Performance Study of P4 Programmable Devices:
Flow Scalability and Rule Update Responsiveness

Hasanin Harkous, Mu He', Michael Jarschel®, Rastin Pries, Ehab Mansour*, Wolfgang Kellerer*

*Technical University of Munich, firstname.lastname @tum.de
tNokia Bell Labs, firstname.lastname @nokia.com
Munich, Germany

Abstract—Networking devices with programmable data planes,
such as P4 programmable devices, are gaining more popularity
because of the flexibility they provide in describing the packet
processing behavior. Despite this attained flexibility, the perfor-
mance of these devices can be the Achilles’ heel in case the desired
performance level is not met.

To this end, we evaluate the performance of three state-of-
the-art P4 devices focusing on the following properties: (i) the
device’s processing latency as a function of a scaled number of
flows; (ii) the device’s response time in reaction to control plane
commands. The scalability analysis shows that different devices
have different limits on the maximum number of flows they can
support. On the other hand, the device’s response time to control
plane commands is found to be in milliseconds, which is three
orders of magnitude larger when compared to the measured data
plane’s packet processing latency.

Index Terms—Performance Evaluation, Programmable Data
Planes, Flow Scalability, Rule Update Responsiveness

I. INTRODUCTION

Emerging applications with stringent requirements pose
a significant challenge to current networks. The advent of
network programmability is considered a promising answer to
this challenge by enabling the adaptation of network behavior
based on connectivity requirements. Software Defined Net-
working (SDN) separates the control plane from the forward-
ing devices and enables control plane programmability. The
control plane in turn pushes rules to the data plane to update
the forwarding behavior. As a complement, a Programmable
Data Plane (PDP) enables the customization of the forwarding
device, specifically its packet processing pipeline. In [1], P4
is introduced as a domain-specific programming language and
has become a promising candidate to realize the PDP concept.
Any device that can execute P4 programs is called a P4
target. Due to P4’s feature of target-independence, multiple
types of P4 targets are introduced to enable packet processing
with both software and dedicated hardware. For example, (i)
T4P4S [2] is a framework that generates a C program that can
be supported by several general-purpose CPU platforms with
the acceleration capability offered by DPDK. (ii) NetFPGA-
SUME [3] leverages the programmability of FPGAs to provide
low-latency and high-throughput concurrent packet processing.
(iii) Netronome SmartNIC belongs to the category of Network
Processing Units (NPUs), which comes with tens of cores with
high parallelism capability and is optimized specifically for
packet processing tasks.

ISBN 978-3-903176-39-3© 2021 IFIP

While P4 programmable devices can play an important role
in addressing the issues accompanied by the ever-growing
demand for more complex applications, it is equally important
to understand the performance of these devices and their
limitations to assess their applicability for different use case
scenarios. For example, benchmarking and understanding the
performance of P4 programmable devices can be a valuable
input for designing P4-based time-sensitive networks with
deterministic performance requirements. Moreover, identifying
the performance limits of these devices helps in assessing
the convenience of using these devices for different use case
scenarios.

To this end, we evaluate the performance of the three
aforementioned P4 programmable devices focusing on two
important criteria that were not addressed in the literature,
namely flow scalability and rule update responsiveness. The
flow scalability analysis determines the maximum number of
flows supported by a P4 device, and the performance variation
when the number of flows scales up. As an example, if a
P4 table implements access control functionality, then the
maximum number of rules that can be installed in this table
limits the number of defined users. On the other hand, the
rule update responsiveness analysis reveals the time for a
packet processing pipeline to adapt in response to control plane
commands. Characterizing such delay is important as the state
in the control plane is inconsistent with that at the data plane
over this period, which may lead to inconsistent forwarding
behavior.

The remainder of this paper is structured as follows. The
description of the flow scalability and rule update respon-
siveness experiments are provided in Section II. Results of
these experiments are shown in Section III. Section IV reviews
related literature. Finally, Section V concludes the work.

II. TESTBED & EXPERIMENT DESIGN

In this section, we describe the experiments designed to
evaluate the P4 devices’ processing latency as a function of
traffic flow scalability, as well as the response latency to
control plane update rules.

A. Flow Scalability

The purpose of the flow scalability study is to identify the
performance and limits of the investigated devices when the



# Floﬁ

* Pkt Size
* Rate

L3Fwd e P4 Target

.p4

TABLE I: Experiment IDs of the considered cases in the flow
scalability evaluation.

