
ISBN 978-3-903176-39-3© 2021 IFIP

Network Telemetry by Observing and Recording on

Programmable Data Plane

Wen-Hong Lin

department of electronic and
communication engineering

Guangzhou University

Guangzhou, P. R. China

958310048@qq.com

Song Wu

department of electronic and
communication engineering

Guangzhou University
Guangzhou, P. R. China

Sen Ling

department of electronic and
communication engineering

Guangzhou University

Guangzhou, P. R. China

Wai-Xi Liu*

department of electronic and

communication engineering

Guangzhou University

Guangzhou, P. R. China

lwx@gzhu.edu.cn

Jin-Jiang Fu

department of electronic and
communication engineering

Guangzhou University

Guangzhou, P. R. China

Zhi-Tao Chen

department of electronic and
communication engineering

Guangzhou University

Guangzhou, P. R. China

Gui-Feng Chen

department of electronic and

communication engineering

Guangzhou University

Guangzhou, P. R. China

Xing Liang

department of electronic and
communication engineering

Guangzhou University

Guangzhou, P. R. China

Abstract—Fine-grained, real-time, and accurate monitoring

data can better help detect equipment failure and perform

traffic engineering. However, existing in-band network

telemetry (INT) implementations still exhibit a few drawbacks

such as lack of real-time monitoring, relatively high overheads

due to per-packet operation, and limited monitoring range. This

paper proposes an INT+PDP-based fine-grained real-time

telemetry scheme by observing and recording on the

programmable data plane (PDP), referred to as O&R. The key

idea lies in designing some registers on data plane to observe the

states of packets forwarded by it as well as adding a customized

header on a normal data packet to record how it is forwarded

on its routing path. Except for measuring some conventional

performance parameters such as end-to-end delay, jitter,

throughput, and packet loss rate, O&R designs a clock offset

elimination algorithm to realize the time synchronization of two

adjacent switches, based on which we can complete more fine-

grained measurement such as queuing delay, processing delay,

transmission delay, and propagation delay on any hop. O&R

also can measure the queue state that includes real-time queue

depth and how many flows share the queue. Extensive

experimental results for the K=4 fat-tree data-center network

demonstrate the effectiveness of O&R in terms of higher

accuracy, better real-time performance, less overheads, and

better fine-graining compared to existing schemes. The

measurement accuracy of O&R is 46.3% higher than that of

INT-like method. The measurement delay of O&R is ~1 ms,

while INT-like method needs ~20 ms. The measurement

overhead of O&R is only 2.19% of Pingmesh.

Keywords—In-band network telemetry, programmable data

plane, monitoring, fine-graining, real time

I. INTRODUCTION

In recent years, as a result of the proliferation of non-elastic
services and the adoption of novel paradigms, monitoring
networks with a high level of detail is crucial to correctly
identify and characterize situations related to faults,
performance, and security [1]. In other words, fine-grained
and real-time monitoring is an urgent requirement.

In-band network telemetry (INT)[13] has emerged as a
promising approach to meet the above-mentioned demands,
enabling production packets to directly report their experience
inside a network. This enables unprecedented monitoring
accuracy and precision but leads to performance degradation
if applied indiscriminately using all network traffic. An
alternative to avoid this situation is orchestrating telemetry
tasks and using only a portion of traffic to monitor the network
via INT. However, this brings about a dilemma problem
regarding assigning subsets of traffic to perform INT and
providing full monitoring coverage while minimizing
overheads. Besides, INT can only detect fixed telemetry
indicators on the specified paths but cannot adapt to the
changing network environment and telemetry requirements.
INT cannot detect the network status on other paths to cover
the whole network, thereby making it difficult to obtain a
global network view. Meanwhile, encapsulating telemetry
commands and data into normal data packets leads to high
overhead, and the complexity of deployment, operation, and
maintenance leads to poor scalability.

Behind these above-mentioned drawbacks, it is the rigidity
of the data plane that the fundamental limitation of existing
INT-based network monitoring solutions lies in—off-the-
shelf switching ASICs can only provide simplistic functions
to compute fixed and aggregated counters or mechanically
mirror packets to the management plane. Thus, despite the
origin of measurement target (such as delay, queue, and packet
loss event) is on the data plane, performing sophisticated
monitoring logics (such as event detection, data cleaning, and
compression) must rely on the remote management plane,
which results in low real-time, huge traffic transmission, and
computation overhead.

