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Abstract—Containerization, while getting popular in data cen-
ters, faces practical challenges due to the sharing nature of cloud
networks among tens of thousands containers simultaneously
and dynamically. While the typical overlay approach enables
network virtualization to facilitate multi-tenant isolation and
container portability, this approach often suffers from degraded
performance. Other proposed schemes addressing this perfor-
mance bottleneck require either specialized hardware support,
or customized software and extra maintenance. In this paper, we
propose EZPath, a novel approach that can seamlessly expedite
the container traffic by leveraging the programmable Top-of-
Rack (ToR) switches in clouds. By utilizing the underlying
programmable switch’s data plane capabilities, EZPath can
offload traffic directly from the container to the ToR switches,
thus creating a fast and easy path to mitigate the network
bottleneck. Such a ToR switch based solution is transparent to
user applications, and does not require the change of OS kernel
or the support of additional hardware. Using typical container
workloads, we evaluate EZPath, and the results show that EZPath
can significantly improve the application performance over the
default overlay networking, e.g., a 35% throughput increase and
a 42% tail latency reduction for Memcached.

I. INTRODUCTION

In recent years, containerization has been increasingly
adopted to deploy large-scale distributed applications (e.g.,
content providers [1], [2], eCommerce [3], [4], and in-memory
key-value stores [5]) in clouds, such as AWS Lambda [6],
Google Compute Platform [7], and Microsoft Azure [8] L
However, container networking has been suffering in such
a multi-tenant environment, particular with the increasing
deployment scale due to the following reasons. First, the
sharing nature of multi-tenant cloud networks requires tenant
isolation and quality of service (QoS) through the enforcement
of thousands of control plane policies (e.g., access control) and
data plane policies (e.g., tunneling, QoS and rate limiting),
resulting in significant host computing resource consumption.
The sheer density of the container deployment and its short-
livedness further exacerbate the problem [9], [10]. Second, the
container networking should be able to provide portability and
flexibility for container placement and migration, obviating
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the need for the application developers to coordinate the
assignment of port and IP addresses.

Existing container orchestration solutions mostly employ
virtual overlay networks to achieve portability and flexibility.
Essentially, overlays employ various tunneling technologies,
e.g., VXLAN, GRE, to implement virtual networking among
the containers owned by a single tenant, providing tenant isola-
tion and network virtualization. One example of such software
entities is Open vSwitch [11], which is widely deployed in
data center servers to enable network virtualization on end
hosts [12]-[15]. However, as shown in previous works [16]—
[18], implementing the tunneling and other network virtual-
ization functionalities in the software switch causes significant
networking performance degradation.

The poor performance of overlay networking solutions has
remained to be a pressing issue ever since virtualization came
into play. In VM-based virtualization environments, Single
Root 1/0 Virtualization (SR-IOV) has shown effectiveness in
improving the networking performance [16]. Nonetheless, the
number of VMs that a commodity server can accommodate is
far less than that of containers in contemporary containerized
data centers. More recently, some other designs [9], [17],
[19] have been proposed to improve container network perfor-
mance, while aiming to preserve its portability. However, they
are difficult to deploy due to the requirement of customized
software and extra maintenance [17], or specialized hardware
support [9], [16]. On the other hand, network programmability
has become a key feature in modern networking. Broad-
com, Cisco and Edgecore, are expanding their portfolios to
offer programmable Top-of-Rack (ToR) switches for data
centers [20]-[22].

In this work, we propose to develop an efficient and
application transparent framework, called EZPath, to expedite
the container network traffic, by leveraging the programmable
data planes of the prevalent Software Defined Networking
(SDN) switches in data centers. We achieve this by offloading
selective network traffic to in-network programmable switches
to relieve the system resource pressure on the servers. The
performance of the containerized applications is significantly
improved in benefit of the programmability and line rate
processing speed of modern switches (e.g., P4).