:>
"ore ‘

MoonGen
g Latency

) e (ﬂ esults
Iml <:I m :> Result
Server

Server e

Fig. 1: Testbed setup adopted for flow scalability experiments.
The P4 target is installed into a server. MoonGen generates
and sends traffic to the P4 target, where packets are processed,
and then analyzes the received packets’ latency.

incoming traffic flows scale up. First, we describe the testbed
built for this evaluation, then we elaborate on the conducted
experiments.

1) Testbed Setup: Fig. 1 shows the adopted testbed. Three
different P4 programmable packet processors, each belonging
to a different class of platforms, are installed into a server: Ag-
ilio CX 2x10GbE Netronome SmartNIC and Xilinx Virtex-7
XC7V690TFFG1761-3 NetFPGA-SUME are plugged into the
server’s PCle bus, while T4P4S-DPDK open-source software
switch runs on the server. The hosting server in the case of
Netronome SmartNIC and T4P4S software switch is Nokia
NDCS16RM AirFrame Compute Nodes with 16 cores (dual-
socket Intel Xeon CPU E5-2630 v3 @ 2.40GHz) and 64GB
of 2133 MHz DDR4 memory, while it is another server with
6 Cores (Intel CPU i7-8700 @ 3.20 GHz) and 32GB of 2400
MHz DDR4 memory in the case of NetFPGA-SUME. Due to
logistical reasons, we were unable to use the same servers for
all experiments, but this does not impact the comparability of
the results of the hardware P4 devices as these servers only
host the P4 devices without impacting the packet processing
taking place in the P4 device.

In each scenario, the layer 3 forwarding (L3Fwd) network
functionality, written as a P4 program, is loaded into the P4
device under test along with the forwarding rules. Then, the
MoonGen packet generator [4] is used to generate traffic with
a configurable number of flows, packet sizes, and bit rates.
The generated traffic traverses a 10 Gbps link to reach the P4
target where packet processing takes place. Then, the packets
are returned on another 10 Gbps link to the traffic generator,
where the per-packet latency is reported.

In every measurement case, MoonGen generates the traffic
at the line rate of the tested P4 devices, i.e., the maximum
rate which can be handled by a device before packets are
dropped. The line rate (with framing) adopted in the case of
Netronome SmartNIC and NetFPGA-SUME is 10 Gbps, and
that for the T4P4S software switch is 9.7 Gbps. The size of
packets is set to three different values: 256 Bytes, 1000 Bytes,
and 1500 Bytes to study the impact of differences in packet
size on the collected results. The latency results of each test
are based on the collected per-packet latency of 100 thousand
generated packets.

2) Experimental Scenarios: As works in [5] and [6] already
characterize the impact of the complexity of the P4 program

Experiment ID | Num. of Rules | Num. of Flows
R1Fy 1 1
RoazF1 Max 1
RmazFik Max 1000
RoazrFmaz Max Max

on packet processing latency, the conducted experiments in
the flow scalability evaluation consider a single P4 program
and focus on pushing the match-action units (i.e. tables) of
the investigated P4 devices to their limits. Identifying these
limits is crucial as they can determine, based on the anticipated
traffic load, whether a device is suitable for a specific scenario
or not. In this evaluation, we consider a Layer 3 Forwarding
(L3Fwd) P4 program with a single table matching on the IPv4
destination address field and forwarding packets accordingly.
The maximum number of rules that can be installed into this
table determines the maximum number of routes that can
be supported by this device. In the evaluation, we consider
both exact and wildcard, i.e. Ternary or Longest Prefix Match
(LPM), matching. First, we start with a basic case, where we
only install a single rule to the routing table and generate
a single flow with an IPv4 destination address that matches
the installed rule. Then, we increase the number of rules
to be installed into the table up to the maximum possible
number of rules, while keeping the number of generated flows
fixed to one. In the third and fourth cases, we keep the table
filled with the maximum number of rules, while gradually
increasing the number of generated flows to reach 1000 flows
then finally the number of installed rules. Note that different
flows are distinguished by unique destination IP addresses,
and in all cases, we make sure that the generated flows match
the installed forwarding rules. The four designed experiments
with their IDs are summarized in Table 1.

