Hotcount: A High-Precision Traffic Statistics for
Multi-Tenants

I** Guanjie Qiao
School of Computer Science

National University of Defense Technology

Changsha, China
2536786901 @qq.com

3 Jing Tan
School of Computer Science
National University of Defense Technology
Changsha, China

Abstract—Traffic statistics in large-scale data streams play
an important role in the network community, and can be
used for congestion control, anomaly detection, heavy hitter
detection, etc. However, in the context of multi-tenancy, ac-
complishing the traffic statistics task of multiple tenants with
limited resources (CPU, memory, etc) has become one of the
major challenges.

To solve the challenges above, this paper proposes a multi-
tenant-oriented traffic statistics structure, named Hotcount,
which can grantee the dynamic allocation of resources in
multi-tenancy scenarios. At the same time, Hotcount is also
able to realize multi-tenant traffic statistics task, and further
improve the accuracy of the traffic statistics task. Hotcount
separates the cold and hot flows based on statistics. It uses
the hot/cold part to record the hot flow size with high precision
and cold flow size with lower precision.

With extensive experiment, we proved that the processing
speed of Hotcount is similar to that of the original classic
algorithm. Meanwhile, it greatly improves the accuracy of
traffic statistics tasks. In the per-flow size statistics task, the
accuracy is improved by 6.7 to 49.5 times than the original
algorithm. In the heavy hitter detection task, the accuracy
is improved by 11.3 times to 2065.6 times than the original
algorithm even with memory-size constraints.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION
A. Background and Motivation

Traffic statistics in large-scale data flows play an important
role in the network and can be applied to congestion control
[1], anomaly detection [2], and so on. Due to the unevenness
of the data flows in the network,it is known that most
flows are small, referred to as cold flows,while a very few
flows are large, referred to as hot flows. Hot flows have a
greater impact on the network. Therefore, the high-precision
statistics of the hot flows size become very important.

In order to deal with large-scale traffic statistics, various
statistical structures have emerged. Sketch is a typical net-
work traffic statistics structure based on hash calculations,
which reduces the memory space usage of traffic. The most
typical structure, Countmin Sketch [3], is a commonly used

ISBN 978-3-903176-39-3© 2021 IFIP

2" Gaofeng Lv
School of Computer Science
National University of Defense Technology
Changsha, China

4™ T usha Mo

School of Computer Science

National University of Defense Technology

Changsha, China

traffic statistics structure due to its simple structure and
high accuracy. However, Countmin Sketch [3] cannot record
the flow key, resulting in irreversibility, so it is difficult to
distinguish between cold flows and hot flows. Later proposed
statistical structures based on Sketch, such as Countmin
Sketch [3]+Heap, Count Sketch [4]+Heap, Elastic Sketch [5]
use a heap or filter method to store the hot flows separately,
and record the hot flow size and flow key at the same time.
If cold flows and hot flows are stored together, the size
of the counter seriously affects the accuracy of statistics.
Using a larger counter under the same memory, a smaller
number of counters will cause severe hash collision. Using
a smaller counter will cause the hot flows to overflow and
also affect the statistical accuracy. Therefore, in order to
statistic the size of the hot flows and the cold flows with high
accuracy, many statistical methods for separating the cold
and hot flows have been proposed. The hot flow is recorded
with high precision and the cold flow is recorded roughly.
However, these structures do not consider the characteristics
of the flow, and use a large counter to record the cold flow,
resulting in serious hash conflicts. Due to the larger counter,
the statistical accuracy of both the size of per-flow and the
statistical accuracy of the hot flows are seriously reduced in
the case of small memory space. According to experimental
statistics, about 95% of the flows are cold flows, and accurate
counting can be achieved with an 8-bit counter. Therefore,
compared with the previous algorithm, an 8-bit counter is
used to record the cold flows, so that more counters can
be used to reduce the hash collision of the cold flows.
Therefore, how to achieve high-precision traffic statistics in
a limited memory space is the focus of research.

With the development of multi-tenant technology [6],
traffic statistics are no longer for a single tenant, and there
is no research on traffic statistics for multi-tenants. Why do
we need to dynamically allocate memory space for tenants?
The first is that each tenant in the network has a different
amount of traffic. Some tenants have large traffic, and some

have small traffic. If the same memory space is allocated
to each tenant, there will be serious hash conflicts for
tenants with larger traffic, resulting in decreased statistical
accuracy. For tenants with small traffic, memory space will
be wasted. The second is that for different tenants, the traffic
characteristics are different. For example, the traffic of tenant
1 is large, and the traffic of tenant 2 is small. The hot flow
of tenant 2 may not be a hot flow for tenant 1. If all tenants
count the traffic together, the hot flows of tenant 2 will be
judged as cold flows, which affects the accuracy of statistics.
With the development of multi-tenant technology, how to
complete the traffic statistics task of multiple users with
limited resources, and how to allocate memory and resources
for different tenants are the focus of research.