Nonetheless, due to the specific requirements and con-
straints in the containerized environment, migrating network
functions and traffic to the programmable hardware poses
several challenges. First, due to the sheer scale and density
of containers in deployment, the amount of memory for



accommodating the metadata (i.e., the tunnelling mappings)
required by EZPath can be substantial. Therefore, simply
offloading the tunnelling operations for all container traffic
is not practical, given the resource constraints imposed by
programmable switch ASICs.

Second, containers usually have much shorter lifespans
than virtual machines in many application scenarios, such as
microservice deployment and serverless computing. Blindly
offloading all traffic may cause constant update of offloading
selections and tunnel mappings, which could potentially de-
grade the overall network performance. Therefore, we need
an optimal strategy that strikes the balance between network
performance and resource consumption.

To address these challenges, we design EZPath, a holis-
tic framework that optimizes the performance of container
network virtualization through hardware-assisted acceleration.
EZPath is featured with a software-hardware codesign that
incorporates the control plane software and the dataplane hard-
ware. The control plane determines the offloading strategies
in real time. The offloading strategy is then translated into P4
instructions executed in the programmable switches. EZPath
can flexibly and seamlessly migrate the network virtualization
functionalities flows to the ToR switches. Note that not only
inter-rack traffic benefits from EZPath, but also intra-rack
traffic, because it also goes through the ToR switches when
containers are hosted on separate physical servers within the
same rack.

While details are to be presented later in the paper, the
highlights of EZPath include:

o We quantitatively evaluate the overhead of the overlay
approach for container networking, and show such over-
head contributes significantly to the network bottleneck.

o Taking a software-hardware co-design approach, we de-
sign and implement EZPath that can offload network
traffic of interest by leveraging the programmable data
planes of modern SDN switches.

o EZPath is application transparent, preserving compatibil-
ity with legacy containerized applications. It does not
require changes in host kernel, making it compatible with
all existing network management tools.

o The evaluation results show that EZPath can expedite
container traffic significantly, e.g., with a 35% improve-
ment on throughput and a 42% tail latency reduction for
Memcached.

II. MOTIVATION

In this section, we first investigate the overhead of the
overlay networking approach, and discuss other alternatives
for improvement, which motivates the design of EZPath.

A. Overhead of Overlay Networking

To understand the performance issues of virtual switch
based network virtualization, we perform an overhead break-
down analysis of a popular container network solution: Docker
Overlay [23]. Docker overlay utilizes a VXLAN data plane

that decouples the container network from the physical un-
derlay network. A virtual Linux bridge is created per overlay
along with its associated VXLAN interfaces. As depicted in
Figure 1, our testbed consists of two KVM virtual machines
(VMs) on a single physical host. The VMs are used to simulate
two physical hosts. Each VM is configured with 2 vCPUs, 2
GB memory and a virtio NIC. The overhead remains the same
in a physical machine environment as long as the underlay
host network is not the bottleneck. We create a Docker
container inside each VM, which runs network performance
benchmarks Netperf [24] and iperf3 [25]. We then deploy
a Swarm mode overlay network to connect the containers.
To quantify the overhead, we compare the performance of
the container overlay to the host mode network, where the
container network stack is not isolated from the host stack and
the host IP is directly allocated to the container. We measure
the TCP/UDP throughput when sending data as fast as possible
from the client to the server.
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Figure 2 shows the results. The performance of iperf3 is
shown on the left half while those of NetPerf is shown on
the right half. Each experiment is repeated five times and
the average results are reported here. As shown in Figure 2,
the TCP throughput of the container overlay network is only
26.4% and 36.2%, respectively, when compared to the native
host networking for iperf3 and Netperf. The trend of overhead
for the UDP throughput is similar. UDP does not have con-
gestion control, which results in lower throughput than TCP
in iperf. We further use NPtcp [26] to measure the latency of
TCP packets. The results show that the virtual switch based
tunneling incurs 46.7% more latency on average (26.19 us and
38.48 us for the host and overlay modes, respectively).
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To understand the bottleneck of the tunneling handling,
we use mpstat [27] to measure the CPU utilization of the
system when stress testing the overlay network using iperf3.



