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Abstract—Network traffic prediction is essential for
intelligent network management, such as resource reservation
and burst warning. Existing prediction approaches are
vulnerable in accurately capturing the sudden surge or plunge,
uniformly denoted as the traffic burst. To solve this problem, we
extract the time series of the number of newly-generated
network flows (NoNGF) from the network flow information,
explaining the intrinsic mechanism of network traffic bursts.
We use time-lagged cross-correlation analysis to identify
directionality between the NoNGF series and traffic series. It
proves that we can perceive the future fluctuation and burst of
network traffic by NoNGF in advance. The comprehensive
prediction experiments of the whole network traffic and three
application-level network traffic demonstrate that our proposed
approach exhibits a significant performance improvement over
the original LSTM and TCN models. Our approach can
accurately capture the moment of network burst and the
predicted value much more precisely when the burst occurs. In
summary, our proposed traffic prediction based on NoNGF can
significantly improve the prediction accuracy, especially for
network burst traffic.

Keywords—Network traffic prediction, network flow feature,
traffic burst prediction, cross-correlation analysis

I. INTRODUCTION

Network traffic has increased exponentially, and network
burst has become more frequent, because of the massive
network devices access to the Internet and the further
improvement of users' requirements for network service
quality [1,2]. Widely employing advanced network
technologies makes intelligent network control a reality [3]. In
order to improve the quality of service and optimize the
allocation of network resources in advance, it is essential to
predict the network traffic with high accuracy [4].

Network traffic prediction makes forecasts of future traffic
demands by observing the historical time series data, which is
a kind of time series prediction. The field of network traffic
prediction based on deep learning has made great progress in
recent years [5]. Deep learning methods can learn high-
dimensional features of the historical series of network traffic
for predicting the future traffic. Because network traffic varies
drastically and traffic burst is highly random, helpful features
of random fluctuations and bursts cannot be learned from
historical traffic series [6]. Predicting random network traffic
fluctuations and traffic bursts is a difficult problem of network
traffic prediction, and it usually causes non-robust prediction,
which means the predicted value is very close to the previous
true value.

As a novel idea of the network traffic prediction method,
we mine the feature series strongly correlated with the
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network traffic from the network flow data and input it as a
covariate into the prediction models. The generation of a
network flow indicates that communicating parties have
established an information path in a network. Data will be
transmitted in the following period, generating network traffic
volume. Generating a network flow affects traffic volume for
the next few minutes. We count the number of new network
flows generated per unit time which we call the number of
newly-generated network flows (NoNGF). This feature is
simple to obtain but remarkably positively affects the traffic
prediction accuracy by inputting into the prediction model as
an external variable along with the network traffic. If the
prediction model accepts not only the predicted time series,
but also other external variables (called covariate), then this
prediction method is called covariate prediction [7]. In this
paper, we propose a covariate assisted prediction method of
network traffic based on NoNGF series as the covariate.
Analyzing or applying external features as covariates for
network traffic prediction have not been proposed yet. Our
research work is the first to use external features of network
traffic as covariates for traffic prediction and significantly
improves the prediction accuracy.

We theoretically demonstrate that the NoNGF feature
variable has a strong correlation with the traffic series by
feature engineering and cross-correlation analysis. Moreover,
we identify directionality between the time series of NoNGF
and network traffic as a leader-follower relationship [8]. It
indicates NoONGF as the leader initiates a fluctuation which is
repeated by the network traffic as the follower, which proves
that we can predict the future fluctuation and burst of network
traffic by NoNGF at the current moment.

We experimentally verify that the NoNGF series has a
considerable advantage for accurately predicting the highly
random network traffic and traffic burst by using various
prediction models that support covariate prediction such as
LSTM and TCN [9, 10]. The covariate prediction method we
proposed that inputs both the NoNGF series and the network
traffic series has a vast improvement over the prediction
method that only inputs the traffic series. Our proposed
method significantly improves not only the accuracy of
overall network traffic prediction but also the prediction of
network traffic bursts, which is much more precise in
predicting traffic burst peaks and troughs.