B. Our Proposed Approach

Based on the requirements mentioned above, this paper pro-
poses a multi-tenant-oriented statistical structure Hotcount.
This paper proposes a statistical resource allocation scheme
in the case of multi-tenant, which can dynamically divide
the memory space for each tenant. The statistical structure
Hotcount of cold and hot separation is proposed. The hot part
uses a two-dimensional array, and each bucket stores the key
value and count of the hot flow. The hot part records the hot
flows size with high precision, and the cold part also records
the cold flows size more accurately.Optimized version of hot
flows second hash is proposed to solve the hot flow conflict,
and the high precision of the hot flow can be guaranteed
even when a smaller counter is used in the cold part. A
conservatively updated cold and hot flow exchange strategy
for the cold part is proposed to reduce the impact on the cold
flow accuracy when exchange occurs.In addition, this paper
also proposes an update strategy in the case of high-speed
traffic to ensure higher throughput, and proposes a scalable
Hotcount structure to adapt to a small memory space and
achieve high-precision hot flow statistics.

This paper implements two statistical tasks, per-flow size
estimation and heavy hitter detection. The experimental
results show that the accuracy of the two statistical tasks
is significantly improved compared to the previous scheme.

C. Contribution

« This paper proposes a memory space allocation strategy
when multiple tenants complete traffic statistics tasks at
the same time.

o This paper proposes Hotcount, which separates the cold
flow and the hot flow, and can estimate the flow size
with high accuracy.

o This paper counts traffic characteristics and sets a
suitable counter for cold flows to reduce the impact
of hash collisions on accuracy.

o This paper has conducted extensive experiments, and
the results show that Hotcount has the highest accuracy
in multiple statistical tasks.

II. RELATED WORK
A. Sketch principle

In network statistics, network flows are mainly classified
according to quintuples. The main statistical method is to
allocate a counter for each flow to ensure the accuracy of
statistics. The problem is that the memory space is very
complicated. The sampling method infers the total amount of
network traffic by selecting some flows, reducing the amount
of data statistics, and the problem that it brings is the decline
of statistical accuracy. In order to weigh the accuracy of
traffic statistics and memory space, the hash-based traffic
statistics structure Sketch came into being. Sketch maps a
larger amount of data to a smaller storage structure, reducing
memory space and ensuring the accuracy of traffic statistics.

Sketch is a sub-linear data structure based on hash, which
is often used for traffic statistics. Through different hash
functions, flows with the same hash value are recorded in
the same bucket. It does not need to store all the information
of the flow, only the count of flow, thereby reducing memory
overhead. You can obtain traffic statistics data through query
operations. To this end, many Sketch-based algorithms such
as Countmin Sketch [3], Count Sketch [4], Conservative
Update Sketch [7], etc. are proposed.

B. Research on multi-tenant problems

Multi-tenant technology is a software architecture technol-
ogy that realizes the sharing of the same system or program
components in a multi-user environment and ensures the
isolation of data between individual users. Multi-tenant
resources are dynamically created according to service re-
quests. The service provider should dynamically deploy
according to the agreement to meet the needs of tenants.

III. TRAFFIC STATISTICS FOR MULTI-TENANT

According to the requirements put forward in Background
and Motivation, this section introduces statistical techniques
for multi-tenant, and in section A introduces statistical
architecture for multi-tenancy. Section B introduces the data
structure and update and query operations of Hotcount.
Section C introduces the conservatively updated cold and
hot flow exchange strategy.

A. Statistical architecture for multi-tenancy

When the flows arrive, the tenants are divided according to
the VLAN ID, the flows of different tenants are stored in
different buffers, and the tenant information is recorded in
the resource allocation table. After that, Hotcount will allo-
cate memory for different tenants according to the resource
allocation table, and complete the statistical task by hashing
the quintuple of the flow to the corresponding position. The
statistical process is shown in Figure 1.

When a flow of tenants arrives, controller determine
whether the tenant is in the resource allocation table, and
if so, controller allocate it to the corresponding buffer. If the
tenant is not in the resource allocation table, the resource
allocation table records the tenant and allocates the memory
space of the hot part to the tenant.