Specifically, we run iperf3 to generate traffic from the client
container for 100 seconds. Figure 3 shows a breakdown of the
average CPU utilization on the iperf3 server. For the host mode
networking, 38.15% of CPU utilization is due to executing
the kernel code (sys); while only 11.7% of CPU is spent on
servicing softirqs (soft). For the container overlay networking,
the softirq processing accounts for 42.48% of CPU utilization
and the kernel code execution takes 19.14%. To quantify where
CPU cycles are spent among the software interrupts, we use
ebpf [28] to collect the CPU cycles (in us) spent on each
type of the softirq events. Results show that over 99.8% of
the softirq processing is devoted to the networking softirgs
NET_RX_SOFTIRQ and NET_TX_SOFTIRQ.

The experiment results show that the degradation of the
overlay network performance is attributed to the execution
of extra kernel code (for tunneling-related packet transforma-
tions) and the servicing of an increased number of softirgs.
The overlay network entails the traversal of additional virtual
network devices (i.e., the virtual bridge and the VXLAN in-
terface), leading to an explosive growth of softirgs. We further
look into the per-CPU utilization for the overlay networking.
As shown in Figure 4, the majority of the softirgs is served by
the ksoftirqd thread on vCPU1. This concentration of softirqs
is determined by the IRQ affinity configuration of the system,
which pins a type of interrupts to a particular set of CPU cores.
This further confirms our analysis.

B. Alternatives for Container Networking

To optimize the container network performance, we first
discuss pros and cons of existing solutions, ranging from
hardware based acceleration to pure software solution, which
sheds light on the design considerations adopted by EZPath.

1) Hardware Accelerations.

Since overlay networking requires packets to traverse both
the guest and host network stacks, it introduces significant
overhead to containerized applications. One natural solution is
to assign physical network devices to selected containers and
grant them exclusive access. Macvlan [29] and SR-IOV [30]
are two such solutions.

With Macvlan, virtual interfaces are created, configured
with host routable IP address, and assigned into the container
namespaces. In contrast, SR-IOV requires hardware support
that simulates a single PCI NIC as multiple virtual functions
(VF), each with its own MAC address and functions as a
physical NIC from the view of containers. However, the
number of VFs supported by the hardware is quite limited
(e.g., 64) and does not keep up with container network scales.
Furthermore, to build applications that span across multiple
hosts, both technologies require configuration of routable IP
addresses on the host network. This may be a feasible solution
in a VM-based virtualization environment, but it is not well
suited for container networks. Different from VMs, containers
are often short-lived and may be migrated in real time, making
frequent network reconfiguration a nightmare. In addition, for
intra-host communication where containers reside on the same
physical host, SR-IOV imposes significantly higher overhead

than Macvlan, since packets from one container must be sent
through PCle bus to the NIC before being forwarded to the
other container [31]. Additionally, SR-IOV does not natively
support live migration. For this purpose, popular container
orchestration frameworks (e.g., Docker Overlay and Flannel
for Kubernetes) or in-house built management solutions usu-
ally adopt overlay as their networking solution in real-world
production management.

SmartNIC offloading. To cope with above concerns, hard-
ware offloading is a viable solution with great potential to
retain both the flexibilities of overlays and the performance of
bare-metal. Intelligent or smart NICs have emerged recently to
bridge the gap between the constantly increased network speed
and the limited CPU processing power at the host machine.
Nonetheless, hardware offloading in virtualized setups with
OVS (e.g., VXLAN, connection tracking) is realized through
SR-IOV or virtio. The aforementioned scalability limitation of
SR-IOV remains in the container environment.

2) Software Accelerations.

