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Abstract—Network traffic prediction is essential for 

intelligent network management, such as resource reservation 
and burst warning. Existing prediction approaches are 
vulnerable in accurately capturing the sudden surge or plunge, 
uniformly denoted as the traffic burst. To solve this problem, we 
extract the time series of the number of newly-generated 
network flows (NoNGF) from the network flow information, 
explaining the intrinsic mechanism of network traffic bursts. 
We use time-lagged cross-correlation analysis to identify 
directionality between the NoNGF series and traffic series. It 
proves that we can perceive the future fluctuation and burst of 
network traffic by NoNGF in advance. The comprehensive 
prediction experiments of the whole network traffic and three 
application-level network traffic demonstrate that our proposed 
approach exhibits a significant performance improvement over 
the original LSTM and TCN models. Our approach can 
accurately capture the moment of network burst and the 
predicted value much more precisely when the burst occurs. In 
summary, our proposed traffic prediction based on NoNGF can 
significantly improve the prediction accuracy, especially for 
network burst traffic. 

Keywords—Network traffic prediction, network flow feature, 
traffic burst prediction, cross-correlation analysis 

I. INTRODUCTION  
Network traffic has increased exponentially, and network 

burst has become more frequent, because of the massive 
network devices access to the Internet and the further 
improvement of users' requirements for network service 
quality [1,2]. Widely employing advanced network 
technologies makes intelligent network control a reality [3]. In 
order to improve the quality of service and optimize the 
allocation of network resources in advance, it is essential to 
predict the network traffic with high accuracy [4].  

Network traffic prediction makes forecasts of future traffic 
demands by observing the historical time series data, which is 
a kind of time series prediction. The field of network traffic 
prediction based on deep learning has made great progress in 
recent years [5]. Deep learning methods can learn high-
dimensional features of the historical series of network traffic 
for predicting the future traffic. Because network traffic varies 
drastically and traffic burst is highly random, helpful features 
of random fluctuations and bursts cannot be learned from 
historical traffic series [6]. Predicting random network traffic 
fluctuations and traffic bursts is a difficult problem of network 
traffic prediction, and it usually causes non-robust prediction, 
which means the predicted value is very close to the previous 
true value. 

As a novel idea of the network traffic prediction method, 
we mine the feature series strongly correlated with the 

network traffic from the network flow data and input it as a 
covariate into the prediction models. The generation of a 
network flow indicates that communicating parties have 
established an information path in a network. Data will be 
transmitted in the following period, generating network traffic 
volume. Generating a network flow affects traffic volume for 
the next few minutes. We count the number of new network 
flows generated per unit time which we call the number of 
newly-generated network flows (NoNGF). This feature is 
simple to obtain but remarkably positively affects the traffic 
prediction accuracy by inputting into the prediction model as 
an external variable along with the network traffic. If the 
prediction model accepts not only the predicted time series, 
but also other external variables (called covariate), then this 
prediction method is called covariate prediction [7]. In this 
paper, we propose a covariate assisted prediction method of 
network traffic based on NoNGF series as the covariate.  
Analyzing or applying external features as covariates for 
network traffic prediction have not been proposed yet. Our 
research work is the first to use external features of network 
traffic as covariates for traffic prediction and significantly 
improves the prediction accuracy.  

We theoretically demonstrate that the NoNGF feature 
variable has a strong correlation with the traffic series by 
feature engineering and cross-correlation analysis. Moreover, 
we identify directionality between the time series of NoNGF 
and network traffic as a leader-follower relationship [8]. It 
indicates NoNGF as the leader initiates a fluctuation which is 
repeated by the network traffic as the follower, which proves 
that we can predict the future fluctuation and burst of network 
traffic by NoNGF at the current moment. 

 We experimentally verify that the NoNGF series has a 
considerable advantage for accurately predicting the highly 
random network traffic and traffic burst by using various 
prediction models that support covariate prediction such as 
LSTM and TCN [9, 10]. The covariate prediction method we 
proposed that inputs both the NoNGF series and the network 
traffic series has a vast improvement over the prediction 
method that only inputs the traffic series. Our proposed 
method significantly improves not only the accuracy of 
overall network traffic prediction but also the prediction of 
network traffic bursts, which is much more precise in 
predicting traffic burst peaks and troughs. 

