Clustering Payloads: Grouping Randomized
Scan Probes Into Campaign Templates

1% Vincent Ghiette
Delft University of Technology
Delft, The Netherlands
v.d.h.ghiette @tudelft.nl

Abstract—Over the past decade, the scanning landscape has
significantly changed. Powerful tools such as Masscan or Zmap
allow anyone to scan the entire Internet in a matter of hours.
Simultaneously, we witnessed the emergence of stealthy scanners,
which map the Internet from thousands of vantage points at a
low rate attempting to forego detection.

As scanning is typically the first step towards later intrusion,
organizations need to track, understand and draw intelligence
from these scan campaigns. Organizations benefit from obtaining
insights into what adversaries are currently looking for, which
might reveal some new vulnerabilities. Furthermore, relating
IP addresses with each other participating in scan campaigns
provides valuable insights into the adversary’s capabilities.

In this paper, we describe a protocol-agnostic approach to
extract commonalities and patterns from UDP scan traffic, relate
individual scan packets regardless of whether they are sending
static data or randomizing their payloads across destinations,
and obtain 97% pattern accuracy with a data coverage of 96 %.
We apply our methodology on seven years of NTP and DNS
scan traffic demonstrating that our automatic clustering provides
stable tracking of strategies over time and identifies groups of
source IPs with these behavioral characteristics effectively.

Index Terms—UDP, payload, clustering, network scans

I. INTRODUCTION

Network scanning is often the precursor to a subsequent
attack, and is used by adversaries to discover active hosts,
exposed and vulnerable services, and potential weaknesses in
a network [1]. As such, network scans provide useful infor-
mation to defenders as it can alert them to the type of services
and vulnerabilities the adversary is looking for, and provide
the opportunity to strengthen and complement defenses long
before a compromisation attempt will commence [2].

Two important and diverging developments have drastically
changed the scanning landscape over the past decade. On
the one hand, high-speed scanning tools such as Masscan or
Zmap enable anyone to systematically trawl through the entire
Internet from a single PC in a matter of hours and even minutes
on a 10 GbE link. While these activities will be immensely
noisy and obvious to anyone, they allow adversaries to keep
track of hosts and open ports, for example to keep up to date
information about DDoS amplifiers [3]. On the other hand, we
observe a more widespread application of stealthy scanning,
where adversaries are probing the IPv4 address space at a very
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low rate from thousands and even tens of thousands of vantage
points [4], [5]. With inter-arrival times of scan probes in the
order of hours or days, it is difficult for organizations to keep
track of these scan campaigns and relate those IP addresses
participating in one to each other with existing tools such as
intrusion detection systems or SIEMs [6].

Previous work has mainly focused on detecting scans and
scanning campaigns in TCP, as this transport protocol accounts
for the majority of scanning traffic [7], [8]. Although TCP
scans are more prevalent, scanning for devices running ser-
vices on top of the UDP protocol can be lucrative, as these
services are on the one hand typically abused in amplification
attacks, and on the other hand it is easy to realize high-
performance, low latency protocols on UDP, as exemplified
by the transition of HTTP3 on UDP. As the user datagram
protocol is handshake-less, this offers a different, novel angle
to identify and interpret scan campaigns. While in TCP a
service (or honeypot) needs to be active to complete the TCP
handshake before any actual data is exchanged, in UDP the
scanner has to send some payload already in the first probe
packet. As a service might not respond at all unless some
correctly formatted and valid request is sent, the adversary
cannot simply conduct surveys of open ports but necessarily
has to reveal what he is looking for, potentially even to the
extent of including some specific exploit in the probe packet.
This is, for instance, the case for a vulnerability found in
Juniper routers [9], depending on the sent UDP payload, an
attacker can reveal whether he has the intent to execute code or
perform a DoS attack. This allows us to quantify port scanning
and characterize scanners based on what they are trying to do
and relate them based on common intent.