Slim [17] proposed a pure software-based optimization ap-
proach to improve the container overlay network performance.
It relies on extra pieces of software, including a shim layer to
intercept socket related system calls, and a userspace router
that creates connections on behalf of containers and maps
host namespace file descriptors to the container namespace.
This effectively shortens the packet path and improves the
container network performance. However, Slim is not trans-
parent to containers, which is a major limitation. Application
binaries are required to be dynamically linked to the shim
layer and extra care needs to be taken in the deployment
and maintenance of the software components. As a result,
application software would be less portable when using Slim.
Moreover, after connections are established, Slim allows local
containers to directly talk to the remote containers via the host
namespace file descriptors, bypassing the container network
interface and the virtual switch. As a consequence, it lacks
support for conventional low-level network monitoring and
debugging tools, such as tcpdump, as packets are not going
through the virtual network interface and thus cannot be
captured.

II1. EZPath DESIGN

To overcome the aforementioned limitations of current
container networking designs, in this section, we present
EZPath to improve the performance of container networking
by leveraging recent advances in programmable hardware.

At a high level, EZPath takes a software and hardware
codesign approach. Specifically, it leverages the software for
centralized controller while utilizing the programmable data
planes in modern switches for traffic offloading. As an exam-
ple, Figure 5b shows the change of ingress traffic path with
EZPath, when compared to the default overlay approach 5a.
From this figure, we can clearly see that an overlay network is
realized by creating multiple virtual network devices that are
connected through OVS. These include a VXLAN port, and
a veth pair with one end assigned to the container namespace
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Fig. 5: Network stack view: Overlay vs. EZPath offloading. Ingress data path
of (a) host virtual bridge based overlay tunneling and (b) EZPath offloading
tunneling to ToR switch. Through EZPath offloading, the in-host packet data
path is shortened, the number of traversed network devices is reduced, the
kernel processing for softirq is saved.

while the other end attached to OVS. Overlay packets follow
this prolonged processing path, incurring much more software
interrupts and corresponding context switches. Comparatively,
in figure 5b, EZPath reduces the number of network devices
that a packet has to traverse in the overlay. EZPath not only
shortens the transmission path that a packet has to traverse,
but also saves a lot of system processing overhead caused by
explosive interrupt handling.

A. Key Principles and Challenges

Resource Constraints While EZPath can offload all traffic
through the hardware in an ideal situation and thus com-
pletely eliminate the network bottleneck in the container
network, this is not feasible in practice, mostly due to the
constraint of limited hardware resources. Despite the high-
speed forwarding performance, switching hardware has highly
constrained on-chip memory. Since the overlay operations
require the mapping information for the tunnel endpoints, the
naive offloading strategy that offloads all container traffic is
clearly impractical considering the extensive scale and short
lifespans of containers.

Transparency Requirement EZPath is designed for multi-
tenant environments, aiming to be application and kernel
transparent so that it can work with existing systems and
applications. EZPath does not require any modifications to user
applications or the host kernel, including the virtual switches.
This brings additional challenges to the system design. For
example, in a containerized cloud shared by multiple tenants,
the IP addresses of containers in different tenant networks are
assigned locally and independently and thus can be overlapped
or even the same. If EZPath decides to offload flows from
different container networks with overlapped IP addresses, the
ToR switch must be able to distinguish them.

Seamless and Transparent Offloading As discussed earlier,
the amount of entries needed for tunneling depends upon the
total number of tunnels used by containers in the rack. If the
total number is less than the number of available entries at ToR
switch, all the flows can be offloaded and the performance can

be maximized. In EZPath, we aim to minimize the occupation
of SRAM in P4 switches in order to leave sufficient space
for accommodating other networking functions. Therefore,
we choose to selectively offload the tunneling operations
of performance critical flows that can be determined by
system operators. That is, we design EZPath to seamlessly
offload resource intensive overlay network operations to the
programmable switches at the DC network edge, so that we
can effectively relieve the performance bottleneck in the host
network stack.