Section II of this paper describes the related work of 
network traffic prediction methods and introduces some time 
series prediction models used in the experiments. Section III 
introduces our work on network flow features, including the 
detail of the used network flow dataset, the definition of the 
number of newly-generated network flows, and the analysis 
of interrelationships between the NoNGF and traffic series. 
Section IV presents our prediction experiment design and ISBN 978-3-903176-48-5© 2022 IFIP. 



comparative experiment results, including the prediction error 
analysis and image comparison. Our proposed method has 
better prediction accuracy and performs excellently during 
network bursts. Section V concludes the whole paper and 
delivers the outlook of the following work. 

II. RELATED WORK 
Network traffic prediction models can override or 

optimize classical time series prediction models by 
considering network traffic data as a time series. In recent 
years, many network traffic prediction models and methods 
have been proposed, mainly including machine learning and 
deep learning [11]. For predicting traffic bursts, some feature 
extraction methods and prediction models have been proposed. 
These will be introduced in this section. 

Traditional methods mainly include linear regression 
methods such as autoregressive integrated moving average 
(ARIMA) models and nonlinear regression methods such as 
support vector machine (SVM), which can predict the network 
traffic in the following time [12, 13].  

Network traffic prediction by deep learning is a current 
research hotspot. Recurrent neural network (RNN) is a deep 
learning model consisting of recurrent neurons, which 
recursively loop through time steps to learn the features of the 
previous series and pass them to the next neuron [14]. Long 
short-term memory (LSTM) neural network is a variation of 
RNN widely used in time series prediction. LSTM constructs 
input gate, output gate, and forget gate inside neurons to 
remember effective features and selectively forget ineffective 
features, which can solve the gradient vanishing and explosion 
problems during training of long series [15]. LSTM model can 
effectively learn the periodic features and stable trends of 
network traffic time series, and performs well in predicting 
stationary traffic series. Convolutional neural network (CNN) 
is a classical deep learning model, which effectively extracts 
features and reduces computation through convolution and 
pooling operations, which is advantageous in dealing with 
temporal-spatial composite scenarios [16]. Temporal 
Convolutional Network (TCN) obtains historical information 
through causal convolution, makes the receptive field more 
flexible through inflation convolution, and solves gradient 
vanishing problem through residual connections, that can 
achieve or even surpass the effect of RNN models in time 
series prediction [17].  

For network traffic prediction, peculiar network traffic 
features need to be mined and extracted by feature engineering 
to improve the prediction accuracy. [18] decompose the 
network traffic time series into several feature series by 
wavelet transform to separate the burstiness, periodicity and 
non-stationary, then put them together in an LSTM model for 
prediction. [19] divide the network traffic burst into several 
scenarios to describe the network traffic burst process and 
achieve better performance and higher accuracy. 

Covariate assisted prediction is a method of time series 
prediction. When predict a series with poor autocorrelation, 
low stationarity, and high randomness, it is easy to have no 
predictive effect. In this situation, it is necessary to find 
suitable external feature variables as covariates to explain the 
internal mechanism of time series variation [7]. In the field of 
network traffic prediction, researchers mainly focus on the 
network traffic time series itself to do feature extraction and 
model optimization to improve the prediction accuracy. [20] 
use network traffic series from several regions as covariates to 

learn the spatial features of traffic but still do not involve 
external variables. Barely analysis or research to find external 
characteristic variables of network traffic for covariate 
prediction has emerged.  

III. CORRELATION ANALYSIS BETWEEN NETWORK TRAFFIC 
AND FLOW FEATURES 

Network flow and network traffic are two sides of the 
same coin. The establishment of network flow indicates that 
there will be data packets transmitted between communicating 
parties, which will inevitably generate network traffic in the 
following period. Therefore, feature variables of network 
flows can be used as covariates for network traffic prediction 
to explain the intrinsic mechanism and generation cause of 
network traffic changes or bursts. It is necessary to do some 
feature extraction and analysis on network flows. For this 
reason, we extracted an effective network flow feature, 
NoNGF. In addition, we proved that it can predict the 
fluctuation and variation of network traffic in advance, and 
can significantly help us predict network traffic burst. 

A. Network Traffic and Flow Data 
The dataset we use is network traffic data and network 

flow data for a city of over 3 million people in China. This 
dataset records data for a full month (31 days) of July 2020. 
This dataset is collected by deploying optical splitter and deep 
packet inspection (DPI) server on the metro core network And 
of course, the data has been desensitized. 