Section II of this paper describes the related work of
network traffic prediction methods and introduces some time
series prediction models used in the experiments. Section II1
introduces our work on network flow features, including the
detail of the used network flow dataset, the definition of the
number of newly-generated network flows, and the analysis
of interrelationships between the NoNGF and traffic series.
Section IV presents our prediction experiment design and



comparative experiment results, including the prediction error
analysis and image comparison. Our proposed method has
better prediction accuracy and performs excellently during
network bursts. Section V concludes the whole paper and
delivers the outlook of the following work.

II. RELATED WORK

Network traffic prediction models can override or
optimize classical time series prediction models by
considering network traffic data as a time series. In recent
years, many network traffic prediction models and methods
have been proposed, mainly including machine learning and
deep learning [11]. For predicting traffic bursts, some feature

extraction methods and prediction models have been proposed.

These will be introduced in this section.

Traditional methods mainly include linear regression
methods such as autoregressive integrated moving average
(ARIMA) models and nonlinear regression methods such as
support vector machine (SVM), which can predict the network
traffic in the following time [12, 13].

Network traffic prediction by deep learning is a current
research hotspot. Recurrent neural network (RNN) is a deep
learning model consisting of recurrent neurons, which
recursively loop through time steps to learn the features of the
previous series and pass them to the next neuron [14]. Long
short-term memory (LSTM) neural network is a variation of
RNN widely used in time series prediction. LSTM constructs
input gate, output gate, and forget gate inside neurons to
remember effective features and selectively forget ineffective
features, which can solve the gradient vanishing and explosion
problems during training of long series [15]. LSTM model can
effectively learn the periodic features and stable trends of
network traffic time series, and performs well in predicting
stationary traffic series. Convolutional neural network (CNN)
is a classical deep learning model, which effectively extracts
features and reduces computation through convolution and
pooling operations, which is advantageous in dealing with
temporal-spatial composite scenarios [16]. Temporal
Convolutional Network (TCN) obtains historical information
through causal convolution, makes the receptive field more
flexible through inflation convolution, and solves gradient
vanishing problem through residual connections, that can
achieve or even surpass the effect of RNN models in time
series prediction [17].

For network traffic prediction, peculiar network traffic
features need to be mined and extracted by feature engineering
to improve the prediction accuracy. [18] decompose the
network traffic time series into several feature series by
wavelet transform to separate the burstiness, periodicity and
non-stationary, then put them together in an LSTM model for
prediction. [19] divide the network traffic burst into several
scenarios to describe the network traffic burst process and
achieve better performance and higher accuracy.

Covariate assisted prediction is a method of time series
prediction. When predict a series with poor autocorrelation,
low stationarity, and high randomness, it is easy to have no
predictive effect. In this situation, it is necessary to find
suitable external feature variables as covariates to explain the
internal mechanism of time series variation [7]. In the field of
network traffic prediction, researchers mainly focus on the
network traffic time series itself to do feature extraction and
model optimization to improve the prediction accuracy. [20]
use network traffic series from several regions as covariates to

learn the spatial features of traffic but still do not involve
external variables. Barely analysis or research to find external
characteristic variables of network traffic for covariate
prediction has emerged.

III. CORRELATION ANALYSIS BETWEEN NETWORK TRAFFIC
AND FLOW FEATURES

Network flow and network traffic are two sides of the
same coin. The establishment of network flow indicates that
there will be data packets transmitted between communicating
parties, which will inevitably generate network traffic in the
following period. Therefore, feature variables of network
flows can be used as covariates for network traffic prediction
to explain the intrinsic mechanism and generation cause of
network traffic changes or bursts. It is necessary to do some
feature extraction and analysis on network flows. For this
reason, we extracted an effective network flow feature,
NoNGF. In addition, we proved that it can predict the
fluctuation and variation of network traffic in advance, and
can significantly help us predict network traffic burst.