Resource

Alocation Table TopkFlows | | D00 on | | Estmaton
VLANID (Quril:tsuhple) r r r
Hotcount
M Hot part Cold part

count

A

1 count
count Y
[outers | ey) ||
count cus

count

N count

) 21 cont |4

Buffer m || tenancy m). 2" count
cu

Fig. 1. Hotcount implements multi-tenant flow statistics tasks

TR

E..

When a new tenant arrives, controller first update the re-
source allocation table and divide tenant memory space into
two according to the resource allocation table. Controller
merges the CU sketch [7] of row 1 and row 2"~! 41, and
when the two CU sketches [7] are merged, the counters at the
same position in the two CU sketches [7] take the minimum
value and store them in the merged CU sketch [7].Then
controller compare the 2 * z hot flows in row 27! + 1 and
row 1 to filter out the largest z hot flows and store them in
the hot part in row 1, and store the remaining flows in the CU
Sketch [7] corresponding to row 1. The rest of the lines are as
above. Because the hot part has 2™ line, it is guaranteed that
the hot flow can be stored in the corresponding bucket after
the merger. When a new tenant arrives, controller update
the resource allocation table, and then calculate the average
count of the flow in each tenant in the hot part, and divide
the hot part memory space of the tenant with the smallest
flow average count into two for new tenants to use. The parts
that need to be cleared are merged into the corresponding
positions.

B. Architecture of Hotcount

Section A introduces the memory allocation of Hotcount in
the case of multi-tenant. This section introduces the structure
of Hotcount of a single tenant.

1) Data structure:
Hotcount is composed of a hot part and a cold part. The "hot
part” records the hot flows and the “cold part” records the
cold flows. The n rows of the hot part are associated with
n CU Sketches [7] in the cold part. The Hotcount structure
is shown in Figure 2.
Hot part: Consists of n rows, respectively associated with n
cold parts CU Sketch [7], each row contains z buckets, and
records the flow key value and flow frequency of z hot flows.
When a flow arrives, the hash function is used to determine
which row of the hot part the flow is mapped to.
Cold part: Contains n CU Sketches [7], which correspond
to a row in the hot part. Each CU Sketch [7] consists of d
rows and w buckets, and each bucket uses a 8-bit counter
to record the cold flow.

2) Key operations:
Update:Assuming that the arriving flow ID is f, controller

Hot part Cold part
hash hash 1 2 ... k1 k
1
2
1 2 z : 1
d
2 1 2 = k
— 1
z 2
) d
I
———
n-1 1 2 k-1 k
1
., 2
— hot flow e ! n
— cold flow d

exchange flow

Fig. 2. Architecture of Hotcount

hash it to the i-th row of the hot part (0<i<n), then check
the z hot buckets in the i-th row, (z is the number of hot
buckets included in each row of the hot part). If f in the j-
th bucket, (0<j<z), controller add one to the j-th bucket
flow count. Otherwise, controller check whether there is
an empty bucket. If there is an empty bucket, controller
insert the flow f into the empty bucket, record the flow
key, and record the flow count value as one. If there is
no empty bucket, controller expel flow f to the i-th CU
Sketch [7] corresponding to the cold part, and only update
the count value of the smallest counter in the d positions
corresponding to the d hash functions. If the minimum value
of the corresponding position after the update is greater than
the count value of the smallest hot bucket in the i-th row
in the hot part, flow f replaces the flow in the smallest
hot bucket, and the corresponding counters of flow f in the
cold part are all subtracted from flow f during exchange.
The minimum query value, and the minimum hot flow is
mapped to the cold part.

Details are as follows:

Case 1: When the flow f is stored in the bucket in the
hot part, the flow f count value is increased by one.

Case 2: When there is an empty bucket in the hot
part, controller insert (f, 1) to the empty position, and the
insertion ends.

Case 3: The hot bucket is full, the flow f is updated to
the corresponding CU Sketch [7], and the minimum value
of the update value is less than the minimum value of the
hot bucket, and the update ends.

Case 4: The hot bucket is full, and the flow f is updated
to the corresponding CU Sketch [7]. The minimum value
of the updated value is greater than the minimum value of
the hot bucket. Controller replace the minimum hot flow in
the hot bucket with the ID of the flow f and the updated
minimum value, and the flow in CU Sketch [7] . The bucket
corresponding to f is subtracted from the minimum value,
and the minimum hot flow is updated to the corresponding
position of CU Sketch [7].