Network traffic data is a time series about the size of 
network traffic volume (in KB). Network flow data is a 
detailed description of the network flows established in the 
city during the month, including desensitized IP address, port 
number, flow start time, flow end time, and network traffic 
volume. The network flow dataset is huge with 3740GB for 
just one month's duration because it records log information 
of each flow. This dataset also labels the traffic with 
application categories so that we can do more detailed analysis 
and prediction on the application-level network traffic.  

The dataset is divided into more than 20 application 
categories. Each application category is subdivided into 
specific applications and protocols. Since some application 
categories were created early and the protocols used are old, 
there is almost no traffic for these applications. We filtered out 
three representative applications: WEB video application, 
chat tool application, and cloud drive application.  

The network traffic of WEB video applications has the 
largest traffic volume, about half of the whole network traffic. 
The network traffic of the chat tools has high-frequency bursts 
that can increase several times in minutes, which is the main 
research object on traffic burst prediction of this work. The 
traffic of cloud drive applications has the lowest correlation 
between the NoNGF and the traffic series. We use the network 
traffic of these three applications and the whole network 
traffic as the experiment data for analysis and comparison. In 
fact, we did experiments for all applications’ traffic and in 
general the experimental results are consistent with the results 
obtained from the filtered applications’ traffic. 

Based on the metadata of each network flow, we find an 
effective feature of network flows by counting the number of 
new network flows generated per unit time. The start time of 
a flow falls in the unit time, and the number of newly-
generated network flows of this unit time is added by one, thus 
obtaining a time series.



 
Fig. 1. One-day time series of network traffic volume and the number of newly-generated network flows for the whole network, WEB video, chat tool and 
cloud drive application 

Fig. 1 shows the time series of network traffic volume and 
the time series of the NoNGF for a particular day (1440 
minutes). The blue curve is the network traffic time series, and 
the corresponding vertical axis indicates the traffic volume 
(size in KB). The orange curve is the time series of the NoNGF, 
and the corresponding vertical axis presents the number of 
newly-generated network flows. We can intuitively conclude 
that there is some correlation between the network traffic 
volume and NoNGF. Especially for the whole network, web 
video and chat tool network scenarios, the fluctuations, 
troughs, peaks, and bursts of both time series are almost 
simultaneously. However, the traffic of cloud drive does not 
lead to the similar conclusion. As shown in Fig. 1, in the whole 
network, WEB video, Chat Tools network scenarios, the 
images of the traffic series and NoNGF series are highly 
similar and have some correlation, implying interrelationships 
between these two time series, so it is necessary to conduct 
further analysis and research. 

B. Correlation Analysis 
In order to determine the relationship between the network 

traffic and NoNGF, it is necessary to quantitatively analyze 
the cross-correlation to investigate whether the NoNGF can 
reveal the fluctuation and burst of network traffic in advance. 
Thus, we use cross-correlation analysis to lay a theoretical 
foundation that NoNGF series can assist network traffic 
prediction. 

Cross-correlation is a similarity measurement for two time 
series, widely used in signal processing. It can determine the 
shape similarity of two time series well by considering their 
amplitude and phase fluctuations [21]. Cross-correlation 
tracks the movements of two or more sets of time series data 
relative to one another [22]. It compares multiple time series 
and objectively determines how closely they match and when 
the best match occurs. 

This work adopts three methods to analyze the cross-
correlation of two time series: scatter plot, cross-correlation 
coefficient, and time-lagged cross-correlation. The Scatter 

plot is used to determine whether the two series have a linear 
relationship [23]; Cross-correlation coefficient is used to 
quantify the magnitude of the correlation between the two 
time series; Time-lagged cross-correlation method can derive 
whether one time series fluctuates due to the fluctuation of the 
other time series and can determine the lag relationship 
between the two time series [24]. 

Fig. 2. The scatter plots of the network traffic volume series and the number 
of newly-generated network flows series of the whole network, WEB video, 
chat tool and cloud drive application 

As shown in Fig.2, we use the scatter plot method to verify 
whether there is a linear correlation between the network 
traffic series and the NoNGF series. The scatter plots of the 
whole network, WEB video, and chat tool application can be 
fitted as a straight line, proving that the traffic volume  and the 



NoNGF series have a linear correlation. The scatter plot of 
cloud drive does not show a linear relationship. 