In the P4 language, the size of a table is one of the
parameters that can be specified when instantiating a P4 table.
However, we observed that this “table size” parameter is
different from the real maximum number of table entries that
can populate a table. To confirm the maximum operable table
size for each device and matching type, we configure the table
size to the corresponding theoretical maximum and test the
switch operation. If the switch does not operate successfully,
we gradually decrease the table size and loaded rules in powers
of two. Note that LPM is used as the wildcard matching type
except for the case of NetFPGA-SUME where LPM is not
supported. There, ternary matching is used instead.

In the case of Netronome SmartNIC, the table size in a P4
program can be set to values as large as 50 million entries
without compilation errors, although the official documenta-
tion states that the maximum number of entries is 64k [7].
However, only 48k rules for both exact and wildcard matching
could be installed on the device without causing loading errors.
Note that we observe that this limit also depends on the size of
the matching fields and action parameters in the targeted table.
Tables have a limited memory capacity that can be saturated



TABLE II: Summary of the theoretical and operable maximum
number of rules adopted in flow scalability evaluation for
different P4 devices; exact (=), wildcard (*).

P4 Target Match Theo. Max. Rules | Oper. Max. Rules
Netro. SNIC | = and * 64k 48k

= 512k 64k
NetFPGA N I Tk
T4P4S =and * 1k 1k

based on the product of the number of entries and the size of
each entry.

NetFPGA-SUME uses the Xilinx P4-SDNet tool for com-
piling P4 programs. This compiler reports that the maximum
table size is related to the match type [8]. For each match type,
if the table size is configured with a value higher than the limit,
it will be rejected by the Xilinx P4-SDNet compiler and result
in a compilation error. However, a successful compilation does
not guarantee a successful switch operation as there might be
other issues that cause the switch to be inoperable. In the case
of exact matching, a table size of 512k fails at the synthesis
phase because of insufficient resources as the design requires
more RAM. For table sizes of 128k and 256k, the control plane
program could not add forwarding rules properly, although the
synthesis process executes successfully. This happens likely
because of the high utilization of Block RAM (more than
90%). Thus, we set the operable limit of the maximum number
of rules, i.e., table size, to be 64k rules. In the case of wildcard
matching, the documented limit of the table size for ternary
matching, i.e., 4k rules, is identical to the operable one.

For the T4P4S software switch, the operable limit of
the number of rules for both exact and wildcard matching
types is equal to 1024 rules, although the configured table
size can take greater values. This limit is hardcoded in the
"HASH_ENTRIES” and "LPM_MAX_RULES” constants in
“dpdk_tables.h” [9]. Although installing more rules than this
limit does not result in compilation or execution errors, we
observe that only the last 1024 rules are actively adhered to
in forwarding decisions. Note that the hardcoded limit could
be changed, but in this evaluation, we stick to the default
implementation of this switch.

The theoretical and operable limits of the number of rules
for all the considered cases are summarized in Table II. In the
flow scalability evaluation, we use the operable limits to set the
maximum number of rules to be installed into the investigated
P4 devices and the maximum number of flows to be generated
by the traffic generator.

B. Rule Update Responsiveness

In this experiment, we focus on evaluating the time required
for a control plane rule to take effect on the data plane, i.e.,
the P4 device’s response time to control plane rules. We will
first describe the testbed to conduct this evaluation, and then
explain the considered scenarios.

1) Testbed Setup: The servers described in the previous
subsection are used to build the testbed to conduct this evalu-
ation as shown in Fig. 2. Each P4 hardware target is plugged

@

@ * Pkt Size
¥ * Rate

MoonGen
C

Control
Plane

Update Rule

P4 Target Server

Flow Before Rule Update
4= Flow After Rule Update

i yé tep
{:}T'mestamp@ O Si

Fig. 2: Testbed setup adopted for rule update responsiveness
experiments. The P4 device is installed into a server. MoonGen
generates and sends traffic to the P4 device, where traffic
is forwarded to the respective virtual interface based on the
loaded control plane rule.

