are drawn from known attacks [3] [4] [5]. This approach is effective to 
detect known attacks but hard to identify new attacks due to the lack of corresponding 
signatures.  

In order to enable misuse detection systems to identify new attacks adaptively, we 
explore a method to construct attack signatures from data gathered by honeypots in an 
automatic and online way. A honeypot is security resource whose value lies in being 
probed, attacked, or compromised [1]. Generally, honeypots play no role in produc-
tion systems. Hence, traffic to and from honeypots are suspicious, providing us with 
opportunities to get pure intrusive packets. Inspired by this feature of honeypots, we 
can extract patterns of these packets and use them as signatures for misuse detection 
systems. Here, we choose snort [3] as our target system. Since signatures between 



different signature-based IDSs can be mutually translated [8], the present approach 
can be extended to other misuse detection systems.  

It is usually unnecessary to map each packet to a snort rule. E.G., if a scanning 
packet or ICMP echo request (ping) is captured, it may not provide distinct informa-
tion to identify abnormal activities as an intruder may fake its source IP address. Gen-
erally, choosing which part of the packet payload as signatures is difficult since a 
successful attack usually involves a sequence of packets. Therefore, instead of con-
structing a snort rule for each of them, we only maps chosen packets for system speci-
fications of honeypots. Moreover, our method can extract discriminating values from 
packet payload as activity pattern rather than use the entire payloads as signatures. In 
the course of building signatures, system specifications are important. They are speci-
fied by honeypots administrator and made up of system commanders, system calls, 
system configuration files and even some machine instructions. 

In summary, the contributions in this paper are 1) a new usage of honeypots, which 
differs from traditional usage; 2) system specifications based way to recognize critical 
packets and extract discriminating values as activity pattern; and 3) an automatic and 
online method to generate attack signatures. In the rest of paper, § 2 describes our 
requirements to the new usage of honeypots, § 3 discusses our method and § 4 con-
cludes the paper. 

2   Requirements to Honeypots  

There are many types of honeypots. According to interaction level, they are classified 
into three [1]: low-interaction, medium-interaction and high-interaction honeypots. 
Low-interaction honeypots emulate some services, medium-interaction ones also emu-
late services (but they can response attackers’ request to some extent) while high-
interaction ones are real operating systems and services. This paper concerns with 
high-interaction, as we need to collect real data coming from intruders instead of sim-
ply detecting unauthorized scans or connection attempts.  

In a honeynet, production traffic only goes to production network while intrusion 
traffic goes to all hosts since intruders try to attack as many systems as possible. When 
intruders use new attack methods, conventional misuse detection systems in produc-
tion network may be difficult to sense them. However, when they are equipped with 
honeypots that can update signature bases of misuse detection systems, it will enable 
misuse detection systems to adapt new attacks quickly. This paper focuses on how 
honeypots generate snort rules. The issue of how they exchange between honeypots 
and snorts is not contained in this paper. 

Main requirements to honeypots are data control, data capture and data collection 
[1]. To the honeypots in our scheme, we have two requirements for our purpose: 
1) Correspondence between honeypots and servers in production network. This 

means each honeypot corresponds to a server or several same servers, and vice 
versa.  



2) Security levels between corresponding honeypots and servers. The security level 
of honeypots should be as secure as the corresponding servers.  

3   Generating Signatures Online 

By generating signatures online, we mean generating snort rules on line once honey-
pots capture suspicious packets without the intervention of administrators. To this end, 
we consider two issues. One is the specific procedure to map a given packet to a snort 
rule (§ 3.1). The other is the way to choose the packets among those captured by 
honeypots to map and extract the activity patterns from the payload (§ 3.2).  

3.1   Mapping a Packet to a Snort Rule 

To map a given packet to a snort rule, it needs to describe packet structure and the 
syntax of snort rules formally. We introduce the mapping procedure from a given IP 
packet to a snort rule in this subsection.  

Consider formalizing packet structure. A packet is a stream of raw bits in essence. 
How to interpret this stream is determined by its structure, which is usually specified 
as standards. Snort currently can analyze four types of protocols (IP, TCP, UDP and 
ICMP). Below, we take IP as an example to show how to formalize IP packet struc-
ture.  