This angle has received almost no attention to date, and
in this paper, we demonstrate that it is possible to auto-
matically extract common scan traffic into user-interpretable
patterns across any UDP protocol, human-readable or binary.
Defenders can, therefore, directly assess how a particular
service is targeted by an adversary and in case of a new
or unmitigated exploit rollout controls. Even though stealthy
scanning distributes scan probes across many hosts and over
extended periods of time, any of these scan probes still has to
use the same or similar packet payload. As we are matching
probes based on commonalities, our approach is effective in
identifying such distributed campaigns. With this paper, we



make the following three contributions:

o We propose a protocol-agnostic method that can extract
commonalities across scans in unsupervised learning, and
translate them into understandable templates that help the
defender understand the mechanisms and potential aim of
the scan. We show that the method is effective for both
static scan probes as well as those that randomize header
and payload components on a per-destination basis.

o« We demonstrate that such templates effectively track
developments for individual scanning groups as well
as the scanning landscape. For instance, the template
analysis clearly identifies how DNS scanners shifted their
attention from the ANY to the TXT query over time.

e As scan campaigns by definition will show some form
of commonality, our template method allows us to also
identify scan campaigns by matching sources that send an
instantiation of an abstract template. We show that this
technique can match highly-distributed scans with very
low inter-arrival times and link addresses even if they
only occasionally emerge.

II. RELATED WORK

Lockheed Martin shows that scanning the Internet is often
the first step taken to set up a cyber attack [2]. Scanning
the Internet for devices can be a lucrative endeavor for
cybercriminals. Researchers scanning the Internet show that
13.8% of 3 million devices use standard login credentials [10],
making them easy targets for cybercriminals. In order to get a
better understanding of attackers scanning the Internet for vul-
nerable devices, researchers have studied scanning behaviors.
Research [4], [11]-[16] shows that scanning activity can be
identified and that attackers adopt different scanning tactics.
Attackers target different protocols, use vertical and horizontal
scanning strategies, and leverage blacklists to avoid detection.
In addition, Lee et al. [17] reveal that scanners use decoy
probes to hide their activities. With detecting scanning activ-
ities playing an important role in cybersecurity, Coudriau et
al. [18] developed a visualization tool, and Iglesias and Zseby
developed a method to identify new scanning campaigns [19].

By monitoring and analyzing the tactics used by attackers,
researchers have shown the capability to identify the tools
used by scanners [7], [13]. The tools are identified using time
series analysis or by analyzing the header fields of the received
scanning probes. Further studies are conducted showing that
scans performed by malware and botnet can be identified [5],
[8], [20]. The identified scans performed by malware offer an
insight into which services botmasters are targeting. Anton-
akakis et al. [21] show that the Mirai botnet has increased
the number of destination ports scanned during its lifetime in
order to increase the number of devices it can infect. Next to
monitoring botnet evolution, analyzing the scans performed by
botnets can contribute to less evident studies such as measuring
the IP churn in autonomous systems [22].

Besides monitoring the scanning activities of botnets, re-
searchers have analyzed distributed scanning campaigns in
general. Early research performed by Gates [23] shows that
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Fig. 1: UDP scans only return results if a valid request is sent.

by measuring the overlap in scanned IP addresses, distributed
scanning campaigns can be identified. Subsequent research [7],
[24], [25] utilizes properties found in the TCP header to
identify large distributed scanning campaigns.

The works above show that it is possible to identify dis-
tributed scanning campaigns. However, most research only
analyzes scans towards services running on top of the TCP
protocol. Although 86.3% of the scans are directed towards
TCP ports [7], services running on top of the UDP protocol
are prone to be abused by cybercriminals setting up DDoS
attacks. Ghiette and Doerr [26] show that after the Memcached
vulnerability was exposed, an explosion in scanning activity
followed. The UDP protocol is connectionless, forcing scan-
ners to send scan probes containing valid payloads. In the
following work, we leverage the necessity of scanners to use
probes with valid payloads and introduce a protocol-agnostic
method to analyze scan traffic. Using our proposed method, we
offer an insight into the UDP scanning landscape, showing a
change in scanning behavior over the past seven years. Similar
to [7], [24], [25] which uses TCP header values, we show that
the UDP payloads can be used to identify distributed scans.

IITI. PROTOCOL-AGNOSTIC TEMPLATE EXTRACTION

In order to make sense of scanning data, it would be useful
to identify common patterns in scan traffic to help defenders
understand the goals of scanners even in the presence of ran-
domization, and link origins of common scanning patterns to
identify campaigns and collaborating entities. In the following,
we discuss our approach to identify such patterns in a protocol-
agnostic way for UDP. Before we dive into the approach,
we will first briefly summarize how adversaries perform UDP
scanning to motivate the requirements for template creation.