into the PCle interface of a server, through which the control
plane communicates with the P4 target. Netronome SmartNIC
and NetFPGA-SUME have both physical and virtual inter-
faces. MoonGen is connected to one of the physical inter-
faces of the investigated P4 hardware targets, i.e., Netronome
SmartNIC and NetFPGA-SUME. Note that this evaluation
is not possible on the T4P4S software switch because its
current implementation does not fully support adding control
plane rules during runtime as the current implementation of
this feature is still experimental. First, a P4 program with
forwarding functionality and an initial rule that forwards
incoming traffic on the physical interface (nf0_phy) to one
virtual interface (nfO_vir) is loaded on the P4 target. Then,
the packet generator is used to send traffic with configurable
rate and packet size to the connected P4 target’s physical
interface. The control plane running on the hosting server
sends an update rule, over the control channel of the P4 target,
to change the egress port of the outgoing traffic to virtual
interface 1 (nfl_vir) instead of virtual interface 0. A timestamp
before and after issuing the control plane update rule is taken
and recorded as T1 and T2 respectively. Tcpdump is used to
capture the received packets on the two virtual interfaces. The
timestamp corresponding to the last packet received on nf0_vir
before the rule update takes effect is recorded and denoted as
T3. The timestamp corresponding to the first packet received
on nfl_vir after the update rule takes effect is recorded as
T4. Note that we make sure that all timestamps are taken by
the same server to avoid time synchronization issues. Each test
case is repeated 20 times, and T1, T2, T3, and T4 are collected
to analyze the responsiveness of the data plane to control plane
update rules. The control plane command to update the rule is
issued with the default tools provided by the investigated P4
devices. The executable “rtecli” tool issues the rules in the case
of Netronome SmartNIC, while a provided python API is used
in the case of NetFPGA-SUME. This API includes the relevant
libraries to communicate the update command to the targeted
device. Note that we add one additional timestamp into the
provided tool’s source code for NetFPGA-SUME before the
last line of code responsible for pushing the control plane
command. This is done to quantify the tool’s pre-processing
time.



TABLE III: Cases and parameters considered in the rule update
responsiveness experiments.

Variable Value
P4 Targets Netronome SmartNIC, NetFPGA-SUME
P4 Pipelines Fwd_Exact, Fwd_Wildcard,

Fwd_Register
256, 1000, 1500
100, 250, 500/ 6000
Update_Rate, Response_Time

Packet Size (in Bytes)
Rate (in Mbps)
Metrics

2) Experimental Scenarios: In the conducted experiments,

we vary the traffic characteristics and the type of rules updated
by the control plane while recording the following metrics:
(i) Update_Rate: This is the inverse of the time for a control
plane command to execute and return, i.e., (72 —T1)"!. This
value determines the maximum rate at which update rules can
be sent based on the minimum duration of consecutive control
plane commands, i.e., (T2 —T1).
(ii) Response_Time: This is the time since the control plane
command to update rules is issued until it takes effect on the
packet processing behavior at the data plane, i.e., 74 — T'1.
Over this period, the state at the control plane is inconsistent
with that at the data plane, which may lead to outdated
forwarding behavior.

We perform the measurements for three P4 pipelines to
cover different types of update rule commands. These pipelines
are Fwd_Exact, Fwd_Wildcard, and Fwd_Register. The first
pipeline is made up of an exact match-action table, where
exact rules are applied to change the egress port from nfQ_vir
to nfl_vir, while the second pipeline performs this operation
based on a wildcard rule. The third pipeline updates the egress
port based on the value stored in a register, where this value
is updated by the control plane command.

The measurements were conducted while generating traffic
with different characteristics. Three different packet sizes are
considered: 256, 1000, and 1500 Bytes. Although the physical
interfaces of the investigated devices support 10 Gbps traffic,
the rate that can traverse the PCle bus to reach the virtual
interfaces is limited below that value. This maximum is only
500 Mbps in the case of NetFPGA-SUME due to the imple-
mentation of the “Reusable Integration Framework for FPGA
Accelerators” [10], and approximately 6000 Mbps in the case
of Netronome SmartNIC for small-sized packets. Accordingly,
these two rates were selected as the maximum rates to be used
in this evaluation, along with 100 Mbps and 250 Mbps as
average- and low-load cases. Table III summarizes the details
of this experiment.

III. MEASUREMENT RESULTS

In this section, the measurement results of the flow scala-
bility and rule update responsiveness experiments described in
Subsections II-A and II-B are presented in Subsections III-A
and III-B respectively.

A. Flow Scalability

Fig. 3 shows the box-plots of the measured packet latency
on different P4 devices in us for the different flow scalability

experiments defined earlier when exact and wildcard (shaded)
matching is used. The box-plots include the minimum, first
quartile, median, third quartile, maximum, and outliers of the
measured per-packet latency. The results show packet size
equal to 1500 Bytes, i.e., the Maximum Transfer Unit (MTU).