Naturally, performing monitoring logics directly in the
origin—the switch data plane itself should be one promising
way to achieve fine-granularity, cost efficiency, and real-time
monitoring. Fortunately, recent advances on the
programmable data plane (PDP) have provided us a new
foundation to realize this vision. Programming protocol-
Independent packet processors (P4)[8] is a reconfigurable,

Corresponding author:*Wai-xi Liu

protocol independent and platform independent data plane
programming language. P4 makes it possible to reach deep
inside the switch to obtain highly accurate network state
information.

Range-customizable measurements can be achieved faster
and more accurately using INT+PDP [4, 9, 10, 11]. INTOpt
[10] assigns probing tasks to suitable flows, but some ports are
repeatedly probed. Another INT-based packet-level network
monitoring scheme [4] also has several disadvantages. First,
its real-time monitoring performance is limited because events
are firstly pushed to a database and the network controller then
queries the information from it. Second, its monitoring range
is limited, and the maximum number of hops is limited to six.
In addition to poor real-time performance, excessive
overhead, and limited measurement range, INT+PDP-based
solutions find it difficult to monitor the global view event,
such as throughput of the whole network.

As a new network frame, software-defined networking
(SDN) [3] separates the control plane of the network from the
data plane, thus enabling flexible control over network traffic.
Most importantly, SDN provides a controller that can control
the entire network in a centralized manner to obtain a global
view.

Thus, we propose an INT+PDP-based fine-grained real-
time telemetry scheme by observing and recording on the
programmable data plane, and referred as O&R. The key idea
is that by using programmability of switch data plane, on
which some registers are design to observe the states of
packets forwarded by it; moreover, a customized header is
added to piggyback on normal data packet to record how does
it be forwarded on its routing path. A measurement controller,
which is deployed on the SDN controller, reads collected data
from the registers to compute the delay, jitter, throughput,
packet loss rate, queue state, and route tracing. In summary,
the main contributions of this paper are as follows:

(1) An INT+PDP-based fine-grained real-time telemetry
scheme through the cooperation of the register on switch and
customized header on the packet is proposed. We design a
clock offset elimination algorithm to realize the time
synchronization of adjacent two switches, based on which we
can complete more fine-grained delay and jitter measurement,
such as, queuing delay, processing delay, transmission delay,
propagation delay on any hop.

(2) A method to measure queue state that includes real-time
queue depth and how much flows share the queue is proposed.

(3) Through extensive experimental results for K=4 fat-tree
data-center network, we demonstrate the effectiveness of
O&R in terms of higher accuracy, better real-time monitoring,
and better fine-graining than existing schemes.

II. RELATED WORK

Probe packet-based measurement schemes make up the
majority of existing network telemetry methods, mainly
including traceroute, Swift [9], INTOpt [10], sINT [11],
NetSeer [15], OmniMon [16], ML-INT [17], PINT [2], and
HyperSight [14].

For congestion control, swift[9] proposed a closed-loop
measurement method, which requires the delay information to
be transmitted back to the sending host through the CTS
response packet, which has a large delay, and this method
integrates various delays on the link as a link delay, it can only

be found that the link is congested, but the exact location of
the congestion cannot be judged. PINT[2] is an INT
framework that limits the amount of information added to a
packet. OmniMon[16] decomposes network telemetry into
partial operations through segmentation, and schedules these
partial operations among different entities. But the algorithm
tracks every flow in the whole network; at the same time, the
controller manages and comprehensively analyzes the whole
network resources of all terminal hosts and switches, which
will have greater requirements on the operation of switches
and controllers, and the cost of equipment update is
unrealistic. ML-INT [17] is a flexible multi-layer in band
network telemetry system based on P4. In ML-INT, some
packets in IP stream are selected to encode INT header, which
is biased for accurate real-time measurement and is not
conducive to the diagnosis of network performance.