Query:

Algorithm 1 Stream update algorithm for Hotcount
Input: key of flowf
0: function UPDATE HOTCOUNT
0: ¢ < hash(key) (1< i < n)
. if f in Hotpart(:) then

0
0 Vikey= f) + 1
0: else
0 Check if there are empty buckets in the Hotpart
0 if Ture then
0 K(key=empty) < f
0 V(key=empty) < 1
0 else
0 Send f to Coldpart
0 Query minV (h1(f)),V(h2(f)),V (h3(f)),V (h4(f))
0 end if
0: for j < 1to 4 do
0: if V(hj(f))= min then
0 Vhj(f) + 1
0 end if
0 if min+1> V Ekmin then
0 for j < 1to4 do
0 V(hj(f))—min+1
0 end for
0 (f kmin,V kmin)<(f,countmax)
0 Send f kmin to Coldpart
0 end if
0 end for
0: end if
0: end function
=0

Case 1: If f is in the hot part, controller return the counter
value of the corresponding position in the hot part.

Case 2: If f is not in the hot part, controller find and
return the minimum value of f in the cold part.

Algorithm 2 Stream query algorithm for Hotcount

Input: key of flowf

Output: value of flow f
0: function QUERY HOTCOUNT
0: if f in Hotpart then
0: V + Vikey= f)

return V

0: else

0: Query f in Coldpart

0: V' <—min(V (h1(f)),V (h2(f)),V (h3(f)),V (h4(f))
return V'

0: end if

0: end function=0

C. Conservatively updated cold and hot flow exchange strat-
egy

When a flow is replaced from the hot part to the cold part,
the previous strategy will hash the flow to the corresponding

position according to the key value of the flow, and then in-
crease the flow count to each corresponding bucket.However,
directly increasing the count will bring a greater loss of
precision, so in the exchange strategy of Hotcount, controller
determine the count of the flow replaced to the cold part and
the count of the corresponding bucket flow in CU Sketch
[7].If the count value of the corresponding bucket is greater
than the count of the replaced flow, no action is taken,
because this indicates that the bucket is a bucket with serious
hash conflicts. If the larger count value of this bucket is
caused by a flow, then this flow should be stored in the
hot part, not the cold part counter. Therefore, this bucket
has a large hash conflict, so no action should be taken. If
the count value of the corresponding bucket is less than the
count of exchanged flow, then exchange the count value of
the corresponding position counter with the high-precision
count of the exchanged flow instead of increasing the count
value. Above operation can ensure that the flow is stored in
the cold part and counted with high accuracy just after the
exchange. The optimization of cold and hot flow exchange
strategy is shown in Figure 3.

hash1, 72

key: e ﬁhz % 60

value: 60 f—— | hash3
e —

r rows

3g 60

[hashiz=| 66

w buckets

Fig. 3. Optimized version of cold and hot flow exchange strategy

IV. ANALYSIS

In this section,we analyze the accuracy of Hotcount in
section A and hot flows collision rate in section B.

A. Accuracy Analysis

Hotcount is more accurate in most cases, because Hotcount
uses the hot part to record the hot flows and the cold part
to record the cold flows. In the hot part, because the ID
and count of the hot flows are stored, for the hot flow that
has not been replaced, the count in the hot part is the true
frequency of the hot flows. For the hot flow that has been
replaced, the counting accuracy in the hot part is slightly
reduced. The count includes the true frequency of the hot
flows and the count sum of a small number of cold flows
due to hash collisions when the hot flows are stored in the
cold part. Since the cold flow frequency has little effect on
the hot flow frequency, the accuracy of the hot part is high.

In the cold part, Conservative Update Sketch [7] is used,
and only the frequency of the flow is recorded. The use of
four independent hash functions greatly reduces the proba-
bility of hash collisions. Because most of the hot flows are
stored in the hot part, 8-bit counters can be used in the cold
part. Since the usual Sketch structure cannot separate the hot
flows and the cold flows, a larger counter is usually needed
to prevent the flow frequency count from overflowing, and
32-bit counters are generally used. Therefore, under the same

memory space, the cold part of Hotcount can allocate more
counters, which reduces the probability of hash collisions
and improves the accuracy of flows frequency statistics.

Hotcount accuracy will decrease when hot flows conflict
occurs. Hot flows conflict means that two or more hot flows
are mapped to the same bucket in the hot part, causing
a relatively small hot flows to be expelled to the cold
part, making the count of cold flow in the cold part is
overestimated.In Section 4.2, the probability of hot flows
conflict will be analyzed. In order to reduce the impact of
hot flows conflict on accuracy, the hot part adopts a storage
method of multiple hot buckets to reduce the probability of
hot flows conflict.