From Fig. 3a, we can observe that the median of the
measured packet latency in the case of Netronome SmartNIC
is equal to 8.7 us when the number of rules and incoming flows
is equal to 1 (i.e Ry F}). Compared to this baseline case, the
measured latency stays constant when the number of installed
rules increases to its maximum value (i.e. R,,..F"1). However,
as the number of incoming flows increases in cases R,,qz F1k
and R4z Fimae, the measured latency slightly increases by
1 ps when the maximum number of flows is reached. The
results show an identical scaling behavior for the Netronome
SmartNIC when wildcard matching is used instead of exact
matching. The slight increase in measured latency may be
due to the increased lookup time required to access cached
per-flow information in the Netronome SmartNIC.

The collected results from NetFPGA-SUME, shown in
Fig. 3b, reveal that the measured latency is the same, with
a median equal to 3.74 us, for all the cases disregarding
the number of installed rules or incoming flows. This latency
slightly increases, around 0.1 us, when wildcard matching is
used. This shows that the NetFPGA-SUME is well designed
to scale with traffic without compromising performance.

Unlike the latter two hardware-based P4 devices, the mea-
sured latency of the T4P4S software-based switch, presented
in Fig. 3c, reveals a weak scaling behavior. When the number
of installed rules increases in R,,,.F1, the median of the
measured latency stays constant at 45.4 us. However, as
the number of incoming flows increases in R,,q,Fi; and
RpaxFax cases, the measured latency sharply increases to
75 ps. The same behavior is observed in the wildcard matching
cases. The outliers with high values recorded in the case of
T4P4S may be caused by batch processing taking place in
the DPDK-backend of this device. Note that in this case,
the maximum number of flows and rules is equal to 1k as
illustrated in Table II, which makes the two cases R,,qzF1x
and R,,q: Finar €quivalent.

Fig. 4 shows the average measured latency, in ps and
logarithmic scale, for all the devices and all the considered
flow scalability experiments with packet sizes equal to 256,
1000, and 1500 Bytes. In general, we can again observe
that NetFPGA-SUME has a very stable performance when
processing scaled traffic, followed by Netronome SmartNIC,
then by T4P4S software switch, which has a very weak scaling
behavior. The reason behind this is that the first two devices
are hardware devices that are engineered to support worst-case
traffic at line rate, unlike T4P4S, which is a software-based
switch and can hit different memory bottlenecks when doing
extensive lookup operations.

We can also observe that changing packet sizes have the
effect of shifting the curves in the cases of the NetFPGA-
SUME and the T4P4S software switch, where larger packet
sizes lead to longer processing latency. However, in the case



o

i
F
F
Latency in microsec

Experiment ID

(b) NetFPGA-SUME.

AN N AN N S AN N
& & EFEE EFHFESE
& Qé‘ Q‘@'b & Q,é‘ &0 & Qé‘ («\"’

Experiment ID

(c) T4P4S Switch.

Fig. 3: Forwarding latency of different flow scalability experiments for 1500 Bytes packets.

12
. - | N A
A I 1= 0 1
S s | T o e ™
E ! e (oey
£ 6 g3+ L L
g g
g4 §°
3 5
2 [ Iwildcard 1
0 Baseline 0
NN N & AN N & NN N &
FFEL£E & HEE S
C L &K L &K C L &K
<* &8 a < &8 o < &8 6\0
Experiment ID
(a) Netronome SmartNIC.
T4P4s FPGA O 1000B
102 Netronome O 256B A 15008 102
o o
g g
E E
£ 40! £
510 510‘
s s
3 3
10° 10°
R1F1 RmaxF1 RmaxF1k  RmaxFmax R1F1 RmaxF1 RmaxF1k  RmaxFmax

(a) Exact Matching. (b) Wildcard Matching.