In short, although the network performance can be
accurately measured using probe packets, such measurements
also have drawbacks, such as the limitation in the time span of
the measurement and great difficulty in measuring the whole
network. In addition, the header of a probe packet occupies
considerable network bandwidth.

Switch-based probing methods mainly include BasisDetect
[5], NetPilot [7], and CorrOpt [6]. They record network
performance by deploying registers on the switch. The
management layer extracts measurement data from the
registers as needed. However, such methods also have
drawbacks such as an increase in the hardware overhead of the
switch upon register addition and latency in measurement data
extraction.

III. SYSTEM DESIGN

A. System framework

The first step is to design the P4 program according to the
measurement task and deliver it to the P4 switches, during
which O&R designs two customized headers (i.e., loss_t and
hop_t). O&R also designs 28 registers for storing
measurement data for each P4 switch. As shown in Fig.1, the
measurement process is as follows:

(1) The administrator initiates relevant measurement rules via
the controller according to the measurement task.

(2) When a packet arrives at the first-hop switch, the ingress
pipeline of the switch adds the required customized header
(which is used to record the measurement data) to the normal
header of this packet according to the measurement task. In
addition, the switch stores the measurement data in its
corresponding register, and the packet is subsequently
forwarded to the next hop along the preset route[18].

(3) When the packet travels through the P4 switch, the switch
first parses the packet according to the measurement task. If
the packet does not contain the required customized header,
then the ingress pipeline of the switch adds the required
customized header to the normal header of this packet when
receiving this packet. If the packet already has the required
customized header, then no header is added. In addition, the
switch reads the measurement data recorded in the customized
header from the switch on the previous hop and calculates the
data with its own measurement data. The calculation result is
stored in the register of this switch.

(4) The above procedure repeats until the packet reaches its
destination. The final-hop switch removes the added

customized header so that the measurement remains
transparent to the sender and the receiver.

(5) Depending on the requirements of the task, the controller
reads the data from the required switch registers as well as
analyzes and processes such data to obtain the final
measurement results for in-band telemetry purposes.

Controller

Extract the data of register in each switch

S1

S5

S4
h1 h2

The structure of switch

Analyzing data and display the results in

real time
Administrator

In
gr

es
s

pi
pe

li
ne

Eg
re

ss

pi
pe

li
ne

Bu
ff

er

DM
register

UM
register

Other
register

Register

Register distribution

S3S2

Fig. 1. Overall system architecture

B. Key measurement schemes

1) Clock offset elimination algorithm
Emerging applications such as interactive augmented

reality (AR)/virtual reality(VR) and industrial Internet have
higher requirements for deterministic low delay and
deterministic low jitter. Clock synchronization between
switches is the basis for accurate measurement of delay and
jitter, as well as the key to achieving deterministic low latency
and deterministic low jitter. The current mainstream time-
sensitive networking (TSN) achieves clock synchronization at
the link layer, which requires underlying hardware support.
We propose a clock offset elimination algorithm to eliminate
the clock offset of the switch without any hardware
modification.

As shown in Fig.2., a probe packet is sent first, and it carries
the start timestamp (lastswitch_sendtime) of the data sending
by the sender. After receiving the probe packet, the receiver
returns a reply packet that carries the receiving timestamp
(thisswitch_rectime) and sending timestamp
(thisswitch_sendtime) of the probe packet and the receiving
timestamp of the final reply packet being returned to the
original switch (ingress_global_timestamp). Based on these

timestamps, the clock offset of the two switches (△S) is

calculated, which is then introduced into the delay calculation
so as to achieve clock synchronization. The calculation
process are as follows:

 �����1 = 	ℎ���
�	�ℎ_���	��� − ���	�
�	�ℎ_����	��� +△ � (1)

�����2 = �������_������	���_�	��� − 	ℎ���
�	�ℎ_����	��� −△ �
(2)

 �����1 = �����2 (3)

Based on Eqs. (1), (2), and (3), we can obtain:
△ � = (�������_������_	����	��� − 	ℎ���
�	�ℎ_����	��� −
 	ℎ���
�	�ℎ_���	��� + ���	�
�	�ℎ_����	���)/2 (4)

In the clock offset elimination algorithm, the switch needs
to support loopback forwarding to calculate the loopback
time. Therefore, the P4 switch herein has two forwarding
behaviors: loopback forwarding and normal IP forwarding.
The choice of the forwarding behavior is made by determining
whether values have been stored in the switch’s synchronous
time difference register (synchronous_diff_time). If yes,
normal IP forwarding is selected; if no, loopback forwarding
is selected.