B. Overview of EZPath Design
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To this end, Figure 6 depicts the major components of
EZPath we design. As shown in the figure, it mainly consists
of the centralized controller, the in-host software switch and
the programmable ToR switch. The centralized controller
monitors the traffic communications between containers and
make offloading decisions in the ToR switches in real time.
Moreover, it is also responsible for coordinating the offloading
operations between the software switches, i.e., OVS on the
end host, and the ToR switch. Unoffloaded flows follow the
traditional path and are tunneled through the host network
stack while ToR switches perform the heavy-lifting tunneling
operations for offloaded flows. In EZPath, ToR switches are
P4 switches, which provides programmable control for packet
forwarding.

To maintain application and kernel transparency, ToR
switches must be able to distinguish the flows from different
tenants. For this purpose, in our design, OVSes leverages the
VLAN headers to carry tenant information to ToR switches.
For an outgoing packet, the directly attached ToR switch
would first strip off the VLAN header, look up tunnelling
related information in match-action tables, and perform packet
encapsulations. On the other hand, for an incoming packet, the
ToR switch would examine if it is the end of the tunnel. If it is,
it would decapsulate the packet, re-tag the packet with VLAN
header and forward it to the connected OVS. Otherwise, the
packet is processed similarly as in normal case. VLAN only
involves L2 processing and the logic is much simpler by
following a shortened processing path, which greatly reduces
the CPU cycles on the end hosts. The detailed steps and data
structures involved will be discussed in Section IV.



Real-time migration is another key component of EZPath,
which aims to seamlessly offload the flows from the host
to P4 switch without disrupting existing connections. The
control plane makes real-time offloading decisions. Once the
candidate flows for offloading are determined, the controller
updates tables on both OVSes and P4 switches according to
the following steps: (1) It installs the tunnel mapping for the
offloaded containers into the P4 tables on both ToR switches;
(2) It modifies OVS flow rules on both end hosts to bypass
the host network stack. This is a critical step to guarantee that
there is no interruption to the existing connections. Reversing
the steps could cause packet drop since there is no tunnel
mapping entries in P4 to handle the offloaded packets. On the
contrary, flows that have been identified as inactive would be
migrated back to host.

IV. IMPLEMENTATION

We have implemented a prototype of EZPath. The imple-
mentation is about 1000 LOC of P4 in the dataplane and
350 LOC in the control plane. Since the packet processing
in the dataplane involves multiple entities along the path
between each pair of containers, in the section, we present
their implementation details.

Our control plane is built upon Barefoot Runtime Interface
(BRI) that comes with Barefoot SDE (9.1.1). It provides APIs
for the control plane to configure and manipulate the dataplane
pipeline and objects. On each P4 target, a gRPC server runs
and listens for the requests from the control plane, which will
be further parsed into target-specific actions. The controller
periodically sends a register read request to ToR P4 switches
every T seconds, defined as a polling interval. The collected
flows in each interval are constructed into time-series and are
analyzed. Through the control plane, container information can
be retrieved from the orchestration systems (e.g., Kubernetes,
Amazon ECS, Mesos and Marathon). For example, Kubernetes
allow Pods to indicate the importance of a Pod relative to
other Pods [32]. Orchestration platforms also have access to
the types of the applications during deployment, such as batch
processing jobs, machine learning training workloads, and
user-facing services. The control plane can make offloading
decisions based on these factors.

V. EVALUATION

In this section, we present our evaluation of EZPath fol-
lowing the experiment setup. To quantify the performance
improvement, we first use microbenchmarks to study the
performance of EZPath for tunnel offloading with respect to
the normal container overlay networking. Then we evaluate
the performance of some typical real-world containerized
applications, including an in-memory key value store Mem-
cached [33], ZeroMQ [34] for large scale distributed message
library, Nginx [35] for web servers, when adopting EZPath.