Fig. 4: Average forwarding latency of different flow scalability
experiments for different targets and packet sizes.

of the Netronome SmartNIC, we observe that smaller packet
sizes, i.e., higher packet rates, lead to higher packet processing
latency, due to the frequent memory operations required at
high packet rates. Moreover, while scaling the number of
incoming flows in the case of the Netronome SmartNIC
slightly increases the latency when packet size is equal to 1000
and 1500 Bytes, it results in a slight latency decrease when
packet size is set to 256 Bytes. This behavior may be due
to optimization techniques implemented in the device, which
are triggered in response to extensive lookup operations as in
the case when the packet rate and the number of incoming
flows are both high. The dependency of the latency on the
packet size is due to the fact that P4 programmable devices
behave as store-and-forward devices where they have to store
the payload until the desired packet processing on headers
takes place. Accordingly, the latency varies based on the size
of the packet’s payload.

B. Rule Update Responsiveness

The results of the rule update responsiveness experiments
are presented in this subsection. Fig. 5 shows the mean and
standard deviation of the measured response times in ps when
devices are under different traffic loads and dealing with
different types of control plane update rules. Based on Fig. 5a,
the average response time for updating registers in the case of
Netronome SmartNIC ranges between 137 to 145 ms when
different traffic loads are generated. This range increases to
185-192 ms when tables are updated according to exact rules,
and to 173-179 ms when wildcard rules are used. Unlike the

S

Fwd_Register| Fwd_Exact |Fwd_Wildcard

) [

o o » o o » NN
BSES B A
@@%@@@" N @%&Z@“‘ \\@Qpi@““

Fwd_Regisier| Fwd_Exact |Fwd_Wildcard

N
S
3

N A 9 @
s 8

S

Response Time in ms
3
3

Response Time in ms

o

o DL o DL © O Lo,
BES B B
TSRO A AR
O PP OFPPF S
Rate (Mbps), Packet Size(Bytes)

Rate (Mbps), Packet Size(Bytes)

(a) Netronome SmartNIC. (b) NetFPGA-SUME.

Fig. 5: Response time for different traffic loads and control
plane rules to be updated.

Netronome SmartNIC case, the response time of NetFPGA-
SUME is invariant when the type of loaded rules varies. The
response time always ranges between 61 and 65 ms.

We can observe from all these cases that the effect of
varying the rates and packet sizes is minimal and does not
exceed 10 ms. Note that the same holds when rate and packet
size are set to 250 Mbps and 1000 Bytes respectively, which
is the reason why we omit plotting the results for these cases.
The standard deviation of the measured response time across
the 20 trials for every case is always smaller than 3 ms in the
case of NetFPGA-SUME and 10 ms in the case of Netronome
SmartNIC. It is important to highlight that a major component
contributing to this latency is the pre-processing delay taking
place in the control plane tools used to communicate the
update rule commands. This delay is measured in the case
of NetFPGA-SUME where it reaches up to 60 ms.

Fig. 6 shows the results corresponding to the average update
rate that Netronome SmartNIC and NetFPGA-SUME can
support as a function of different traffic loads and types of

15[ Fwd_Regisier| Fwd_Exact |Fwd_Wildcard

0

AN NN ©,

PELE PEPE PEPS

PO O O™
DS DS N

Updates per sec
Updates per sec

o N & o ©

Fwd_Register| Fwd_Exact |Fwd_Wildcard
e

0 o

o o ©
FSES P

o o »
& PEPE
O PP PSSP

Rate (Mbps), Packet Size(Bytes)

(b) NetFPGA-SUME.

Rate (Mbps), Packet Size(Bytes)

(a) Netronome SmartNIC.

Fig. 6: Update rate for different traffic loads and control plane
rules to be updated.



control plane rules. The update rate corresponding to the
Netronome SmartNIC, shown in Fig. 6a, ranges between 6.2
and 7 updates per second independent from rate, packet size,
or type of rules. This update rate increases in the case of
NetFPGA-SUME, shown in Fig. 6b, reaching up to 14 updates
per second. In this case, the update rate does not vary based
on the type of reconfiguration command or traffic load except
when the rate and packet size pair is equal to 500 Mbps and
256 Bytes. This is the maximum packet rate case (highest
rate and smallest packet size), which results in a processing
bottleneck in this card, likely in the interaction with the PCle
bus, leading to a low update rate that can drop down to 8
updates per second.

Note that in some of the test cases we removed a few
outliers from the measured data points which were much larger
than the rest of the measurements and can be classified as
measurement noise. The total number of removed data points
is less than 2.5 % of the overall collected measurement results.