Delay2

Delay1

Switch1 Switch2

Sync offset

△S

Sync offset

△S

Actual clock time

Measured time：
lastswitch_sendtime

thisswitch_rectime

thisswitch_sendtime

Actual clock time

Measured time：
ingress_global_timestamp

Fig. 2. Clock offset elimination algorithm

As shown in Figure 3, the loopback forwarding steps are
as follows:

Step 1: The initial state of the re_flag field in the loss_t
header is set to 2. At the time, normal IP forwarding is
performed. The values in the synchronous_diff_time register
of the switch are stored into the last_synchronous_diff field in
the loss_t header, and the time when the packet arrives at the
switch’s egress port is stored in the thisswitch_sendtime field
in the loss_t header. Then, the re_flag field in the loss_t header
is set to 0, and the packet containing this header is sent to the
next switch.

Step 2: When the next switch receives the packet in which
re_flag=0, the switch determines whether
last_synchronous_diff is 0. If last_synchronous_diff is 0, the
switch records the timestamp of the packet entering the
switch’s ingress port in the thisswitch_sendtime field in the
loss_t header, and the timestamp of the packet’s arrival at the
switch’s egress port in the lastswitch_sendtime field. Finally,
re_flag is set to 1, and loopback forwarding is performed.

Step 3: If the value of the re_flag field in the packet arriving
at the next switch is 1, it means that three timestamps of the
packet, namely thisswitch_sendtime, thisswitch_rectime, and
thisswitch_sendtime have been recorded. In this case, the
switch extracts the ingress_global_timestamp. Eq. (4) is used

to calculate △S, the synchronization time difference between

s1 and s2. Subsequently, re_flag is set to 2, and △S is

recorded in the synchronous_diff_time register.

The synchronization time difference between the two
switches in forward and reverse directions is a pair of opposite
numbers. Besides, the register cannot store negative numbers,
so we add a synchronous time difference flag, i.e.,
last_synchronous_diff_flag. When the computed synchronous
time difference last_synchronous_diff is negative,

last_synchronous_diff_flag is set to 1. last_synchronous_diff
and last_synchronous_diff_flag are stored in the respective
locations in the synchronous_diff_time and
synchronous_diff_time_flag registers.

Step 1
Step 2

Step 3s1h1
s3

h2
s2

Fig. 3. Schematic of the loopback forwarding

2) Route tracking
To observe the routing paths of packets in the network, we

design the route tracing functions, involving three switches—
Src router, intermediate router, and sink router. The
measurement process is shown in Fig.4.

(1)The controller obtains the IP address of each router port and
then sends it to the corresponding router. When h1 sends out
a packet, the router receives it and then checks its quintuple.
If the port number is 45,000, then src router inserts the hop_t
header. The receiving port and forwarding port are used as
matching ports to obtain the corresponding IP addresses,
which are then filled in the header. The packet containing this
header is then forwarded.

(2)When the intermediate router receives a packet containing
the hop_t header, it directly fills in the routing and delay
information.

(3)When the sink router receives a packet containing the hop_t
header and the next hop is the host (i.e., the packet is to be
delivered to the destination host h2), the switch extracts the
information from the hop_t header and temporarily stores it
into the register and then removes the header before delivery
(as can be seen from the sink router in Fig.4). When the
controller completes extracting the switch registers, it clears
them.

h1
Src router

h2
Intermediate

router
Sink router

Controller

Header

Data

Hop Header

nextProtocol

num_sw

hop_ip1

...

hop_ip6

hop_delay1

...