For our purpose, an IP packet structure is described as: <srcIP, dstIP, ttl, tos, frag-
bits, ipoption, protocol, payload>, where  

--srcIP is the source IP address, and dstIP the destination IP address; 
--ttl is the time to live(ttl) filed, and tos is the type of service field; 
--fragbits is the fragment flag filed, including three bits that can be checked, namely, 

the  
  reserved (R) bit, more fragments (M) bit and the don't fragment (D) bit; 
--ipoption is the options field. There eight option types, including strict source rout-

ing (ssr),  
loose source routing (lsr), IP security option (seq), time stamp (ts), record route (rr), 

end of list  
(eol), no option (nop), and stream identifier (satid). 

--protocol is the type of transport packet being carried; 
--payload is the data encapsulated in IP packet. 

In the above structure, we omit some fields of less interesting for our research, e.g., 
check sum field. In addition, suppose count(ipoption) indicate the count of ipoption. 
Then, ipoption[i] (0 ≤ i < count(ipoption)) denotes each option’s type. If p is an IP 
packet, we use p.srcIP to denote p’s source address, p.dstIP to denote p’s destination 
address, and so on. 

The previous syntax of snort rules is the target of signature constructing. If a non-
terminal symbol is defined only with a terminal symbol, the non-terminal symbol will 



be replaced by the corresponding terminal symbol when generating a rule. Otherwise, 
we have to determine which terminal symbol should be chosen according to packet 
content.  

Let us discuss mapping procedure. The major work of mapping is to determine val-
ues of BNF non-terminal symbols in snort rule syntax. Suppose p is an IP packet. 
Algorithm 1 produces a snort rule from p. In addition, option “msg” “:” “Signature 
from honeypots” “;” is desirable to be included in each generated snort rule so as to 
facilitate management of rule bases, but we omit this option in algorithm 1 for sim-
plicity. 

Algorithm 1. Mapping procedure between a given packet and a snort rule 
INPUT: an IP packet pt 
OUTPUT: a snort rule  

1. let ip_patterns = “ttl” “:” “p.ttl” “;” “tos” “:” “p.tos” “;”; 
2. let ip_patterns += “fragbits” “:”+substring(“RDM”, p.fragbits)+“;” ; 
3. for i=0 to count(p.ipoption)-1, do 

let ip_patterns += “ipopts” “:” “p.ipoption[i]” “;”; 
4. if p.protocol∉{TCP, UDP, ICMP}, then  

    <protocol> ::= “ip”; 
<rport> ::= “any”; 
<options> ::= ip_patterns+“content” “:” “p. payload” “;”;  

5. if p.protocol=UDP, then  
<protocol> ::= “udp”; 
<rport> ::= “p.payload.destPort”; 
<options> ::= ip_patterns+“content” “:” “p. payload.payload” “;” ;  

6. if p.protocol=TCP, then 
<protocol> ::= “tcp”; 
<rport> ::= “p.payload.destPort”; 
let tcp_flags= substring(“12UAPRSF”, p.flags); 
if tcp_flags= “”, then tcp_flags= “0”; 
let tcp_patterns = “flags” “:”+ tcp_flags + “;”; 
<options> ::= ip_patterns+tcp_patterns+“content” “:”  

“p. payload.payload” “;” ;  
7. if p.protocol=ICMP, then 

<protocol> ::= “icmp”; 
<rport> ::= “any”; 
let icmp_patterns = “itype” “:” “p.payload.type” “;”; 
let icmp_patterns += “icode” “:” “p.payload.code” “;”; 
let icmp_patterns += “icmp_id” “:” “p.echo_id” “;”; 
let icmp_patterns += “icmp_seq” “:” “p.echo_seq” “;”; 
<options>::=ip_patterns+icmp_patterns+“content”  

“:” “p.payload.payload” “;” ;  
8. return; 



In the above algorithm, “+” is used to concatenate two terminal symbols in BNF; “” 
represents an empty string; substring(str, indicator) extracts a substring from str ac-
cording to the indicator. For example, for substring(“12UAPRSF”, p.flags), if 
p.flags= 0x55, then substring “2ARF” is generated. It should be noted that algorithm 
1 simply map the p’s payload, which will be improved in the following section.  