A. Network Traffic and Flow Data

The dataset we use is network traffic data and network
flow data for a city of over 3 million people in China. This
dataset records data for a full month (31 days) of July 2020.
This dataset is collected by deploying optical splitter and deep
packet inspection (DPI) server on the metro core network And
of course, the data has been desensitized.

Network traffic data is a time series about the size of
network traffic volume (in KB). Network flow data is a
detailed description of the network flows established in the
city during the month, including desensitized IP address, port
number, flow start time, flow end time, and network traffic
volume. The network flow dataset is huge with 3740GB for
just one month's duration because it records log information
of each flow. This dataset also labels the traffic with
application categories so that we can do more detailed analysis
and prediction on the application-level network traffic.

The dataset is divided into more than 20 application
categories. Each application category is subdivided into
specific applications and protocols. Since some application
categories were created early and the protocols used are old,
there is almost no traffic for these applications. We filtered out
three representative applications: WEB video application,
chat tool application, and cloud drive application.

The network traffic of WEB video applications has the
largest traffic volume, about half of the whole network traffic.
The network traffic of the chat tools has high-frequency bursts
that can increase several times in minutes, which is the main
research object on traffic burst prediction of this work. The
traffic of cloud drive applications has the lowest correlation
between the NoNGF and the traffic series. We use the network
traffic of these three applications and the whole network
traffic as the experiment data for analysis and comparison. In
fact, we did experiments for all applications’ traffic and in
general the experimental results are consistent with the results
obtained from the filtered applications’ traffic.

Based on the metadata of each network flow, we find an
effective feature of network flows by counting the number of
new network flows generated per unit time. The start time of
a flow falls in the unit time, and the number of newly-
generated network flows of this unit time is added by one, thus
obtaining a time series.
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Fig. 1. One-day time series of network traffic volume and the number of newly-generated network flows for the whole network, WEB video, chat tool and

cloud drive application

Fig. 1 shows the time series of network traffic volume and
the time series of the NoNGF for a particular day (1440
minutes). The blue curve is the network traffic time series, and
the corresponding vertical axis indicates the traffic volume
(size in KB). The orange curve is the time series of the NoONGF,
and the corresponding vertical axis presents the number of
newly-generated network flows. We can intuitively conclude
that there is some correlation between the network traffic
volume and NoNGF. Especially for the whole network, web
video and chat tool network scenarios, the fluctuations,
troughs, peaks, and bursts of both time series are almost
simultaneously. However, the traffic of cloud drive does not
lead to the similar conclusion. As shown in Fig. 1, in the whole
network, WEB video, Chat Tools network scenarios, the
images of the traffic series and NoNGF series are highly
similar and have some correlation, implying interrelationships
between these two time series, so it is necessary to conduct
further analysis and research.

B. Correlation Analysis

In order to determine the relationship between the network
traffic and NoNGF, it is necessary to quantitatively analyze
the cross-correlation to investigate whether the NoNGF can
reveal the fluctuation and burst of network traffic in advance.
Thus, we use cross-correlation analysis to lay a theoretical
foundation that NoNGF series can assist network traffic
prediction.

Cross-correlation is a similarity measurement for two time
series, widely used in signal processing. It can determine the
shape similarity of two time series well by considering their
amplitude and phase fluctuations [21]. Cross-correlation
tracks the movements of two or more sets of time series data
relative to one another [22]. It compares multiple time series
and objectively determines how closely they match and when
the best match occurs.

This work adopts three methods to analyze the cross-
correlation of two time series: scatter plot, cross-correlation
coefficient, and time-lagged cross-correlation. The Scatter

plot is used to determine whether the two series have a linear
relationship [23]; Cross-correlation coefficient is used to
quantify the magnitude of the correlation between the two
time series; Time-lagged cross-correlation method can derive
whether one time series fluctuates due to the fluctuation of the
other time series and can determine the lag relationship
between the two time series [24].
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Fig. 2. The scatter plots of the network traffic volume series and the number
of newly-generated network flows series of the whole network, WEB video,
chat tool and cloud drive application

As shown in Fig.2, we use the scatter plot method to verify
whether there is a linear correlation between the network
traffic series and the NoNGF series. The scatter plots of the
whole network, WEB video, and chat tool application can be
fitted as a straight line, proving that the traffic volume and the



NoNGF series have a linear correlation. The scatter plot of
cloud drive does not show a linear relationship.