B. Hot flows collision rate

For each bucket in the hot part of Hotcount, the probability
of hot flows conflict is:

p:l—(ﬁ%—l)*e_%
w

Where n is the number of hot flows and w is the number of
buckets in the hot part.

Proof. There are totally H hot flows, and each flow is ran-
domly mapped to a certain bucket by the hash function.Given
an arbitrary bucket and an arbitrary flow, the probability that
the flow is mapped to the bucket is %

Therefore,for any bucket, the number of hot flows
that mapped to the bucket Z follows a Binomial
distributionB (n, iw) .When H and w is large, then Z
approximately follows a Poisson distribution,r (&).

(%)’

il

p{Z = 1} = e_%

There are hot collisions within one bucket if Z >2 for
this bucket. Therefore, we have

p=1-p{Z=0}—p{Z=1}=1— (T +1)xc?
V. EXPERIMENTAL RESULTS

In this section, we provide experimental results of Hot-
count.We describe the experiment setup in Section A.We
show the accuracy and throughput of the per-flow size
estimation task in Section B. We show the accuracy and
throughput of the heavy-hitter detection task in Section C.All
abbreviations used in the evaluation and their full name are
shown in Table 1.

A. Experimental Setup

Implementation: We have implemented Hotcount [11] and
all other algorithms in C++. The hash functions are imple-
mented using the 32-bit Bob Hash.

Datasets:We use four one-hour public traffic traces collected
in Equinix-Chicago monitor from CAIDA [12]. We use the
CAIDA [12] trace with a monitoring time interval of 5s as
default trace, which contains 1.1M to 2.8M packets with
60K to 110K flows (SrcIP). Due to space limitations, we

TABLE I
ABBREVIATIONS IN EXPERIMENTS
Abbreviation Full name
CMS Count-min Sketch [3]
CS Count Sketch [4]
CUS Conservative Update Sketch [7]
ES Elastic Sketch [5]
SS Space Saving [8]
UM Univ-Mon [9]
CS+H Count Sketch [4] with a heap
CMS+H Count-min Sketch [3] with a heap
HP Hash-pipe [10]

only show the results with the source IP as the flow ID;
the results are qualitatively similar for other flow IDs (e.g.,
destination IP, quintuple).

Computation Platform:We conduct all the experiments on
a machine with Inte]lRCoreTMi7-105 10U CPU@1.80GHz
2.30 GHz and16GB DRAM memory.

Evaluation metrics: .
DARE (Average Relative Error):1>"" |fi;fi|
n is the number of flows, andf; and fiare the actual and
estimated flow sizes respectively.We use ARE to evaluate
the accuracy of per-flow size estimation and heavy hitter
detection.

2)Throughput:million packets per second (Mpps). We use
Throughput to evaluate the processing speed of per-flow size
estimation and heavy hitter detection.

, where

B. Experiments on per-flow size estimation

Parameter settings:Through experiments, the hot flow ac-
counts for about 5.8% of the total flow, and 50KB of memory
is allocated to the hot part. With a total memory of 0.2MB,
the number of counters allocated by the hot part accounts
for 4% of the total number of counters. Under different
memory, only the cold part counter quantity is changed. 4
hash functions and 8-bit counters are used in the cold part.
For each algorithm in per-flow size estimation, the default
memory size is 0.6MB.

We compare five approaches:CMS,CS,CUS, ES and Hot-
count.

ARE:Experiments were performed on five algorithms with
memory sizes of 0.2MB, 0.4MB, 0.6MB, 0.8MB, and 1MB.
The results are shown in Figure 4.

— CMS cs Ccus ES Hotcount

14004
1200+
1000
8.004
6.00
400 i
2.001 .
0007 y : X
02 04 06 0.8 1

ARE

Memory usage (MB)
Fig. 4. ARE of per-flow size estimation

Throughput:In the experiment, the throughput of each
algorithm was tested five times under the memory size of

0.6MB, and the experimental results are shown in Figure 5.