The time series of network traffic for a day is defined as a 
vector 𝑇𝑇𝑑𝑑 = [𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡1440] , where 𝑡𝑡𝑖𝑖 denotes the network 
traffic volume at minute 𝑖𝑖 of each day. The time series of the 
NoNGF for a day is defined as a vector 𝑁𝑁𝑑𝑑 =
[𝑛𝑛1,𝑛𝑛2,⋯ ,𝑛𝑛1440] , where 𝑛𝑛𝑖𝑖 denotes the number of newly-
generated flows at minute 𝑖𝑖 of each day. 

We obtain the vectorial inner product of 𝑇𝑇𝑑𝑑 and 𝑁𝑁𝑑𝑑: 

𝑅𝑅(𝑇𝑇𝑑𝑑 ,𝑁𝑁𝑑𝑑) = � 𝑇𝑇𝑖𝑖 × 𝑁𝑁𝑖𝑖

1440

𝑖𝑖=1

(1) 

Then we calculate their cross-correlation coefficient (CC): 

𝐶𝐶𝐶𝐶(𝑇𝑇𝑑𝑑,𝑁𝑁𝑑𝑑) =
𝑅𝑅(𝑇𝑇𝑑𝑑,𝑁𝑁𝑑𝑑)

�𝑅𝑅(𝑇𝑇𝑑𝑑, 𝑇𝑇𝑑𝑑) × 𝑅𝑅(𝑁𝑁𝑑𝑑,𝑁𝑁𝑑𝑑)
(2) 

The cross-correlation coefficient ranges from 0 to 1, and 
the closer it is to 1, the stronger correlation is. The calculated 
cross-correlation coefficients for the particular day are shown 
in Table I. We compare Fig. 1, Fig. 2 with Table I and come 
to the expected conclusion. For the whole network, web video 
and chat tool application, the cross-correlation coefficient of 
the traffic and the NoNGF is very high, matching what the 
figures show. While the cross-correlation coefficient for cloud 
drive application is low. 

TABLE I.  THE CROSS-CORRELATION COEFFICIENTS OF THE 
NETWORK TRAFFIC AND THE NONGF 

Category of traffics Cross-correlation coefficient 
of the traffic and the NoNGF 

The whole network 0.9880 
WEB video 0.9842 
Chat tool 0.9693 

Cloud drive 0.8859 

C. Time-lagged cross-correlation (TLCC) 
We used the time-lagged cross-correlation (TLCC) 

method to verify the lagged relationship between NoNGF 
series and the traffic series, which can determine whether one 
series affects the other series movement and direction [25]. 
TLCC is measured by incrementally shifting one time series 
vector and repeatedly calculating the correlation between two 
signals, which can identify directionality between two time 
series, such as a leader-follower relationship in which the 
leader initiates a response that is repeated by the follower [26]. 
The peak correlation value indicates that the two time series 
are most synchronized at that time. If one time series vector 
leads the other vector, the peak correlation will not be at the 
center (offset 0). The offset coefficient where the peak 
correlation is located indicates how much time ago one time 
series influenced the other time series. 

We mentioned earlier that the generation of the network 
flows affects network traffic volume in the next few minutes 
with the TLCC verification. We extract the time series of 
network traffic and the time series of NoNGF with the length 
of one day (1440 minutes).  

We capture 1380 minutes in vector 𝑁𝑁𝑑𝑑  and denote it as 
𝑁𝑁𝑗𝑗 = �𝑛𝑛𝑗𝑗 ,𝑛𝑛𝑗𝑗+1,⋯ ,𝑛𝑛𝑗𝑗+1379�   𝑗𝑗 ∈ [1,60] , where 𝑗𝑗  takes an 

integer in the range of 0 to 60. This represents the NoNGF 
vector by forth and back of total 60-minute shifting. 

We capture the 31st minute to the 1410th minute of the 
network traffic series 𝑇𝑇𝑑𝑑, a total of 1380 minutes, as a fixed 
traffic vector, denoted as 𝑇𝑇30 = [𝑡𝑡30, 𝑡𝑡31,⋯ ,𝑛𝑛1409]. 