hop_delay5

Read register

Fig. 4. Route tracking principle

IV. EXPERIMENTS

A. Experimental setup

We built a network prototype to demonstrate the proposed
O&R. The hardware is G4560 CPU and 16-GB memory,
running Ubuntu 16.04 OS. We used Mininet to implement the
K=4 fat-tree data-center network, as shown in Fig.5, where the
default bandwidth each link is 10 Mbps. Specifically, we
adopted the P4 software switch (i.e., bmv2) to achieve the

capability of forwarding of customized INT packets. The
queue comprises 1000 packets. To simulate the
communication in a real network, we also generated
background traffic in the network. We let each host in the
topology send communication requests to other hosts, with
any two hosts communicating with each other simultaneously.
The communication process is described as follows:

 The communication request process is according to a
Poisson process, whereas the source and destination of
each flow are selected uniformly at random.. For each
host, the parameter τ is independently and randomly
generated in (150, 200).

 Some micro-burst flow, congestion, packet loss events are
created by setting the bandwidth of a certain link and
enabling the host to send packets randomly.

 Flow scheduling mechanism: equal-cost multipath routing
(ECMP).

Core

Edge

h3 h4 h5 h6 h9 h10 h11 h12 h13 h14 h15 h16

s13 s14 s15 s16

s2 s5 s6 s7

h1 h7

s4

s19

Pod4Pod3Pod2Pod1

Aggregation

s20

s12
s9

s17

s10

s1

s18

h2 h8

s8

A example for

measuring path1
2

3
4

s11

s3

1
2 3

4

1

2 3

4

1

2
3

4

Fig. 5. K=4 fat-tree data-center network

B. Experimental results

O&R can measure any one-hop link, end-to-end path, or a
particular network in the entire network. Fig.6(a) shows the
changes in end-to-end delay, queuing delay, transmission
delay, processing delay, and jitter over time in 10 s for the link
S11-S3.

As shown in Fig.6 (a), end-to-end time delay = processing
delay + queuing delay + transmission delay. The processing
delay accounts for the majority, which is due to the small
queuing delay and transmission delay caused by the large
enough bandwidth at the time of measurement. From the ninth
to tenth seconds, the end-to-end network delay rises, while
jitter changes more dramatically compared to the end-to-end
delay. A comprehensive analysis of the changes in end-to-end
delay, processing delay, and jitter shows that the dramatic
change in jitter may be due to the sudden increase in
processing delay of individual packets. The end-to-end delay,
processing delay, and jitter are values averaged in a period of
time. Therefore, when the processing delay of a packet
increases suddenly, a large delay occurs. After this sharp rise,
the delay falls to a steady state. In this process, two large jitters
occur, so the jitter change is more drastic than the delay
change.

Fig. 6(b) shows the real-time change in queue depth, queue
sharing degree, and packet loss rate over time on the link S11-
S3 within 10 s when there is congestion on the link. Within 1–
4 s, the packet loss rate shows a negative correlation with the
queue depth. This is because the increase in queue depth
during this time leads to further congestion of the network. In
this case, the switch has to directly discard a batch of packets

to ensure that the queue depth does not exceed the upper limit.
This phenomenon does not occur from the fourth to tenth
seconds because the packet loss rate and queue depth are
relatively stable during the time. The queue-sharing state is
always that the switch is simultaneously shared by three
queues. This is due to the fact that only three flows are set for
measurement.

(a)

(b)

Fig. 6. Network performance measured by O&R

The path tracking experiment was conducted for the path
h1->s1->s9->s18->s11->s3->h5. The results of six hops in
non-congestion conditions were obtained. Table I lists the
time required for each hop and the traveling paths of the
packet.

TABLE I. COMPARISON OF ROUTE TRACKING MEASUREMENTS
 Actual

path

O&R Traceroute

Link IP Link IP Delay per

hop

Link IP Delay per

hop

1 h1->s1 h1->s1 688us 10.1.1.1 688us

2 s1->s9 s1->s9 2124us 20.1.9.2 1782us

3 s9->s18 s9->s18 3100us 20.9.17.2 4799us

4 s18->s11 s18->s11 2723us 20.11.17.1 4006us

5 s11->s3 s11->s3 3460us 20.3.11.1 4454us

6 s3->h5 s3->h5 4769us 10.3.5.2 4769us

C. Performance of measurement schemes

For the path h1->s1->s9->s18->s11->s3->h5, we
compared the performances of different measurement
schemes, namely O&R, traditional measurement schemes
(ping and traceroute), INT-like (a method similar to the probe
packet method of INTOpt [10]), and Pingmesh [12] in terms
of the accuracy, real-time performance, and measurement
overhead.