A. Experiment Setup

Our testbed consists of two STORDIS BF2556X-1T tofino
switches with P4 programmability support and two host

servers. The setup of this testbed is similar to that shown in
Figure 6. The two P4 switches serve as the ToR switches and
the two host servers are placed on two server racks. Each
server is equipped with an Intel Xeon Silver 4110 2.10 GHz
CPU, 32 GB DDR4 RAM and NetXtreme-E RDMA 25 Gbps
NICs. They are both running Ubuntu Bionic 18.04 LTS OS
with Linux kernel 4.15.0. On each host, we leverage Docker
19.03 to create/manage containers and deploy containerized
applications. The switches and servers are directly connected
through 25 Gbps cables. Since our experimental setup is
different from the ones used in previous works, we compare
EZPath’s performance with the host networking mode so that
we can make a relative comparison with prior works, such as
Slim [17], that are also compared with the host mode.

B. Network Throughput and Latency

First, we compare the performance of different networking
modes, i.e., with and without offloading. The former means
the default overlay networking, while the latter represents
EZPath. Specifically, we measure the network performance
in terms of both throughput and latency. As we discussed
earlier, in offloading mode in EZPath the traffic egressing from
the containers is directly forwarded to the physical NIC on
the host server. The tunnelling-related operations (e.g., packet
encapsulation and decapsulation) are performed by the P4
switches. In contrast, in non-offloading mode, the container
traffic follows the normal path by traversing both the container
and host kernel network stacks.

We use iperf3 to measure the network throughput of a
TCP flow in both modes. Each run takes 90 seconds with the
messages sizes varied across 128B, 256B, 512B, 1024B and
1440B. The results averaged out of 5 runs under each setting
are shown in Figure 7.
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As we can see, by offloading to the hardware P4 switches,

we can significantly improve the throughput performance of
the container overlay networking. On average, we see 68%
throughput improvement. When the message size is 1440B,
the throughput is improved by 80%. In contrast, Slim achieves
the same throughput as the throughput on the host mode
network, thus resulting in about 48% throughput improvement
compared with the overlay networking.

We use sockperf-3.6 to measure the packet latency. The
tests are performed in its ping-pong mode, where the latency
of single packet is measured without waiting for the reply
before sending the subsequent packet on time. As shown in
Table I, Without offloading, the measured round trip latency,
averaged on 5 runs, is approximately 45 ps for a packet of
moderate size 350B. In contrast, with EZPath offloading the



latency is significantly reduced to 32.8 us, an improvement
of 27%. While for Slim, its latency is also the same as using
the host mode network, which leads to an 85% improvement
compared to the overlay networking. Note that the sender and
receiver are running on two physical machines that are directly
connected with a 40 Gbps cable in Slim. Similar results are
observed in other tests as well.

C. Application Performance

In this section, we evaluate the improvement to application
performance brought by EZPath. For this purpose, we evalu-
ate the performance with popular containerized applications.
Considering that there is a wide range of overlay networking
solutions, we choose the host networking mode as the baseline
in our evaluation. In the host mode, all containers on the
same host share the host network namespace. Therefore, they
have direct access to all the host’s network interfaces. In real-
world applications, the host mode is rarely employed due
to its inflexibility in supporting multi-tenant cloud applica-
tions. In particular, the ports cannot be reused by the same
type of applications co-located on the same physical host.
For example, once port 80 is assigned to one containerized
web server, the other containers would have to use different
ports for their web services to avoid conflicts. Nonetheless,
compared to the other networking solutions, the host mode
achieves the highest performance despite its inflexibility. Our
evaluation adopts similar comparison approaches as used in
the existing work by comparing EZPath to the baseline host
mode and the legacy overlay mode. The relative numbers of
the performance improvements can demonstrate how EZPath
compares with other approaches that are evaluated in different
hardware setups.

1) Memcached Benchmarking

Memcached has been widely used to deploy distributed
key-value services in commodity data centers (e.g., Facebook,
Google, AWS, Netflix) to improve web service performance.
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In our experiments, we create one Docker container on each
physical server. The Memcached server is deployed in one
container, and the Memcached benchmarking client runs in
the other container. We measure the throughput and latency
of the Memcached service in the host mode (baseline), the
overlay mode (common practice), and EZPath.