With 𝑗𝑗 = 30 as the central origin, the time-lagged cross-
correlation coefficient is calculated after each translation 
moving of the NoNGF series, defined as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘, and the value 
of k is an integer in the range of -30 to 30： 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 = 𝐶𝐶𝐶𝐶(𝑁𝑁𝑘𝑘+30,𝑇𝑇30)   𝑘𝑘 ∈ [−30,30] (3) 

The maximum value of TLCC in shifting is the TLCC 
Peak, noted as 𝑇𝑇𝑇𝑇, and the offset at the peak point is called 
Peak Offset, denoted as 𝑃𝑃𝑃𝑃: 

𝑇𝑇𝑇𝑇 = max(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘) (4) 

𝑃𝑃𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎max(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘) (5) 

According to TLCC, we fix the network traffic time series 
and calculate the cross-correlation coefficient after the forth 
and back translation shifting of NoNGF time series. Fig. 3 
shows the TLCC values of each offset for each network 
category traffic with the peak offset highlighting. The vertical 
axis indicates the cross-correlation coefficient; The horizontal 
axis indicates the forth and back time-shift; The black dashed 
line indicates the original cross-correlation coefficient where 
the offset is 0; The red dashed line indicates the offset with the 
peak cross-correlation coefficient. 

 
Fig. 3. TLCC of network traffic volume and the number of newly-generated 
network flows for each network application traffic 

The curves of the whole network, web video, and chat tool 
are similar with smooth curve, reaching the cross-correlation 
peak after a few minutes of lag, and the peak CC is extremely 
high (TLCC Peak > 0.98). For example, for web video 
applications, the cross-correlation coefficient between 
NoNGF and the network traffic peaks when the time series of 
NoNGF is shifted forward by 9 minutes, which means the 
change in NoNGF affects the fluctuation of the network traffic 
volume after 9 minutes. It proves that for the whole network, 



WEB videos and chat tool application, the NoNGF dominates 
the trend of network traffic fluctuations after a few minutes. 

 

 

Fig. 4. TLCC of network traffic volume and the number of newly-generated 
network flows for web video and cloud drive over multiple days 

Fig. 4 (a) shows the TLCC of WEB video over multiple 
days, and it is easy to find that they are all smooth and similar 
to each other, with peak offset around -9 minutes and 
extremely high peak cross-correlation coefficients. It turns out 
that the TLCC image with the smooth curve and a fixed peak 
offset is not a coincidence. When the TLCC peak is high 
enough, the same result always occurs. Therefore, for some 
network scenarios, NoNGF does affect the fluctuation of 
network traffic volume after a few minutes and is universally 
applicable. 

The TLCC curve of cloud drive is the opposite of the other 
network application traffic mentioned above. Fig. 4 (b) shows 
the TLCC of cloud drive data for multiple days, which shows 
no pattern with low cross-correlation coefficient, and none of 
them are similar. There is little correlation between the 
NoNGF and network traffic for cloud drive. Our analysis 
yields that, in the download application, the generation of 
network flows has less influence on the network traffic 
volume. The network bandwidth or the downloaded file's size 
has more impact on the network traffic volume. 

TABLE II.  AVERAGE TLCC  OF THE NONGF AND TRAFFIC SERIES 
RESULTS FOR THE WHOLE NETWORK AND THREE APPLICATION-LEVEL 

NETWORK TRAFFIC  

 Whole 
Network 

WEB 
Video 

Chat 
Tool 

Cloud 
Drive 

Avg CC 0.988 0.984 0.969 0.886 
Avg TLCC Peak 0.993 0.998 0.987 unstable 
Avg TLCC Offset -8 -9 -8 unstable 

 

Table II shows the TLCC results of NoNGF and traffic 
series for the whole network traffic and three application-level 
network traffic.  

The formula for defining each data item in the table is as 
follows: 

𝐴𝐴𝐴𝐴𝐴𝐴_𝐶𝐶𝐶𝐶 =
1

31
� �𝐶𝐶𝐶𝐶�𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑��
31

day=1

(6) 

𝐴𝐴𝐴𝐴𝑔𝑔_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1

31
� �𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑�
31

day=1

(7) 

𝐴𝐴𝐴𝐴𝑔𝑔_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
1

31
� �𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑�
31

day=1

(8) 

The subscript 𝑑𝑑𝑑𝑑𝑑𝑑 indicates the data of date 𝑑𝑑𝑑𝑑𝑑𝑑. Since 
the data set has a total of 31 days, the maximum value of 𝑑𝑑𝑑𝑑𝑑𝑑 
is 31. 

Consistent with the results shown in Fig. 3, Table II shows 
that these two time series of the whole network, WEB video, 
and chat tools have a high correlation with each other, whose 
TLCC peak and offset values maintain stable performance. 
The TLCC performance of these two series for cloud drive 
applications is not stable, and the correlation between NoNGF 
and traffic series in these networks is not apparent. 