The time series of network traffic for a day is defined as a
vector Ty = [ty,ty, **, t1440) , Where t;denotes the network
traffic volume at minute i of each day. The time series of the
NoNGF for a day is defined as a vector Ny =
[N, Ny, +++, Nygq0], Where n;denotes the number of newly-
generated flows at minute i of each day.

We obtain the vectorial inner product of T; and N:

1440

R(TaNg) = ) Ty x N M

i=1

Then we calculate their cross-correlation coefficient (CC):

CC(THN,) = R(Ta Vo) (2)
VR(T4Tg) X R(Ng, Ny)

The cross-correlation coefficient ranges from 0 to 1, and
the closer it is to 1, the stronger correlation is. The calculated
cross-correlation coefficients for the particular day are shown
in Table I. We compare Fig. 1, Fig. 2 with Table I and come
to the expected conclusion. For the whole network, web video
and chat tool application, the cross-correlation coefficient of
the traffic and the NoNGF is very high, matching what the
figures show. While the cross-correlation coefficient for cloud
drive application is low.

TABLE L. THE CROSS-CORRELATION COEFFICIENTS OF THE

NETWORK TRAFFIC AND THE NONGF

Cross-correlation coefficient

Category of traffics | - o0 ' affic and the NONGF

The whole network 0.9880
WEB video 0.9842
Chat tool 0.9693
Cloud drive 0.8859

C. Time-lagged cross-correlation (TLCC)

We wused the time-lagged cross-correlation (TLCC)
method to verify the lagged relationship between NoNGF
series and the traffic series, which can determine whether one
series affects the other series movement and direction [25].
TLCC is measured by incrementally shifting one time series
vector and repeatedly calculating the correlation between two
signals, which can identify directionality between two time
series, such as a leader-follower relationship in which the
leader initiates a response that is repeated by the follower [26].
The peak correlation value indicates that the two time series
are most synchronized at that time. If one time series vector
leads the other vector, the peak correlation will not be at the
center (offset 0). The offset coefficient where the peak
correlation is located indicates how much time ago one time
series influenced the other time series.

We mentioned earlier that the generation of the network
flows affects network traffic volume in the next few minutes
with the TLCC verification. We extract the time series of
network traffic and the time series of NoNGF with the length
of one day (1440 minutes).

We capture 1380 minutes in vector N; and denote it as
N; = [nj,n]-+1,---,n]-+1379] j €[1,60], where j takes an

integer in the range of 0 to 60. This represents the NoNGF
vector by forth and back of total 60-minute shifting.

We capture the 31st minute to the 1410th minute of the
network traffic series Ty, a total of 1380 minutes, as a fixed
traffic vector, denoted as T5q = [t30, t31,***» M1409]-

With j = 30 as the central origin, the time-lagged cross-
correlation coefficient is calculated after each translation
moving of the NoNGF series, defined as TLCC,,, and the value
of'k is an integer in the range of -30 to 30:

TLCCy, = CC(Nyy30,Ts0) k € [—30,30] (3)

The maximum value of TLCC in shifting is the TLCC
Peak, noted as TP, and the offset at the peak point is called
Peak Offset, denoted as PO:

TP = max(TLCCy) 4)
PO = argmax(TLCC,) (5)

According to TLCC, we fix the network traffic time series
and calculate the cross-correlation coefficient after the forth
and back translation shifting of NoNGF time series. Fig. 3
shows the TLCC values of each offset for each network
category traffic with the peak offset highlighting. The vertical
axis indicates the cross-correlation coefficient; The horizontal
axis indicates the forth and back time-shift; The black dashed
line indicates the original cross-correlation coefficient where
the offset is 0; The red dashed line indicates the offset with the
peak cross-correlation coefficient.
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Fig. 3. TLCC of network traffic volume and the number of newly-generated
network flows for each network application traffic