A. Randomized UDP scanning

The connectionless nature of the UDP protocol dictates
how attackers may scan for devices running a service on top
of the UDP protocol. If a UDP packet is sent to a remote
host, the protocol specifies that the host returns an ICMP
port unreachable notification in case no service is listening to
the targeted port. Hence, upon receiving such an answer, the
adversaries would know for certain that no service is present,
and if no answer is sent, a UDP service should be present.
In today’s networks, this reasoning does not work anymore
as notifications are typically disabled by operating systems
and filtered by the network to prevent such scan surveys.
To illustrate this, we sent a DNS query to port 53 to 10
million randomly chosen IP addresses on the Internet. 19,553
IPs responded to our query, 389,673 returned an ICMP port
unreachable, while 95.9% of the probed IPs remained silent.
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Fig. 2: Scan probes received per unique DNS command.

To determine whether a port is open or closed, scanners
would need to elicit a response from a targeted service. Blindly
blasting out random data would however also not provide
any insight, as the software listening behind a port would
probably parse incoming requests and only respond to those
it understands. This thus mandates the scanner to craft valid
protocol headers and payloads for each targeted protocol as
shown in figure 1. A variety of scanning tools feature built-
in probes for specific protocols allowing attackers to scan
the Internet with little protocol knowledge, as well as allow
advanced attackers to further customize the payload.

Such customization includes, for example, the randomiza-
tion of certain parts of the sent header and payload, for
example, the query ID in a DNS packet, which according to the
Zmap documentation [27] can be effective in circumventing
security measures in multi-homed systems. Creative attackers
may also randomize other parts of DNS queries, such as
changing the subdomain for each probe, in an attempt to evade
IDS signatures or detection and filtering if repeated packet
payloads are used to detect scans.

These practices drastically complicate campaign analysis, as
we would not know apriori if and how scan probes would look
like and how such randomization might take place, in practice
these templating options by common scanning tools make each
scan probe appear as unique. Previous work identified an entire
range of practices, featuring basic randomized header and
payload fields to complex relationships such as the encoding
of IP/port information in the payload, possibly further masked
with bit shifts or encrypted with session secrets [13], [28].

To visualize this immense heterogeneity in today’s port
scanning, let us look at scanning traffic collected at a net-
work telescope containing over 65,000 unused IPv4 addresses
between 2017 and 2021. Given the large scale of the telescope
and intensive port scanning on the Internet today, it is sufficient
to only include one month per year in our analysis. We perform
our analysis using DNS and NTP scanning traffic, as we show
in section III-B that they possess general traits exhibited by
many protocols, yielding in a data set containing 104.5 million
DNS and 620,7 million NTP scan probes that we will work
with further in this analysis.

Figure 2 shows the distribution of unique scan probes sent
towards port 53, the standard port for the DNS, in ascending
order by the number of probes received. We immediately

notice that the distribution of scan probes is heavy-tailed. The
28 most commonly sent DNS packets are received between
50,000 and one million times by our network telescope,
while for more than 30,000 payloads, we only receive one
probe. This means that randomization is a default practice
and clustering identical packets in campaigns is ineffective
for the bulk of scanning. Considering that our telescope ranges
account for more than 65,000 IP addresses, we also see that
the apparent heavy usage of those “typical” 28 payloads is
not that distinctive if we receive on average 2.69 such static
payloads per telescope IP per month. Effective scan detection
and campaign clustering thus requires automatic detection of
these packet generation templates.

B. Characterizing protocol traits

In the following, we develop a protocol-agnostic procedure
to extract the templates used by scanners when generating
UDP probes. Currently, IANA lists over 6,000 services running
on top of the UDP protocol. Although each protocol is differ-
ent, there are some shared commonalities between them. We
analyze the seven most commonly scanned UDP protocols [29]
and identify general features that can be found across all these
protocols, which we will use to design our protocol-agnostics
method to handle UDP packets in general.

(1) The first characteristic is the usage of binary or text-
based data. Protocols such as CHARGEN and SIP exchange
textual data while NTP uses binary data. Others such a DNS
include a mix of both in their payloads. An effective method
for behavior clustering should handle binary, textual, and
mixed payloads equally well.

(2) The second aspect relates to the use of randomized
data. As UDP is connectionless, it forces protocols to include
handles to differentiate connections. Protocols often use fields
with per-session randomness to do so. As an example, SIP
assigns a random value to sessions, and DNS randomizes its
query ID. Therefore, a clustering should be resilient to partially
randomized content, if payloads are otherwise “sufficiently”
similar.