IV. RELATED WORK

Currently, few papers consider benchmarking the perfor-
mance of P4 devices. Table IV summarizes and compares
the performance of different P4 devices based on different
evaluated criteria. The selected devices cover different types
of processing platforms: CPU, NPU, FPGA, and ASIC [11].
The results of the first five evaluated criteria are surveyed
from [5], [6], [12], [13], while the last two are added based on
the evaluation conducted in this paper to create a full picture
of the potentials and limitations of different P4 devices.

We can observe from the table that the hardware-software
trade-off between performance and flexibility is dominant.
When the packet processing device is more like an ASIC
device, the performance in terms of throughput, latency, jitter,
flow scalability, and responsiveness to rule updates prevail
compared to that of software-like devices. However, this comes
at the cost of reduced flexibility in defining new functionalities
(P4 externs) on these devices, a limited capacity of resources
that can be used, and a higher price. Note that we consider that
CPU-based P4 devices are the cheapest as they can co-locate
with other applications when running as software instances.

V. CONCLUSION

In this work, we benchmark the performance of different
state-of-the-art P4 programmable devices, each belonging to

TABLE IV: Comparing different P4 devices, belonging to
different processing platforms, based on various criteria [5],
[6], [12], [13]; (.) is used when information is not available.

P4 Device | T4P4S | SmartNIC | NetFPGA | Tofino
Criteria CPU NPU FPGA ASIC
Throughput + ++ it .
Latency + ++ Jrarers FE
Jitter + ++ +++ ++++
Resources ++++ +++ ++ +
Flexibility ++++ +++ ++ +
Price ++++ +++ ++ +
Flow Scalability + ++ T+
Rule Update Response . ++ +++

a distinct category of processing platforms. The experiments
are carefully designed and analyzed to determine the effect
of different parameters that can influence the flow scalability
and rule update responsiveness of the investigated devices.
Results show that NetFPGA-SUME and Netronome SmartNIC
can handle an increased number of flows without compromis-
ing packet processing latency, unlike T4P4S software-based
switch. On the other hand, the rule update responsiveness anal-
ysis revealed that devices respond differently to control plane
commands, but the response time is always in milliseconds
range, i.e three orders of magnitude larger than data plane
processing. Additionally, we observe that the pre-processing of
control plane commands taking place in the device’s provided
toolchains contributes to a large part of the device’s response
time, which highlights the importance of optimizing the design
of these toolchains.

This work can further be extended by performing a sim-
ilar evaluation on other P4 programmable devices such as
ASIC-based ones. In general, this evaluation highlights the
importance of efficiently designing P4 programmable devices
to unleash their potentials in shaping the future of networks.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-

gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

P. Voros, D. Horpdcsi, R. Kitlei, D. Lesk6, M. Tejfel, and S. Laki,

“T4pds: A target-independent compiler for protocol-independent packet

processors,” in 2018 IEEE 19th International Conference on High

Performance Switching and Routing (HPSR). 1EEE, 2018, pp. 1-8.

[3] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE micro,
vol. 34, no. 5, pp. 3241, 2014.

[4] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the Internet Measurement Conference (IMC). ACM, 2015, pp. 275-287.

[5] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards
understanding the performance of p4 programmable hardware,” in 2019
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS). 1EEE, 2019, pp. 1-6.

[6] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8: P4
with predictable packet processing performance,” IEEE Transactions on
Network and Service Management, 2020.

[2

—

[7]1 Netronome. (2017) Netronome smartnic.
https://www.netronome.com/products/smartnic/overview/. Accessed:
2021-04-29.

[8] (2017) Simple Sume Switch Architecture.

https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-
Overview. Accessed: 2021-04-29.
[9]1 P. Voros, D. Horpécsi, R. Kitlei, D. Leskd, M. Tejfel, and S. Laki.
(2017) T4PA4S repository. https://github.com/PAELTE/t4p4s. Accessed:
2020-12-18.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “Riffa 2.1:
A reusable integration framework for fpga accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 8, no. 4, Sep. 2015.
Intel. (2021) Intel Programmable Ethernet
https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html. Accessed: 2021-04-29.
D. Scholz, H. Stubbe, S. Gallenmiiller, and G. Carle, “Key Properties
of Programmable Data Plane Targets,” in Teletraffic Congress (ITC 32),
2020 32nd International, Osaka, Japan, 2020.
H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A p4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research,
2017, pp. 95-101.

[10]
[11] Switch.

(12]

[13]