The curves of the whole network, web video, and chat tool
are similar with smooth curve, reaching the cross-correlation
peak after a few minutes of lag, and the peak CC is extremely
high (TLCC Peak > 0.98). For example, for web video
applications, the cross-correlation coefficient between
NoNGF and the network traffic peaks when the time series of
NoNGF is shifted forward by 9 minutes, which means the
change in NoNGF affects the fluctuation of the network traffic
volume after 9 minutes. It proves that for the whole network,



WEB videos and chat tool application, the NoNGF dominates
the trend of network traffic fluctuations after a few minutes.

(a) TLCC curves for WEB video over multiple days
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Fig. 4 (a) shows the TLCC of WEB video over multiple
days, and it is easy to find that they are all smooth and similar
to each other, with peak offset around -9 minutes and
extremely high peak cross-correlation coefficients. It turns out
that the TLCC image with the smooth curve and a fixed peak
offset is not a coincidence. When the TLCC peak is high
enough, the same result always occurs. Therefore, for some
network scenarios, NoNGF does affect the fluctuation of
network traffic volume after a few minutes and is universally
applicable.

The TLCC curve of cloud drive is the opposite of the other
network application traffic mentioned above. Fig. 4 (b) shows
the TLCC of cloud drive data for multiple days, which shows
no pattern with low cross-correlation coefficient, and none of
them are similar. There is little correlation between the
NoNGF and network traffic for cloud drive. Our analysis
yields that, in the download application, the generation of
network flows has less influence on the network traffic
volume. The network bandwidth or the downloaded file's size
has more impact on the network traffic volume.

TABLE II. AVERAGE TLCC OF THE NONGF AND TRAFFIC SERIES
RESULTS FOR THE WHOLE NETWORK AND THREE APPLICATION-LEVEL
NETWORK TRAFFIC

Whole WEB | Chat | Cloud

Network | Video | Tool | Drive
Avg CC 0.988 0.984 | 0.969 | 0.886
Avg TLCC Peak 0.993 0.998 | 0.987 | unstable
Avg TLCC Offset -8 -9 -8 unstable

Table II shows the TLCC results of NoNGF and traffic
series for the whole network traffic and three application-level
network traffic.

The formula for defining each data item in the table is as
follows:

31
1
avg CC =57 > (CC(Tuay, Naay)) ®)
day=1

31

1
Avg TLCC Peak = == Z (TPaay) ™)
day=1

31
1
Avg_TLCC_Of fset = o Z (POsey)  (8)
day=1

The subscript day indicates the data of date day. Since
the data set has a total of 31 days, the maximum value of day
is31.

Consistent with the results shown in Fig. 3, Table II shows
that these two time series of the whole network, WEB video,
and chat tools have a high correlation with each other, whose
TLCC peak and offset values maintain stable performance.
The TLCC performance of these two series for cloud drive
applications is not stable, and the correlation between NoNGF
and traffic series in these networks is not apparent.

Through TLCC analysis, we conclude that the feature
series of NoNGF has a few minutes of advance predictive for
network traffic volume series in the network scenarios of the
whole network, chat tools and WEB video application. It
indicates that the variation direction and amplitude of the
network traffic series are highly consistent with the fluctuation
of NoNGF series a few minutes earlier. Based on this finding,
we can perceive the trend and burst of traffic volume several
minutes in advance by NoNGF series, which provides the
theoretical support that the feature of newly-generated
network flows can improve network traffic prediction
effectively.

IV. PREDICTION EXPERIMENT AND RESULT ANALYSIS

We derived the correlation between the network traffic
volume and NoNGF by data analysis mining. In order to
verify that the feature of NoNGF can indeed improve the
accuracy of network traffic prediction, we build prediction
models and take NoNGF series and network traffic volume
series together as input for training and prediction, to compare
with the prediction model only inputting traffic volume series.