Through TLCC analysis, we conclude that the feature 
series of NoNGF has a few minutes of advance predictive for 
network traffic volume series in the network scenarios of the 
whole network, chat tools and WEB video application. It 
indicates that the variation direction and amplitude of the 
network traffic series are highly consistent with the fluctuation 
of NoNGF series a few minutes earlier. Based on this finding, 
we can perceive the trend and burst of traffic volume several 
minutes in advance by NoNGF series, which provides the 
theoretical support that the feature of newly-generated 
network flows can improve network traffic prediction 
effectively. 

IV. PREDICTION EXPERIMENT AND RESULT ANALYSIS 
We derived the correlation between the network traffic 

volume and NoNGF by data analysis mining. In order to 
verify that the feature of NoNGF can indeed improve the 
accuracy of network traffic prediction, we build prediction 
models and take NoNGF series and network traffic volume 
series together as input for training and prediction, to compare 
with the prediction model only inputting traffic volume series. 

A. Design of experiments 
The most fundamental difference between the comparison 

experiments is the input features, which are divided into one-
dimensional data with only network traffic time series  and 
two-dimensional data that include a combination of NoNGF 
time series and network traffic time series. A deep-learning 
model with only one-dimensional data input is called a 1D-
model. A model with two-dimensional data input is called a 
2D-model, which is the network traffic prediction method 
based on NoNGF our proposed.  

Meanwhile, we built two prediction models, LSTM and 
TCN, which are described in related work, shown in Fig. 5. 
The reason for using two models with quite different 
principles is to demonstrate the universality of the feature 
NoNGF we proposed. Prediction models can be divided into 
two groups, 1D-LSTM/2D-LSTM, and 1D-TCN/2D-TCN. 
Each group of models has the same hyperparameters for 
training and prediction. Only the input data dimensions are 
different. Table III shows the main parameters of these models. 

First we performed single-step prediction experiments, 
outputting the predicted values for only one time-step. For a 
more comprehensive evaluation, we also designed multi-step 

(a) TLCC curves for WEB video over multiple days 

 (b) TLCC curves for cloud drive over multiple days 

 



prediction experiments using the LSTM model with input of 
60 time-steps to predict the next 10 time-steps single shot [27]. 

 
Fig. 5. LSTM and TCN model architectures 

TABLE III.  THE MAIN PARAMETERS OF LSTM AND TCN MODELS 

Model Main Parameters 
LSTM hidden_size=32; num_layers=3; input_steps=30; 

batch_size=32 
TCN nb_filter=64;  kernel_size=3; dilations=[1,2,4,8]; 

input_width=30;     batch_size=32;      
Multi-Step 
LSTM 

hidden_size=32; num_layers=3; input_steps=40; 
output_steps=20;       batch_size=32 

 

The dataset we use is the dataset introduced in Section 3.1, 
including the whole network, web video applications, chat 
tools, and cloud drive.  The network traffic time series and 
NoNGF time series is 31 days long and 10 minutes time 
granularity. The first 70% of them are the training set, 
followed by 20% of the training set are the validation set, and 
the last 10% are the test set. 

We use root mean squared error (RMSE) as metrics, where 
predicted values denote as 𝑦𝑦𝑖𝑖 , true values denote as 𝑦𝑦�𝑖𝑖, and the 
sample size denotes as 𝑚𝑚, defined as: 

RMSE = �
1
𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

(9) 

B. Single-step prediction 
We made single-step prediction on LSTM and TCN 

models.  Table IV shows the traffic prediction error RMSE for 
the different network traffic categories and provides the 
average peak cross-correlation. Table IV also shows the two-
dimensional input model accuracy improving rates (AIR) 
comparing with one-dimensional model for each group of 
models, defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝐷𝐷 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝐷𝐷

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝐷𝐷
(10) 

For traffic categories with a high TLCC peak (Avg TLCC 
Peak > 0.98) such as the whole network, web video and chat 
tool application, 2D input models with NoNGF to forecast 
traffic volume perform significantly more accurate and less 
RMSE error than 1D input models. In the whole network 
scenario, the 2D-LSTM reduces prediction RMSE error by 

10.41% compared to the 1D-LSTM and the TCN error by 
8.81%. In some single application traffic scenarios, such as 
Chat Tools, the improvement of each group of models is more 
than 10%, with LSTM being the most significant growth of 
15.97%. The network traffic of Chat Tools has more bursts 
than other application traffic.  