(3) The third aspect relates to length, or more precisely
the lack of length requirements. Protocols naturally differ into
their packet structure and many protocols allow messages to
vary in length. For instance, DNS servers will respond to
a short bind command and to longer domain name queries.
Similarly, SIP servers allow clients to send a user name,
affecting the message length. Therefore, a method should not
require any apriori knowledge and be able to relate payloads
even if they differ in structure.

(4) The last feature is related to protocols allowing cus-
tomized commands. Some protocols, such as NTP, are strictly
defined in terms of payload content. Others, such as DNS and
CHARGEN allow for arbitrary data in the payload. As we do
not know “how different” a protocol typically is, this aspect
should be learned from the data itself.

C. Proposed methodology

We use these four general characteristics to develop a
protocol-agnostic process that allows us to extract scan tem-
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plates used by attackers regardless of the underlying protocol.
Figure 3 depicts our data processing pipeline for clustering
and transforming scan traffic into human-readable templates.
In the following, we systematically explain each of the seven
steps taken by our approach and justify our design.

(1) We begin our pipeline by randomly sampling packets
from incoming scan traffic. Data sampling is necessary due
to the intensity of scanning on the Internet. As state-of-the-
art cluster generation has a complexity of O(nlogn) and
require distance matrices of n?, it is prohibitive in scenarios
like Internet scanning where we receive millions of packets
for popular UDP protocols in a given month. In this step, we
randomly sample packets to a degree fitting our computational
resources. In our work, we randomly selected 70,000 scan
probes, as in theory, such sampling could miss out on certain
patterns, the pipeline verifies the sampling in the final step and
adjusts accordingly.

(2) We convert the payloads to a uniform representation. To
accommodate for payloads with text and binary information,
we transform all payloads to their equivalent hexadecimal
string notation creating a uniform representation. A hexadec-
imal string notation allows us to use a distance metric that
works on both binary and textual commands.

(3) We calculate the distance matrix as input for cluster
generation. We use the Damerau-Levenshtein distance [30],
which counts the minimum number of insertions, swaps, and
deletions required to make two strings identical. The Damerau-
Levenshtein distance may compute the similarity of strings
with different lengths, which makes the algorithm agnostic
to different types of protocols and the potential to introduce
arbitrary protocol payloads.

(4) We cluster the sampled packets using the HDBSCAN
algorithm. HDBSCAN has the nice property to cluster data
with the characteristics discussed in the previous section.
Furthermore, it does not require knowledge of the number
of clusters to generate good results, but uses the data itself to
determine a cut-off. Scanners can use templates that introduce
varying degrees of randomness, for instance, a template S1
generating random DNS queries for subdomains of google.com
for which the subdomain length is 5 and a template S2
of random queries for subdomains of amazon.com with a
random subdomain length of 20. As the calculated Damerau-
Levenshtein distances between the probes generated by S1
are smaller than the distances between the probes generated
by 52, and HDBSCAN can find clusters with varying densi-
ties, HDBSCAN will form clusters grouping the commands
generated by S1 and S2 in separate clusters. Additionally, we

Clustered commands
0.0.0.0.in-addr.arpa
111.11.11.111.in-addr.arpa

Aligned commands
--0.-0.-0.--0.in-addr.arpa
111.11.11.111.in-addr.arpa

Regular expression
“.{0,2).\..{0,1}.\..{0,1}.\..{0,2}.\.in-addr.arpa$

Fig. 4: Example of template extraction.

selected HDBSCAN because it can handle noise in the dataset
caused by Internet backscatter.

(5) We translate the identified clusters into a common
representation. We expect clusters to contain payloads of
different lengths. However, different length patterns cannot be
harmonized. Therefore, we apply sequence alignment using
MAFFT to the clustered probes.

(6) We unify the aligned probes in each cluster into a
human-readable template representing all its members. We
use the aligned payloads of the clusters to generate regular
expressions, specifically as it allows to define random parts
in the payloads and can handle the gaps introduced by the
sequence alignment process while being easily interpretable
by a human. We generate the regular expression by placing
a ’. in the regular expression where characters in the probes
vary, the gap characters introduced by the alignment are noted
by a *.{0,n}’ in the regular expression, where n is the number
of consecutive gaps. Characters that do not vary throughout
the probes remain the same. Figure 4 illustrates the template
building process using two reverse DNS lookup commands.
We illustrate the process using the actual commands, not the
hexadecimal translation, as it is easier to understand.