22 CMS =CS I CUS # ES % Hotcount

4.00 3.70
730 o, 290
o 3.00 — 241
= 3338 '
< 250 1338
pesd
5 200 i3
o 2333
= 150 332
=2 3332
3 1.00 3
= s
£ 050
0.00 e
(@Y cs Ccus ES Hotcount

Fig. 5. Throughput of per-flow size estimation

Analysis:We find that Hotcount offers a better accuracy
than CMS,CS,CUS and ES.With 0.6MB of memory, the
ARE of Hotcount is only 0.07. It is 49.5 times lower than
Count Sketch [4], the algorithm with the highest ARE in
the experiment, and 6.7 times lower than Elastic Sketch [5],
the algorithm with the lowest ARE in the experiment.The
throughput of the best-performing algorithm Elastic Sketch
[5] is only 1.3 times that of Hotcount.

C. Experiments on heavy hitter detection

Parameter settings:Through experiments, the hot flow ac-
counts for about 5.8% of the total flow, and 50KB of memory
is allocated to the hot part. With a total memory of 0.2MB,
the number of counters allocated by the hot part accounts
for 4% of the total number of counters. Under different
memory, only the cold part counter quantity is changed.
4 hash functions and 8-bit counters are used in the cold
part. For each algorithm in heavy hitter detection, the default
memory size is 0.6MB.

We compare seven
proaches:CMS+H,ES,UM,HP,CS+H,SS and Hotcount.
ARE:Experiments were performed on seven algorithms with
memory sizes of 0.2MB, 0.4MB, 0.6MB, 0.8MB, and 1MB.
The results are shown in Figure 6.

ap-

—&— CMS+H ES
CS+H —SS

—e— UM HP

—+— Hotcount

1.00000

0.10000
& 0.01000
< s
0.00100 L\
0.00010
02 04 0.6 0.8 1
Memory usage (MB)

Fig. 6. ARE of heavy hitter detection

Throughput:In the experiment,the throughput of each al-
gorithm was tested five times under the memory size of
0.6MB,and the experimental results are shown in Figure 7.
Analysis:We find that Hotcount offers a better accuracy than
CMS+H,ES,UM,HP,CS+H and SS.The ARE of Hotcount is
very low when the memory is small. Experimental results
show that under 0.2MB of memory, the ARE of Hotcount

CMS+H & ES # UM Il HP = CS+H N SS & Hotcount

4.00 3.72
350
é 3.00 47
= 250 - 233
5 N
5200 168 s §
£ 150 \\
: X
3 1.00 \
F 050 §
0.00 N ¢
CMS+H ES HP CS+H $S Hotcount

Fig. 7. Throughput of heavy hitter detection

is only 0.000335.1t is 2065.6 times lower than Univ-Mon
[9], the algorithm with the highest ARE in the experiment,
and 11.3 times lower than Elastic Sketch [5], the algorithm
with the lowest ARE in the experiment. The performance
of Hotcount in processing heavy-hitter detection tasks is
higher than most algorithms, and the throughput of the best-
performing algorithm Elastic Sketch [5] is only 1.3 times
that of Hotcount.

VI. CONCLUSION

Hotcount, a large-scale data stream size statistics structure
oriented to multi-tenant division, solves the memory re-
source allocation problem in multi-tenant traffic statistics
tasks. By separating the cold and hot flows, high-precision
hot flows statistics are realized, and the cold flows statistics
accuracy is further improved. Various update strategies are
proposed to greatly improve the accuracy of statistics while
ensuring the processing speed.

REFERENCES

[1] M. ALLMAN, “Tcp congestion control,” Rfc, 2009.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” Acm Computing Surveys, vol. 41, no. 3, 2009.

[3] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58-75, 2004.

[4] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” Theoretical Computer Science, 2004.

[5] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-
wide measurements,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 561-575. [Online]. Available:
https://doi-org-s.nudtproxy.yitlink.com/10.1145/3230543.3230544

[6] J. Mudigonda and B. Stiekes, “Net lord: A scalable multi-tenant
network architecture for virtualized datacenters,” Acm Sigcomm Com-
puter Communication Review, vol. 41, no. 4, pp. p.62-73, 2011.

[7] C. ESTAN and G. VARGHESE, “New directions in traffic measure-
ment and accounting: Focusing on the elephants, ignoring the mice,”
Acm Transactions on Computer Systems, vol. 21, no. 3, pp. p.270-
313, 2003.

[8] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Database theory
:, Edinburgh, Scotland, 1 2005, pp. 398-412.

[9] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One

sketch to rule them all: Rethinking network flow monitoring with

univmon,” in the 2016 conference, 2016.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and

J. Rexford, “Heavy-hitter detection entirely in the data plane,” 2016.

https://github.com/2536786901/Hotcount.

“The CAIDA Anonymized Internet Traces,” http://www.caida.org/

data/overview/.

[10]

(11]
[12]