TABLE IV.  COMPARISON OF 1D MODEL AND 2D MODEL RMSE FOR 
EACH NETWORK TRAFFIC CATEGORY 

Network traffic 
category 

The Whole 
Network 

WEB 
Video 

Chat 
Tool 

Cloud 
Drive 

Avg TLCC Peak 0.9932 0.9984 0.9873 0.8911 
1D-LSTM RMSE 21.6875 9.5496 3.6345 0.9392 
2D-LSTM RMSE 19.4301 8.6127 3.0542 0.9593 

LSTM AIR 10.41% 9.81% 15.97% -3.44% 
1D-TCN RMSE 21.5526 9.6623 3.5913 0.9143 
2D-TCN RMSE 19.6559 8.6007 3.2532 0.9393 

TCN AIR 8.81% 10.99% 9.42% -2.73% 
 

The fact that NoNGF can better predict the burst condition 
is the main reason for the considerable accuracy improvement 
of 2D-input models. It reflects the effectiveness and 
robustness of our proposed feature series, NoNGF. In network 
traffic prediction for application categories with low TLCC 
peaks, such as Cloud drive, 2D-input models have no accuracy 
improvement over 1D-input even slightly decrease. The traffic 
of cloud drive accounts for 0.7% of the whole network traffic, 
so that it has minimal impact on the network traffic prediction. 

The prediction experiments prove that it is essential to do 
TLCC for different categories between network traffic and the 
NoNGF before prediction. As the TLCC results show, for the 
application traffic categories with stable TLCC results, which 
means the peak offsets are almost fixed and the average peak 
CC is greater than 0.98, network traffic prediction RMSE 
errors of 2D-input models are much lower compared to the 
1D-input. For the application traffic categories with 
insensitive TLCC performance, the traffic prediction effect of 
2D-input models will not improve.  

 

Fig. 6. Comparison of 1D/2D-LSTM and 1D/2D-TCN prediction result on 
network traffic burst prediction for Chat Tools application 
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Because the traffic of chat tools has more bursts, it can 
better show the advantage and effectiveness of network burst 
prediction based on the feature of newly-generated network 
flows. Fig. 6 shows the network traffic prediction results for 
the chat tool application traffic. The green dots are the ground 
truth, the orange crosses are the predicted values of 2D-
Models, and the blue triangles are the predicted values of 1D-
Models.  

As shown in Fig. 6 (a) and (b), it is clear that the 2D-LSTM 
with the NoNGF series as input has better performance, and 
the predicted values are closer to the ground truth with less 
error compared to 1D-LSTM. Observing the traffic burst 
moments in the dashed box, the 1D-model prediction results 
change inaccurately and slowly during bursts.  In the worst 
case, the 1D-models perform non-robust prediction. The 
predicted value is very close to the previous true value. As 
shown in Fig. 6 (c) and (d), the predicted values of 1D-TCN 
lag the ground truth by exactly one time-step. This is the most 
common and most difficult problem for traffic burst prediction, 
but our approach effectively solves this problem. The 
prediction results of 2D-models we proposed rise or fall 
accurately during traffic bursts, even almost overlap with the 
ground truth, without any advance or lag. In conclusion, 
network traffic prediction based on the feature of newly-
generated network flows can significantly improve accuracy 
in the case of network traffic bursts. 

C. Multi-step prediction 
We also built the LSTM single-shot multi-step prediction 

model and compared multi-step traffic prediction between 
1D-input and 2D-input, with inputting 60 time-steps and 
single-shot predicting 10 time-steps. Table V shows the multi-
steps prediction RMSE errors of 1D-LSTM and 2D-LSTM for 
each network traffic category, and the improving rate of 2D-
LSTM compared with 1D-LSTM. We can see that the RMSE 
of multi-step prediction is slightly higher than that of single-
step prediction, and the accuracy improvement obtained with 
our method is greater. 2D-LSTM  prediction has 20.41% less 
RMSE error than 1D-LSTM for the whole network and the 
marvelous 32.53% less RMSE error for chat tools. We can 
conclude that the multi-step prediction based on the feature of 
newly-generated network flows is still valid and can 
significantly improve the accuracy of predicting the network 
traffic for categories with high TLCC peaks. 