(7) In the final step, we map the remaining dataset onto the
resulting templates to validate the sampling process. Although
sampling is randomized, it may affect the detection rate of
templates. To measure whether all templates have been identi-
fied, we identify any data that cannot be matched by the crafted
regular expressions, and rerun for potentially unclassified data.
In practice we find that unmatched data is negligible.

IV. VALIDATING OUR APPROACH

In section III we introduced a method to extract commands
used by scanners to probe for UDP services. Our method
bundles HDBSCAN on a sampled data set and explains found
clusters using regular expressions. Although HDBSCAN and
regular expressions are established techniques, we are not
aware of previous work demonstrating its ability to cluster
scanning probes. In this section, we validate whether the
methodology creates meaningful clusters and templates using
domain-specific knowledge and verify that despite sampling,
the template generation delivers meaningful results.

Validation data set. In the following, we validate our
methodology by clustering DNS probes as this protocol uses
all protocol characteristics identified in section III-B, specifi-
cally both textual and binary payloads, commands can be of



TABLE I: Clustering results for three months of DNS scans.

Data set Num. clusters Noise points P <1 % Clustered
2018-01 72 380 10 99.44
2018-04 53 275 7 99.59
2018-07 59 457 11 99.33

different lengths, and most importantly, the protocol allows
for user input of arbitrary lengths, which can be randomized.
To analyze the stability of the clustering itself, we cluster
three datasets each spanning one month in 2018, believing
that over the course of a few months the behavioral evolution
of scanners should be minimal, allowing us to evaluate the
stability of our cluster generation. On average, each dataset
contains 10.1 million DNS packets.

Clustering results. When we apply sampling and clustering
as explained before to the test datasets above, we obtain very
high cluster assignment scores as shown in table I. HDBSCAN
allows for points to be classified as noise and assigns a P value,
between 0 and 1, to each point in a cluster representing the
probability of that point belonging to the assumed cluster. We
see that density-based clustering is very effective for packet
data, and only for less than 0.7% of all points the P value
is smaller than 1. More than 99.33% of packets are clustered
with high confidence across each dataset.

Evaluation of generated clusters. Table 1 also shows that
the number of clusters significantly varies each month. Clus-
ters are also not equal in size, the top ten most significant
clusters contain between 66.73% and 69.91% of the data for
each clustered dataset. We manually inspected and analyzed
all of the clusters generated by HDBSCAN, to verify that
HDBSCAN-based clustering of payload data generated mean-
ingful results. As mentioned earlier, scanners can either use
sent static scan probes or dynamically generate their packets.
Clusters containing probes generated by a static approach are
trivially explained as the cluster members should only contain
identical payloads. If a cluster contains probes from dynamic
generation, we need to determine whether the payloads in the
cluster could have been generated using the same template.
We will treat static and dynamic clusters separately below.

a) Static clusters. HDBSCAN identified 72, 53, and 59
clusters for the three monthly data sets. Of the identified
clusters, 62, 43, and 45 respectively are composed of iden-
tical commands. If the clustering related identical payloads
correctly, there must not be any instance in the dataset where
a particular static payload from a given cluster is also part of
another cluster, as these should have been merged during the
clustering process. Indeed, in none of the test datasets we find
any instance of such overlap.

b) Dynamic clusters. The validation of clusters containing
different commands requires us to ascertain whether all com-
mands in a particular cluster can indeed be generated using
the same template. HDBSCAN forms 10, 10, and 14 clusters
containing different commands for the three validation data
sets. In the following, we showcase the examination of the

TABLE II: Dynamic clusters in the Jan 2018 validation set.

Cluster ~ Number of Unique Unique  Unique
D commands commands domains QIDs

0 119 119 - -

1 259 257 1 257

2 1003 1003 1003 1

3 1038 1032 1032 1029

4 1115 1107 1107 1103

32 4128 4005 1 4005

38 2331 2226 1 2226

12 153 2 1 2

46 141 2 1 2

results for the month of January, and report on the other two.

We analyze the clusters semantically by parsing the binary
data and translating it into the DNS packet structure as
specified by RFC 1035 [31]. The clusters identified by the
algorithm contain commands that differ either by the query
ID, domain name, or both. Table I shows for each dynamic
cluster the number of (i) commands, (ii) unique commands,
(iii) commands containing a unique domain name, and (iv)
those having a unique query ID.

The first type of behavior clustered together are DNS
queries with a static domain but every packet containing a
random query ID. Clusters 1, 38, and 32 are examples of these,
but each of these clusters target a different domain name. All
scan packets in each of these clusters can be generated by a
template in which all of the DNS fields are fixed except for the
query ID field that is randomized for each probe. The use of
such a template is recommended by the manual of Zmap [27].