3.2   System Specifications, Critical Packets, Discriminating Values and Building 
Signature 

Using algorithm 1, one can map fields of a given packet to the corresponding con-
structs of a snort rule. Nevertheless, it is still not enough to build accurate and effi-
cient attack signatures. As stated previously, it may be unnecessary to map every cap-
tured packet to a snort rule and extracting activity pattern from packet payload is also 
a difficult task. In this subsection, we address both problems by turning to the knowl-
edge in system specifications of honeypots.  

Different definitions of system specifications can be used for different purposes. 
For example, to describe hardware system for a computer, one can use CPU frequency, 
memory and hard disk size, network speed as system specifications. Here, we concern 
with the system specifications of honeypots to characterize the seriousness level of 
captured packets regarding network security.  

Generally, intruders exploit vulnerabilities of programs to obtain necessary privi-
lege to implement attacks. In the course of attacks, in particular for attacks on hosts 
like R2L attacks in [9], an intruder uses system calls (even some specific machine 
instructions) to change the execution path and uses system commands to change the 
system state, or modify system configuration files to leave back doors. For examples, 
using WinExec executes the shell code in buffer overflow attack; copying worm or 
Trojan programs in malicious code attack. It can be concluded that, among packets 
captured by honeypots, those containing system calls, commands or configuration files 
will represent more serious intrusive activities than those without such information. 

Therefore, system specifications of a honeypot are defined as a set of system calls, 
system commands, system configuration files, or even machine instructions. C is used 
to denote system specifications. For example, smd.exe, win.ini, WinExe, dir, cp are all 
elements of C in Microsoft Windows; fork, passwd, ln belong to C on unix or linux 
platform; machine instruction “Jump” is also an element of C.  

For each honeypot, its administrator should specify its system specifications explic-
itly. That C is empty means that nothing is considered to be serious. In this case, no 
rules will be generated. On the other hand, if C contains all possible objects on honey-
pots, then almost every captured packet will result in a snort rule. For example, if file 
index.htm of web server on honeypots is included in C, then an unwelcome browser to 
this file will generate a snort rule, and obviously this rule will cause false positives in 
production network. Fortunately, an administrator often knows his system very well. 
In other words, he knows what system specifications are, and which specifications are 
more important. Therefore, he can give a reasonable system specifications C for a 
honeypot.  



A list of probes captured by a honeypot in a 30-day period is given in [12], where 
some “ordinary” packets (such as the ICMP echo request packets and DNS version 
query packets) are included. Suppose p is a normal packet and r is the snort rule by 
using algorithm 1. r will match packets in normal production traffic, which will cause 
false alarms. Therefore, we do not map “ordinary” packet captured by honeypots to a 
snort rule, and instead, only critical packets are chosen to do so. Below we describe 
the definition of critical packets.  

Definition 1. Suppose p1→ p2→ p3…→ pn is a series of packets captured by honey-
pots for an attack. pi(1≤i≤n) is a critical packet for the attack, if the following condi-
tions hold: 
a) The payload of pi contains c, c∈C; 
b) For ∀pj(1≤j≤i), pj is not critical, which are ordinary packets. 

In order to implement attacks, ordinary packets are usually used by an intruder to 
gather information about target hosts. Critical packets help an intruder to get neces-
sary privileges or install backdoor programs. The packets following critical packets 
represent intruder’s activities on honeypots after getting some privileges, such as cre-
ate directory, modify files, etc. These packets also contain system calls. However, we 
don’t translate them into snort rules because they rely on the critical packets. Since 
snort rule is per-packet based signature, we only define one critical packet in a suc-
cessful attack. In fact, if misuse detection system uses state-transition signatures as 
stated in [4], in which every state represents an occurrence of events, we can choose 
many critical packets to build such kind of signatures.  

For attacks on network, packets may contain no system calls or system commands, 
such as tear drops attacks and syn flood attack. The goals of these attacks are usually 
to crash the target systems or make them deny services. Constructing signature based 
on critical packets may not cover this kind of attacks. However, attacks on network 
only involve packet headers that have more strict structure. Thus, they have much less 
variations and new attacks than those on hosts.  