A. Design of experiments

The most fundamental difference between the comparison
experiments is the input features, which are divided into one-
dimensional data with only network traffic time series and
two-dimensional data that include a combination of NoNGF
time series and network traffic time series. A deep-learning
model with only one-dimensional data input is called a 1D-
model. A model with two-dimensional data input is called a
2D-model, which is the network traffic prediction method
based on NoNGF our proposed.

Meanwhile, we built two prediction models, LSTM and
TCN, which are described in related work, shown in Fig. 5.
The reason for using two models with quite different
principles is to demonstrate the universality of the feature
NoNGF we proposed. Prediction models can be divided into
two groups, 1D-LSTM/2D-LSTM, and 1D-TCN/2D-TCN.
Each group of models has the same hyperparameters for
training and prediction. Only the input data dimensions are
different. Table III shows the main parameters of these models.

First we performed single-step prediction experiments,
outputting the predicted values for only one time-step. For a
more comprehensive evaluation, we also designed multi-step



prediction experiments using the LSTM model with input of
60 time-steps to predict the next 10 time-steps single shot [27].

(a) LSTM Model

Input LSTM ldy(_r
(steps*feature) N Dense Output
1D: feature=1 —— (out_steps, feature) (reshape)
2D: feature=2 T o .——Lu
cell=32
layer=3
(b) TCN Model
TCN layer
Input
(width*feature) Dense Output
1D: feature=1 (out_steps, feature) (reshape)
2D: feature=2

filter=64
kernel_size=2

Fig. 5. LSTM and TCN model architectures

TABLE IIL THE MAIN PARAMETERS OF LSTM AND TCN MODELS

Model Main Parameters

LSTM hidden_size=32; num_layers=3; input_steps=30;
batch_size=32

TCN nb_filter=64; kernel size=3; dilations=[1,2,4,8];
input_width=30; batch_size=32;

Multi-Step hidden_size=32; num_layers=3; input_steps=40;

LSTM output_steps=20;  batch_size=32

The dataset we use is the dataset introduced in Section 3.1,
including the whole network, web video applications, chat
tools, and cloud drive. The network traffic time series and
NoNGF time series is 31 days long and 10 minutes time
granularity. The first 70% of them are the training set,
followed by 20% of the training set are the validation set, and
the last 10% are the test set.

We use root mean squared error (RMSE) as metrics, where
predicted values denote as y;, true values denote as y;, and the
sample size denotes as m, defined as:

RMSE = 9

B. Single-step prediction

We made single-step prediction on LSTM and TCN
models. Table I'V shows the traffic prediction error RMSE for
the different network traffic categories and provides the
average peak cross-correlation. Table IV also shows the two-
dimensional input model accuracy improving rates (AIR)
comparing with one-dimensional model for each group of
models, defined as:

RMSE]_D - RMSEZD
RMSE,,

AIR = (10)

For traffic categories with a high TLCC peak (Avg TLCC
Peak > 0.98) such as the whole network, web video and chat
tool application, 2D input models with NoNGF to forecast
traffic volume perform significantly more accurate and less
RMSE error than 1D input models. In the whole network
scenario, the 2D-LSTM reduces prediction RMSE error by

10.41% compared to the 1D-LSTM and the TCN error by
8.81%. In some single application traffic scenarios, such as
Chat Tools, the improvement of each group of models is more
than 10%, with LSTM being the most significant growth of
15.97%. The network traffic of Chat Tools has more bursts
than other application traffic.