1) Measurement accuracy

Table II presents the measurement results of end-to-end
delay from h1 to h5. O&R witnesses an improvement in
measurement accuracy by 39.9%, 45.2%, and 46.3%
compared to ping, traceroute, and INT-like. However, the
difference between measured values and actual values of
O&R is around 1 ms, mainly due to the limited accuracy of
the time synchronization algorithm.

The packet loss rate of the h1->h5 path was measured.
Considering ECMP is a load-balanced flow scheduling policy,
we let s1->s9 and s1->s10 to randomly discard packets, so the
packet loss rate is the total packet loss rate of the two links.
We set the theoretical packet loss rate of the links to be 20%,
30%, 40%, and 50%. The comparison results of between the
measured values and the actual value are shown in Fig.7. In
most cases, O&R can achieve near-100% measurement
accuracy. Even in cases where the packet loss rate is up to
50%, O&R can achieve near-100% measurement accuracy as
well.

TABLE II. COMPARISON OF THE ACCURACY OF DELAY

MEASUREMENTS
 Theoretical

reference

value (ms)

O&R

(ms)

Ping

(ms)

Traceroute

(ms)

INT-like

(ms)

1 16.772 17.981 22.1 21.448 21.987

2 13.698 14.989 18.1 20.498 21.777

3 13.437 14.353 21.2 20.498 21.526

4 14.750 15.099 20.6 19.343 21.566

5 12.591 13.024 21.9 25.851 21.585

2) Real-time measurement performance
The average time of O&R requiring complete all

measurement tasks for a link is 8.5153 ms. During the time,
the operation of clearing the registers takes 6 ms due to the
limitation by the write speed of the memory in the simulation
environment. That is, the measurement time depends mainly
on the memory read and write speeds of the P4 switch.

The time required to complete a single measurement task is
shown in Table III. O&R is significantly better than the other
schemes. As O&R obtains measurement results by parsing the
information from the switch statistics, the measurement delay
is the time taken to execute the code that extracts and parses
the register information. However, all other three schemes
proactively send probe packets, and the probe packets
eventually need to return to the source host; therefore, the
measurement delay is minimized as the time taken to return a
probe packet from the destination host to the source host. The
route tracking feature of O&R can measure both paths traveled
through by a packet and the time incurred by the packet
traveling through that path in a short period of time, whereas
traditional measurement schemes (traceroute/tracer) take tens
of times longer.

V. CONCLUSION

This paper proposes an INT+PDP-based fine-grained and
real-time telemetry scheme, observing and recording on
programmable data plane. Benefitted by proposed clock offset
elimination algorithm, O&R can complete more fine-grained
measurement, such as, queuing delay, processing delay,
transmission delay, and propagation delay on any hop. O&R
can realize the measurement of the queue depth and shared
state of queue. Experiment results show that the measurement
accuracy of O&R is 46.3% higher than the INT-like method.
The measurement delay of O&R is ~1ms when INT-like
method needs ~20ms. Furthermore, future studies can be
performed to develop the mult-grained telemetry, such as flow

171 65 88 58 48 50 56 58 78 51
0us

1000us

2000us

3000us

4000us

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

Experiment time

End_to_end delay Queue delay
Process delay Transmission delay
Jitter

0

10

20

30

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s

Experiment time

Loss(%) Queue sharing degree Queue depth

level, event level, and behavior level telemetry on
programmable data plane.