The second type of behavior is where every probe queries
a different domain name, but otherwise the packet structure is
entirely static. Cluster 2 is an example of this, where every
scan packet contains a randomly-generated subdomain all in
the form xxx.xxxxxxxxx.wc.syssec.rub.de (where x represents
an alphanumerical character).

The third type of behavior is where different parts, here the
domain and query ID, vary per packet. Clusters 3 and 4 are
examples of this, but within each cluster the top- and second-
level domain is identical. Cluster 3 contains probes for random
subdomains of the openresolvertest.net domain, and cluster 4
for subdomains of the openresolverproject.org. Although both
clusters use the same generator where random subdomains are
composed of 9 alphanumerical characters, the pipeline treats
them as separate behaviors. Although clusters 12 and 46 vary
in both aspects, we find that they contain two domain names
and two query IDs, and were accidentally formed in an attempt
to meet the minimum cluster size of 100. If high precision
results are needed, the algorithm could be rerun with lower
minimum cluster sizes if some generated templates overlap.
Cluster 0 does not contain domains nor query IDs, indicated
in table II, as this cluster contains SIP probes that were sent
towards port 53. However, all these commands are correctly
related as they are generated using sipvicious [32], a scanning
tool specially developed for scanning SIP servers.

Using domain-specific knowledge, we have analyzed all 184



identified clusters, of which 97.28% are valid patterns.

Evaluating the regular expressions. After validating the
extracted clusters, we also verify the methodologies’ fifth and
sixth steps for generating regular expressions. Each expression
should be unique as it represents a scan template, and no
expression should overlap. Furthermore, these expressions
should be as tight as possible, a regular expression representing
one cluster should not be able to match any command found
in other clusters. As we verify the pipeline output for the 184
clusters and regular expression, we see that every expression is
unique and does not match packets from any other cluster, with
the exception of those two clusters we identified as incorrectly
merged due to the minimum size requirement. The remaining
182 generated expressions provide a unique representation for
their clusters.

Evaluating the sampling. The final step in our evaluation is
to verify that the sampling performed in the first step of the
pipeline did not influence the template detection rate. We use
the previously evaluated regular expressions to match probes in
their respective data sets. After matching, we find that 96.04%
of all the probes are mapped to a regular expression indicating
that the sampling had minimal effect.

V. LONGITUDINAL STUDY OF COMMAND USAGE

In the previous sections, we proposed and validated a
methodology to cluster and extract commands used by scan-
ners. In this section, we apply our approach to perform a
longitudinal study of the commands in scan campaigns for
DNS and NTP protocols between 2015 and 2021.

A. Evolution of command templates

In section IV, we showed that attackers use templates to
craft dynamic and static probes based on templates, each with
its own advantages and drawbacks. In this section, we use our
methodology to obtain which types of templates have been
used over the years and how the approach to scanning changed
over the course of time.

To analyze the development of scanning practices over time,
we draw on the dataset of scan traffic collected by 65,000
telescope IPs over the last seven years, and let the algorithm
extract the templates used by scanners in each time slot.
Figure 5a shows the percentage of static and dynamic NTP
commands as well as the number of unique commands in
use, figure 5b depicts the same for DNS. As we see in the
graph, everyone who is scanning for NTP services always
does so by directing the same scan payload towards different
destination addresses'. While each scanner behaves entirely
static, there is variation between the groups of people who scan
for NTP. Over the years, we see between 10 and 18 patterns
being employed. The complete lack of dynamic in NTP is not
per se surprising, as the protocol specification provides only
little opportunity to include arbitrary data. Among the very

The single dynamic scanner instance in 2018 is not an exception to this
rule, but a scanner who has launched a campaign sending SIP requests to
NTP servers.
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few possibilities, NTP versions 3 and 4 allow the inclusion of
three timestamps to represent the current time configurations.
We verified that scanning using randomization provides valid
responses in NTPv4, but scanners do not pursue this strategy.
The practice of scanning is however different in case of
DNS as shown in figure 5b. For DNS, our algorithm identified
typically between 53 and 121 distinctive scan patterns per
year except for an outlier in 2020, and between 8% and 33%
of these identified templates are dynamic and randomized.
Aside from a slight increase in DNS, we find that the general
tactics and preferences of scan randomization or usage of static
payloads has not significantly changed over those years.