In algorithm 1, the entire packet payload is used as the argument value of content 
option. Hence, content option in the resulting rule contains more than enough bits to 
characterize activity pattern. It will result in two drawbacks: 1) matching snort rules to 
network traffic will be low efficient because there are more bits to deal with; and 2) it 
is possible to make false negatives because finding longer bit sequence exactly in 
network traffic is more difficult and the change of some redundant bits will cause 
variants of attacks and lead to miss matching. To avoid these drawbacks, we should 
identify the representative subsequence of bits in packet payload as activity patterns, 
called discriminating value of the packet. For a critical packet, only its discriminating 
value is used as the argument value of content options. A formal definition of dis-
criminating value is given below. 

Definition 2. Suppose p is a critical packet captured by honeypots. The discriminating 
value of p is a triple (serv, op, c) or a pair (serv, c), where 

a) serv is the service type; 



b) op is the type of service operation; 
c) c∈C  is contained by p’s payload. 
If the service is based on TCP or UDP, then discriminating values will take the tri-

ple form, otherwise the pair form. For example, discriminating value for an HTTP 
packet can be (HTTP, GET, cmd.exe); discriminating value for the attack based on 
buffer overflow on IP protocol software can be (IP, WinExec). In the first case, field 
serv can be characterized by the destination port uniquely, such as 80 for HTTP and 
23 for TELNET; field op can be determined by interpreting packet payload according 
to the packet format of service serv. In the second case, field serv can be determined 
by using protocol name, i.e. IP or ICMP. In the both cases, field c can be gotten by 
looking up each element of C and one of the found elements can be used as c. Because 
p.payload maybe contains several elements of C, we use a heuristic method to choose 
the most distinct one. Suppose n elements ci (1≤i≤n) have been found and pos(ci) is 
the position of ci in p.payload. Then ci with minimum pos(ci) is chosen as c.  

Combining critical packets with discriminating values, algorithm 1 can be im-
proved to be algorithm 2. For simplicity, only the modifications are listed. 

Algorithm 2. Building snort rules with critical packets and discriminating values 
INPUT: critical packet p from a honeypot, System Specifications C  
OUTPUT: a snort rule or null 

1. Sp=Φ; 
2. for ∀c∈C, if found(c, p.payload.payload), then 

          Sp= Sp ∪ {( c, pos(c))}; 
3. if Sp=Φ, then 

          return null; 
4. Let c = c′, where  (c′, pos(c′)) ∈Sp and pos(c′)=min({pos(c′′) | (c′′, pos(c′′)) 

∈Sp}) ; 
…… 

5. if p.protocol∉{TCP, UDP, ICMP}, then  
…… 
<options> ::= ip_patterns+“content” “:” “c” “;”;  

6. if p.protocol=UDP, then  
…… 
Let op be operation type of service in p.payload.payload; 

<options> ::= ip_patterns+“content” “:” “op” “;” + “content” “:” “c” “;” ;  
7. if p.protocol=TCP, then 

…… 
Let op be operation type of service in p.payload.payload; 
<options> ::= ip_patterns+“content” “:” “op” “;” + “content” “:” “c” “;” ; 

8. if p.protocol=ICMP, then 
…… 

<options>::=ip_patterns+icmp_patterns+“content” “:” “c” “;” ;  
9. return; 



Compared with algorithm 1, algorithm 2 has two differences. The first one is to 
check whether p is a critical packet, and if not, it will not generate snort rules for p, 
and if yes, c in discriminating values will be calculated. The second is to use c and op 
as the argument value of content option. As a result, algorithm 2 can produce more 
compact and flexible snort rules to identify the variants of attacks. In addition, we 
ignore the details to interpret the operation type op.  

The above explanations imply that the present method is not simply to translate 
each captured packet to a snort rule. Owing to the limit space, cases to show the appli-
cation of the present method is not given. 

4   Conclusions and Acknowledgements 

A usage of honeypots for on-line building snort rules from the data captured by 
honeypots has been discussed. We have analyzed the requirements to honeypots with 
respect to assuring honeypots to generate useful signatures for detecting attacks in 
production network. System specifications used to recognize critical packets and ex-
tract discriminating values as activity pattern have been explained. Algorithms for 
automatic and online generation of attack signatures have been derived. This research 
is under a grant for the project Pervasive Virtual Community in Cyberspace (R-252-
000-079-112), Singapore. The paper is in part sponsored by SRF for ROCS, State 
Education Ministry, PRC. 
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