TABLE IV. COMPARISON OF 1D MODEL AND 2D MODEL RMSE FOR
EACH NETWORK TRAFFIC CATEGORY

Network traffic The Whole WEB Chat Cloud
category Network Video Tool Drive
Avg TLCC Peak 0.9932 0.9984 0.9873 0.8911
1D-LSTM RMSE 21.6875 9.5496 3.6345 0.9392
2D-LSTM RMSE 19.4301 8.6127 3.0542 0.9593
LSTM AIR 10.41% 9.81% 15.97% -3.44%
1D-TCN RMSE 21.5526 9.6623 3.5913 0.9143
2D-TCN RMSE 19.6559 8.6007 3.2532 0.9393
TCN AIR 8.81% 10.99% 9.42% -2.73%

The fact that NoNGF can better predict the burst condition
is the main reason for the considerable accuracy improvement
of 2D-input models. It reflects the effectiveness and
robustness of our proposed feature series, NONGF. In network
traffic prediction for application categories with low TLCC
peaks, such as Cloud drive, 2D-input models have no accuracy
improvement over 1D-input even slightly decrease. The traffic
of cloud drive accounts for 0.7% of the whole network traffic,
so that it has minimal impact on the network traffic prediction.

The prediction experiments prove that it is essential to do
TLCC for different categories between network traffic and the
NoNGF before prediction. As the TLCC results show, for the
application traffic categories with stable TLCC results, which
means the peak offsets are almost fixed and the average peak
CC is greater than 0.98, network traffic prediction RMSE
errors of 2D-input models are much lower compared to the
ID-input. For the application traffic categories with
insensitive TLCC performance, the traffic prediction effect of
2D-input models will not improve.
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Fig. 6. Comparison of 1D/2D-LSTM and 1D/2D-TCN prediction result on
network traffic burst prediction for Chat Tools application



Because the traffic of chat tools has more bursts, it can
better show the advantage and effectiveness of network burst
prediction based on the feature of newly-generated network
flows. Fig. 6 shows the network traffic prediction results for
the chat tool application traffic. The green dots are the ground
truth, the orange crosses are the predicted values of 2D-
Models, and the blue triangles are the predicted values of 1D-
Models.

As shown in Fig. 6 (a) and (b), it is clear that the 2D-LSTM
with the NoNGF series as input has better performance, and
the predicted values are closer to the ground truth with less
error compared to 1D-LSTM. Observing the traffic burst
moments in the dashed box, the 1D-model prediction results
change inaccurately and slowly during bursts. In the worst
case, the 1D-models perform non-robust prediction. The
predicted value is very close to the previous true value. As
shown in Fig. 6 (c¢) and (d), the predicted values of 1D-TCN
lag the ground truth by exactly one time-step. This is the most
common and most difficult problem for traffic burst prediction,
but our approach effectively solves this problem. The
prediction results of 2D-models we proposed rise or fall
accurately during traffic bursts, even almost overlap with the
ground truth, without any advance or lag. In conclusion,
network traffic prediction based on the feature of newly-
generated network flows can significantly improve accuracy
in the case of network traffic bursts.

C. Multi-step prediction

We also built the LSTM single-shot multi-step prediction
model and compared multi-step traffic prediction between
1D-input and 2D-input, with inputting 60 time-steps and
single-shot predicting 10 time-steps. Table V shows the multi-
steps prediction RMSE errors of 1D-LSTM and 2D-LSTM for
each network traffic category, and the improving rate of 2D-
LSTM compared with 1D-LSTM. We can see that the RMSE
of multi-step prediction is slightly higher than that of single-
step prediction, and the accuracy improvement obtained with
our method is greater. 2D-LSTM prediction has 20.41% less
RMSE error than 1D-LSTM for the whole network and the
marvelous 32.53% less RMSE error for chat tools. We can
conclude that the multi-step prediction based on the feature of
newly-generated network flows is still valid and can
significantly improve the accuracy of predicting the network
traffic for categories with high TLCC peaks.