While the previous results would indicate a basically static
ecosystem with no evolution at all, there is actually significant
innovation on what exactly the scanners send. Figure 6 shows
the percentage of new NTP and DNS commands that are seen
for each year, in other words, as we see 99 DNS commands in
total in 2015 as shown in figure 5b, the value of 85% depicted
here for 2016 says that out of the 81 templates we discovered
in 2015, 85% or 69 in total were new. As we see in case of
DNS, scanners constantly update how they perform the scans,
and in 2021 more than 80% of all scan packets used patterns
that we did not ever see before in those past seven years. This
is due to the widespread adoption of new query types (as we
show in the next section), as well as evolution of the protocol.

In contrary to this, the percentage of newly observed NTP



commands is minimal and diminishes quickly. Curiously,
based on manual inspection, those new templates that are used
stem mainly from operational mistakes by scanner sending
invalid NTP requests, or by scanning for a protocol other
than NTP on the IANA NTP default port. Although the NTP
protocol was updated three times within the last decade, none
of the new features are included by scanners in their activity.
As shown by [3] for case of DDoS amplification attacks,
adversaries seem to form different communities each focusing
particular protocols as their tools of the trade with different
degrees of sophistication and techniques. A similar situation
also seems to be true in case of scanning.

B. Evolution of command types

Previously, we showed that scanners probing for DNS
display a significant degree of variation in their activities.
The advantage of our methodology is that it creates human-
readable patterns that we can interpret with respect to the
potential target and intention of the activity. In the following,
we report on the content and development of these templates
over time.

Targeted domain name. One easily changed feature of DNS
scan probes is the domain name that is being targeted. If
they perform surveys of open DNS resolvers, scanners might
change what domain name they query for, as commonly used
ones (such as Zmap’s default query for google.it) might be
flagged or blocked within the destination network. If actors
are searching for DNS amplification attacks, they might switch
over to zones offering larger amplification or target a different
authoritative name server.

We analyze the discovered templates (which might include
randomization in headers or payload fields such as random
subdomains) with respect to the following three features: first,
how often particular domain names are targeted. Second, the
percentage of source IP addresses that use a particular domain.
Third, the volume of scan packets that are received containing
a particular domain name. Figure 7 shows the distribution for
the three metrics for our snapshot traffic from 2015 until 2021.

In each bar plot, each color represents a particular do-
main. As the number of domains exceeds the number of
meaningful colors, every color is used multiple times in a
rotating fashion. However, the same color at the same position
symbolizes the same domain name across these seven years.
As we are concerned with respect to global developments
and not concrete targets, we also omit to break out the 179
targeted domains in a legend. Figure 7a depicts how often
a particular domain name appears in a particular template,
for instance, a campaign enumerating subdomains in the form
of www[0-91{3,5}.domain.com would be grouped into
one template, a campaign randomly looking up subdomains in
the form of host-[a-z]0[0-9]+.domain.com would
be grouped into another, both however share the second-level
domain domain.com in their template. The figure shows no
evidence of global trends, domains appear with fluctuating
“market shares” across the years, except that over time more
domain names appear in the templates of DNS scanners.
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Fig. 7: Domain name usage of scanners.
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When we look at the percentage of source IPs that have
send a probe belonging to a particular template as shown in
figure 7b, we see that although there is a lot of variety in the
ecosystem in terms of what domain names are queried, the
absolute bulk of sources are using on a few select templates. Of
particular importance here is the purple bar, which depicts the
version.bind. command, used to discover the software version
of the most widely used DNS resolver software bind, for
example to execute a particular exploit. While in 2017 only
1.8% of the source IPs sent a probe containing the bind com-
mand, in 2021 the percentage increased to 56.7%. Figure 7c
shows the percentage of packets that are sent using a particular
template. The figure shows that the number of received probes
per template is more or less equally distributed. The different
distributions shown by figures 7b and 7c show that a large
number of source IPs using the same template are responsible
for a relatively low amount of scanning probes, indicating
the presence of large-scale distributed scanning campaigns. In
section VI we show that, indeed, scanning campaigns can be
identified using templates.