The benchmark tool we use is memtier_benchmark [36]
developed by Redis Labs. In our experiments, we use the
default settings with four client threads and 50 connections.
Each experiment sends 100000 requests and the SET:GET

request ratio is set to 10. We repeat the experiments under
different modes. The results are averaged over five runs.

Figure 8 shows the throughput results in the number of
total completed Memcached operations per-second. As we can
see, the offloading mode by EZPath achieves the throughput
comparable to the host mode, and outperforms the overlay
mode by 35% on average. Slim’s throughput is within 3%
less of host mode with the same setting. EZPath’s throughput
is within 5% less of the host mode and latency is within 0.7%
of the host mode with the same setting.

EZPath also reduces Memcached request latency. Figure 8
also shows the 99.9™ percentile latency to complete a Mem-
cached request. We find the latency through the EZPath’s
offloading mode is the same as the host mode, which is also
the same with that of Slim. Compared to the overlay mode,
EZPath reduces the latency by 42%.

2) ZeroMQ Benchmarking

ZeroMQ is an asynchronous network messaging library
widely deployed in large scale distributed/concurrent sys-
tems. Different from brokered message queues (e.g., Apache
Kafka [37], ActiveMQ [38], RabbitMQ [39]), ZeroMQ does
not rely on brokers and thus achieves much higher throughput.
In our experiments, we again measure two key performance
metrics, throughput and latency, of ZeroMQ under different
modes as before. Each measurement is performed across a
wide range of message sizes. On each host, we create a Docker
container with ZeroMQ-4.2.2 installed. One container serves
as the sender and the other processes the requests as the
receiver. The throughput is measured in terms of the number
of messages per second; while the latency is measured as the
average time it takes to transfer a single message between the
two endpoints. The message size varies from 64B to 128KB.
For each measurement, the experiment is repeated three times
and the average is reported.

Figure 10 and Figure 11 depict the resulted throughput
and latency, respectively. From the figures, we can observe
that in all settings, EZPath offloading greatly outperforms the
non-offloading counterpart in the overlay mode. Moreover, the
improvement becomes more pronounced with the increase of
the message size. In particular, for larger message sizes, e.g.,
128KB, the throughput is increased by around 42% from 13K
msg/sec to 18.5K msg/sec (which is not clearly visible due to
the large scale of y-axis in Figure 10), while the latency is
reduced by 30%.

When compared to the host mode, EZPath offloading
achieves comparable performance with merely slight degrada-
tion in both throughput and latency. We believe that this result
is acceptable considering the various advantages of offloading
over the host mode.

In addition to the application performance, we also examine
the variation in the composition of CPU consumption under
various modes, mainly including sys, usr, and soft, which
represent CPU utilization for executing at user level, system
level and service software interrupts, respectively. In our
testbed, each server has 16 physical cores with hyperthreading
enabled (equally, 32 virtual cores). Therefore, when measuring
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the CPU overhead breakdown, the CPU utilization can be
conveniently converted to the amount of virtual cores. The
result are shown in Figure 12. As clearly shown in the figure,
EZPath offloading also reduces CPU cycles significantly. In
particular, the CPU cycles spent on serving the software
interrupts are reduced by 73%.

3) Web Server Benchmarking

To study how various networking modes could affect the
performance of popular web applications, we run a Nginx
container on one host and a client container on the other host.
The benchmark software we used is wrk2 [40], which takes
throughput as an input argument. The throughput is specified
in terms of the total requests per second combined across all
connections. Specifically, we create 2 threads in wrk2 and each
thread establishes 100 HTTP connections concurrently to the
Nginx server. For test purpose, we also randomly generate
files with sizes 1KB and IMB on the web server. In our
experiment, the request throughput is set to 10000 and 2500
per second for 1KB and 1MB, respectively. In this way, we
can keep the average latency within the order of milliseconds.
We measure the average latency and report the result with its
standard deviations computed across multiple runs. Figure 13
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and Figure 14 show the results. As shown in the figure, when
requesting 1KB files with 10K requests/sec throughput, the
average latency in EZPath offloading mode is 1.09ms, which
is noticeably smaller than the latency in non-offloading mode
(1.16ms). The difference is even larger when requesting 1MB
files with 2.5K requests/sec throughput. The average latency in
EZPath offloading mode is 9.92ms, while the latency in non-
offloading mode is 21.68ms, an improvement more than 54%.
In both cases, the request processing latency in the offloading
mode roughly amounts to that in the host mode. With the same