TABLE V. MULTI-STEP PREDICTION RMSE ERRORS OF 1D-LSTM AND
2D-LSTM FOR EACH TRAFFIC CATEGORY

Network traffic The Whole WEB Chat Cloud
category Network Video Tool Drive
Avg TLCC Peak 0.9932 0.9984 | 0.9873 0.8911
1D-LSTM RMSE 36.6113 16.7462 | 5.2715 1.0109
2D-LSTM RMSE 29.1398 14.8380 | 3.5564 | 0.9795
Multi-Step AIR 20.41% 11.39% | 32.53% | 3.11%

Fig. 7 shows the multi-step prediction results for chat tools.
The black dashed line indicates the starting point of multi-step
prediction, the green dots are the ground truth, the blue
triangles are the 1D-LSTM prediction results, and the orange
crosses are the 2D-LSTM prediction results. We can see that
the prediction result of 2D-LSTM is much better than that of
I1D-LSTM and the gap in curve fitting is noticeable. The
prediction results of 2D-LSTM are closer to the true values
when bursts occur, while those of 1D-LSTM can only predict
general trends. The 1D-LSTM prediction lags during the
traffic burst rise and the burst peak value of prediction is much

lower than the true burst peak. In the case of traffic burst fall,
the 1D-model predicted values drop early and slowly.
However, the 2D-LSTM predicted values rise or fall
accurately and abruptly within one time step, and the
amplitude of variation is consistent with the true traffic burst.
In the burst peak period, the predicted values of the 2D-model
are much closer to the ground truth than the 1D-model.
Network traffic prediction based on the feature of newly-
generated network flows works better for the burst and
fluctuation of the network traffic.
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Fig. 7. Multi-step prediction results for chat tools network traffic

In addition, we counted the RMSE error per prediction
step in the multi-step prediction under the chat tool traffic. As
shown in Table VI, the RMSE error of the fifth time-step in
2D-LSTM predicting is lower than that of the first time-step
in 1D-LSTM predicting.

TABLE VL COMPARISON OF 1D-LSTM AND 2D-LSTM PER SINGLE
STEP RMSE FOR MULTI-STEP PREDICTION IN CHAT TOOL APPLICATION
NETWORKS TRAFFIC

Time Step 1 2 3 4 5 6
1D-LSTM RMSE 3.87 | 430 | 452 | 475 | 486 | 494
2D-LSTM RMSE 3.2 | 344 | 3.59 | 3.74 | 3.80 | 4.01

From the comparison we infer that the network traffic
prediction based on NoNGF is much more precise than the
original method in predicting longer future network traffic for
multi-step predictions and able to anticipate network burst
traffic earlier. Our traffic prediction method accurately detects
network emergencies earlier and allows for more timely
notification to the network control system.



V. CONCLUSION

In this paper, we propose a novel approach to network
traffic prediction based on the feature of newly-generated
network flows. We provide an inspiring idea of network traffic
prediction by mining external features of traffic from network
flow data as covariates to assist in traffic prediction.

We mine an effective feature series, the number of newly-
generated network flows (NoNGF), from the network flow
data. We demonstrate that the network traffic time series and
NoNGF time series are strongly correlated in the whole
network traffic and most of the application-level network
traffic. Through TLCC analysis, we prove that we can
anticipate the trend and burst of network traffic several
minutes in advance by NoNGF. Then we build LSTM and
TCN prediction models, and perform prediction experiments
with multiple inputs and settings for the whole network and
three application network traffic. Our traffic prediction
method significantly improves prediction accuracy, with
RMSE reduction of more than 10% on average. For some
application network traffic with frequently burst such as chat
tool, our multi-step prediction RMSE error is reduced by more
than 30%. It is worth mentioning that our prediction method
performs much better for burst traffic prediction with nearly
perfect accuracy.

This work is just to throw light on a different way of
thinking about network traffic prediction. Network traffic
prediction accuracy can be improved not only by optimizing
prediction models, but also by mining the relevant external
features of network flows as covariates to assist network
traffic prediction. It may be possible to explore other network
flow features that can also effectively assist in network traffic
prediction. In future work, we will customize advanced
models and techniques, such as attention mechanism and
transformer [28, 29], to effectively inject more network flow
features into the prediction model to achieve better results.
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