Used query types. Aside from the domain name, also the
parameters of the domain query can be adjusted. In the
simplest cases, this would entail the type of query, such as
A, NS or ANY, but also instructions whether the target should
recurse or validate DNSSec. Figure 8 depicts the development
in DNS query type over the past seven years based on the same
metrics as before, but given the limited number of query types
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Fig. 8: Query type usage of scanners.

each is labeled by its numerical value as specified in [31].
We see very clearly how the ecosystem of scanners adapts
its templates to transition from the ANY (255) query type
to using the TXT (16) query type. While in 2017, 72.1% of
all the identified templates used ANY, in 2021 this number
has dropped to 21.6%. Templates based on ANY — the query
for any kind of DNS record, a response typically extensive
in length and thus useful for DNS amplification attacks —
are successively being replaced with those using TXT, which
increased from 2.9% to 30.0% during this time. TXT record
fields today contain security features such as DNS keys, record
signatures, or certificate authority pointers, and are thus also
large enough in size to be interesting avenues for abuse.
When we study the number of sources relying on a particu-
lar template / query type combination in figure 8b, we see that
this shift is basically adopted by the entire ecosystem. In 2017,
17.13% relied on TXT queries, this percentage has increased
to 69.1% by 2021. Figure 8c shows the percentage of probes
received for a particular query type and confirms the shift of
scanners using TXT queries in favor of the ANY type.

VI. IDENTIFYING CAMPAIGNS USING PROBE TEMPLATES

In the previous section, we clearly identified signs of
distributed scans when we looked at which sources scanned
using a particular template. These coordinated activities stem
from a variety of origins, for example cyber security firms,
universities, as well as malicious actors scaling out port
scanning to avoid detection. In this section we show that our
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Fig. 9: Scans performed in 2021 grouped by used template.

methodology is also effective at identifying these campaigns
and relating the participating IP addresses to each other.

We refer to a port scan as a sequence of probes sent
by a source IP towards one or more destinations host/port
combinations in a fixed time period. These individual port
scans can be grouped into a scan campaign, which is the
systematic scanning activity by multiple entities towards a
particular goal. Scan campaigns are usually scaled out to
multiple sources, as each device needs to run at less intensity
and runs less risk of being detected or blocked. As these
devices are under control by the same actor, they are usually
managed in a comparable way, which means that the individual
devices often show similar behavior, such as comparable if
not identical start and end times, activity periods, or in the
extreme case even similar port allocations. We showed in
section V-B that scanners often rely on templates to generate
their scan probes, where each source would send (randomized)
instantiations of a general template, used as a blueprint to
specify the scan. We can use these characteristics to identify
a campaign and the devices participating in it.

To demonstrate this feasibility, we show the results of
campaign extraction given scan traffic received through April
2021. We use our methodology to extract templates from this
set and assign every source IP a label based on templates it
instantiates. Figure 9 depicts the individual scanning activity
of hosts over the course of one month, ordered by its first
occurrence. The color of each activity indicates its cluster
membership, the beginning and end of each scan is indicated
by a black marker. We consider a scan terminated if we receive
no packets from a source address for more than six hours.

As we can visually inspect, IP addresses matched on content
templates also show other similar behavioral characteristics.
For example, the scanning activities performed by the orange
IPs all run repeated scans in coordination, and also the
behavior of the red IPs is matched which may start and stop
simultaneously, but show also a slow startup phase that would
be difficult to find based on on/off activity only.

As the methodology can relate common behavior fuzzily,
this grouping is also possible if there is little data available.
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Fig. 10: Scanning speeds in 2021 grouped by template.

Figure 10 shows the speed of each source IP in terms of sent
probes per second, the colors and markers match those shown
earlier in figure 9. We can visually see that the source IPs
using the same templates scan at the same speed. Particularly
interesting is here the fact that the more sources a campaigns
is using, the slower it tends to send probes. The two largest
campaigns in the figure emit on average about one packet
every 1 % hours, compared to some of the faster campaigns
at more than 10,000 packets per second. Identifying and
linking scanners when operating at such a low rate is typically
challenging, as they can only afford such a low rate by using
a large number of sources contributing to the same goal, we
can still identify them given our template methodology.

VII. CONCLUSION

In this work, we presented and validated a novel approach to
identify the templates used by scanners. Using our approach,
we can parse 96.04% of the scanning traffic and extract
the used templates with an accuracy of 97.28%. We use
our approach to perform a longitudinal study showing that
the DNS scanning landscape has changed. Scanners have
shifted from using ANY queries to TXT queries, most likely
in response to the introduction of RFC 8482 [33] limiting
the information gained by scanners using the ANY query.
Finally, we leveraged our templating approach to identify large
scanning campaigns.
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