TABLE V.  MULTI-STEP PREDICTION RMSE ERRORS OF 1D-LSTM AND 
2D-LSTM FOR EACH TRAFFIC CATEGORY 

Network traffic 
category 

The Whole 
Network 

WEB 
Video 

Chat 
Tool 

Cloud 
Drive 

Avg TLCC Peak 0.9932 0.9984 0.9873 0.8911 
1D-LSTM RMSE 36.6113 16.7462 5.2715 1.0109 
2D-LSTM RMSE 29.1398 14.8380 3.5564 0.9795 
Multi-Step AIR 20.41% 11.39% 32.53% 3.11% 

 

Fig. 7 shows the multi-step prediction results for chat tools. 
The black dashed line indicates the starting point of multi-step 
prediction, the green dots are the ground truth, the blue 
triangles are the 1D-LSTM prediction results, and the orange 
crosses are the 2D-LSTM prediction results. We can see that 
the prediction result of 2D-LSTM is much better than that of 
1D-LSTM and the gap in curve fitting is noticeable. The 
prediction results of 2D-LSTM are closer to the true values 
when bursts occur, while those of 1D-LSTM can only predict 
general trends. The 1D-LSTM prediction lags during the 
traffic burst rise and the burst peak value of prediction is much 

lower than the true burst peak. In the case of traffic burst fall, 
the 1D-model predicted values drop early and slowly. 
However, the 2D-LSTM predicted values rise or fall 
accurately and abruptly within one time step, and the 
amplitude of variation is consistent with the true traffic burst. 
In the burst peak period, the predicted values of the 2D-model 
are much closer to the ground truth than the 1D-model. 
Network traffic prediction based on the feature of newly-
generated network flows works better for the burst and 
fluctuation of the network traffic.  

 
Fig. 7. Multi-step prediction results for chat tools network traffic 

In addition, we counted the RMSE error per prediction 
step in the multi-step prediction under the chat tool traffic. As 
shown in Table VI, the RMSE error of the fifth time-step in 
2D-LSTM predicting is lower than that of the first time-step 
in 1D-LSTM predicting.  

TABLE VI.  COMPARISON OF 1D-LSTM AND 2D-LSTM PER SINGLE 
STEP RMSE FOR MULTI-STEP PREDICTION IN CHAT TOOL APPLICATION 
NETWORKS TRAFFIC 

Time Step 1 2 3 4 5 6 
1D-LSTM RMSE 3.87 4.30 4.52 4.75 4.86 4.94 
2D-LSTM RMSE 3.12 3.44 3.59 3.74 3.80 4.01 

 

From the comparison we infer that the network traffic 
prediction based on NoNGF is much more precise than the 
original method in predicting longer future network traffic for 
multi-step predictions and able to anticipate network burst 
traffic earlier. Our traffic prediction method accurately detects 
network emergencies earlier and allows for more timely 
notification to the network control system. 



V. CONCLUSION 
In this paper, we propose a novel approach to network 

traffic prediction based on the feature of newly-generated 
network flows. We provide an inspiring idea of network traffic 
prediction by mining external features of traffic from network 
flow data as covariates to assist in traffic prediction. 

We mine an effective feature series, the number of newly-
generated network flows (NoNGF), from the network flow 
data. We demonstrate that the network traffic time series and 
NoNGF time series are strongly correlated in the whole 
network traffic and most of the application-level network 
traffic. Through TLCC analysis, we prove that we can 
anticipate the trend and burst of network traffic several 
minutes in advance by NoNGF. Then we build LSTM and 
TCN prediction models, and perform prediction experiments 
with multiple inputs and settings for the whole network and 
three application network traffic. Our traffic prediction 
method significantly improves prediction accuracy, with 
RMSE reduction of more than 10% on average. For some 
application network traffic with frequently burst such as chat 
tool, our multi-step prediction RMSE error is reduced by more 
than 30%. It is worth mentioning that our prediction method 
performs much better for burst traffic prediction with nearly 
perfect accuracy. 

This work is just to throw light on a different way of 
thinking about network traffic prediction. Network traffic 
prediction accuracy can be improved not only by optimizing 
prediction models, but also by mining the relevant external 
features of network flows as covariates to assist network 
traffic prediction. It may be possible to explore other network 
flow features that can also effectively assist in network traffic 
prediction. In future work, we will customize advanced 
models and techniques, such as attention mechanism and 
transformer [28, 29], to effectively inject more network flow 
features into the prediction model to achieve better results. 
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