setting, Slim also achieves similar latencies with that of the
host mode.

Figure 15 further shows that the CPU cycles resulted from
serving software IRQs are significantly reduced by approxi-
mately 50% in the EZPath offloading mode. On the other hand,
we observe negligible difference between the CPU cycles
incurred in the EZPath offloading mode and the host mode.
In contrast, there exists a 5%—6% gap between Slim and the
host mode for the CPU utilization. Therefore, the offloading in
EZPath to the programmable hardware achieves substantially
better web performance, with low CPU overhead similar to
that of the native host mode. This preserves server resources
and opens up further opportunities for overall performance
improvement.
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Fig. 15: Nginx CPU utilization under various modes.
D. Discussion

To achieve full optimization, EZPath requires a centralized
control plane, which controls and manages the software/hard-
ware network devices over the entire DC and across DCs.
If containers are deployed and replicated across data centers
(e.g., to enhance service reliability and availability), it will
place burden on the centralized control plane to manage such
large scaled networks. One workaround to mitigate this is to
use local controllers that make offloading decisions on their
own, without coordination between the endpoints.

On the other hand, the offloading function offered by
EZPath does not have to be tied to any particular offloading
strategy. Essentially, regardless of how the target flow is
identified, EZPath can offload that seamlessly.

VI. RELATED WORK

Efficiently and flexibly managing containerized clouds
poses a myriad of challenges from different aspects [9], [16],



[17], [19], [41], [42]. Among them, the network performance
degradation due to the software based overlay networking
has attracted a lot of attention [16]-[18]. This is mainly due
to the overhead when implementing the tunneling and other
network virtualization functionalities in the software switch,
such as Open vSwitch, a key component in Weave [12],
one of the most widely used container network interface
(CNI) plugins for production container orchestration platforms
such as Kubernetes [13], Apache Mesos [14], and Amazon
ECS [15]. Approaches like SR-IOV [16] and Macvlan [29]
aim to assign physical network devices to selected containers,
but they are not suitable for containerized clouds. For example,
SR-IOV is limited by the simulated 64 virtual functions (VF)
while container networks often have massive scales [43], [44],
and is also incurs extra overhead [45] in networking among
intra-host containers as discussed in section II-B.

Recent designs [9], [17], [19], on the other hand, either
demand hardware support or fail to support legacy monitoring
and debugging tools in data centers. For example, Slim [17]
can achieve promising performance boosts by redesigning
container overlay networks with a dedicated user-space router
to reduce the packet traversal of OS-kernel network stack.
But it is impractical for real world deployment due to the
customized software demand. Compared to them, EZPath
is both application and system kernel transparent, and is
compatible with any existing tools, thus offering a transparent
alternative.

VII. CONCLUSION

Cloud computing is increasingly adopting containers, evi-
denced by the popularity of microservices offered by all major
cloud service providers. However, containerized applications
often suffer from degraded networking performance in practice
due to the extra processing overhead induced by the container
overlay. Previous solutions addressing this problem are either
not compatible with the legacy monitoring and debugging
tools, or demanding customized hardware support. In this
paper, we have instead designed and implemented EZPath to
expedite the container traffic, by leveraging the high speed
of the programmable switches in data centers. EZPath is
transparent to applications or the underlying system kernel,
compatible with all existing tools. Our evaluation shows it
can significantly expedite container traffic by improving the
throughput and reducing the latency of typical containerized
applications.
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