TABLE III. COMPARISON OF THE REAL-TIME PERFORMANCE OF EACH

MEASUREMENT SCHEME
Measurement

indicators

O&R

(ms)

INT-like

(ms)

Pingmes

h (ms)

Tracer

oute

(ms)

Transmission delay 0.6184 -

20.78

-

Queuing delay 0.5135 - -

Processing delay 0.5135 - -

Synchronous time

difference

0.6254 - - -

Jitter 1.5660 - - -

Packet loss rate 1.1218 - - -

Throughput 0.6374 21.69 - -

Queue depth 0.9468 - - -

Queue shareability 1.9525 - - -

Route tracking 11.254 - - 21.53

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (61872102, 61972104, 61802080), the
Guangdong Basic and Applied Basic Research Foundation
(2021A1515012306, 2018A0303130045), National Key
Research and Development Program of
China(2018YFB1501201), the International Collaborative
Research Program of Guangdong Science and Technology
Department(2020A0505100061, 2020A0505100060), the
National Social Science Fund of China (15CTQ034), and
Project of Guangzhou University (YK2020011), China.

REFERENCES

[1] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et
al. 2015. Packet-level telemetry in large datacenter networks. In
SIGCOMM.

[2] Basat R B , Ramanathan S , Li Y , et al. PINT: Probabilistic In-band
Network Telemetry[J]. 2020.

[3] Kirkpatrick K. Software-defined networking[J]. Communications of
the ACM, 2013, 56(9): 16-19.

[4] Jonghwan Hyun, Nguyen Van Tu, Jae-Hyoung Yoo, James Won-Ki
Hong: Real-time and fine-grained network monitoring using in-band
network telemetry. International Journal of Network Management.
29(6) (2019).

[5] Eriksson B , Barford P , Bowden R , et al. BasisDetect: a model-based
network event detection framework[C]// Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement 2010, Melbourne,
Australia - November 1-3, 2010. ACM, 2010.

[6] Zhuo D, Ghobadi M, Mahajan R, et al. Understanding and mitigating
packet corruption in data center networks[C]//Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication. 2017: 362-375.

[7] Wu X , Turner D , Chen C C , et al. NetPilot: Automating Datacenter
Network Failure Mitigation[J]. ACM SIGCOMM Computer
Communication Review, 2012, 42(4):419-430.

[8] Bosshart P, Daly D, Gibb G, et al. P4: Programming protocol-
independent packet processors[J]. ACM SIGCOMM Computer
Communication Review, 2014, 44(3): 87-95.

[9] Kumar G , Dukkipati N , Jang K , et al. Swift: Delay is Simple and
Effective for Congestion Control in the Datacenter[C]// SIGCOMM
'20: Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. ACM, 2020.June 2020.

[10] Bhamare D , Kassler A , Vestin J , et al. IntOpt: In-Band Network
Telemetry Optimization for NFV Service Chain Monitoring[C]// IEEE
International Conference on Communications (ICC2019). IEEE, 2019.

[11] S. Tang, D. Li, "Sel-INT: A Runtime-Programmable Selective In-Band
Network Telemetry System," IEEE Transactions on Network and
Service Management, 2020, vol. 17, no. 2, pp. 708-721.

[12] C. Guo, L. Yuan, D. Xiang, Y. Dang, et al., Pingmesh: A large-scale
system for data center network latency measurement and analysis, in:
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, London, UK, 2015, pp. 139-152.

[13] Tan L, Su W, Zhang W, et al. In-band network telemetry: A survey[J].
Computer Networks, 2020: 107763.

[14] Zhou Y, Bi J, Yang T, et al. HyperSight: Towards Scalable, High-
Coverage, and Dynamic Network Monitoring Queries[J]. IEEE Journal
on Selected Areas in Communications, 2020, 38(6): 1147-1160.

[15] Zhou Y , Sun C , Liu H H , et al. Flow Event Telemetry on
Programmable Data Plane[C]// SIGCOMM '20: Annual conference of
the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication. ACM, 2020.

[16] Qun Huang, Haifeng Sun, and Yungang Bao. OmniMon: Re-
architecting Network Telemetry with Resource Efficiency and Full
Accuracy. In: 2020 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM '20, August, 2020.

[17] Bin, Niu, Jiawei, et al. Visualize Your IP-Over-Optical Network in
Realtime: A P4-Based Flexible Multilayer In-Band Network Telemetry
(ML-INT) System[J]. IEEE Access, 2019, 7:82413-82423.

[18] Liu W, et al. DRL-R: Deep reinforcement learning approach for
intelligent routing in software-defined data-center networks[J]. Journal
of Network and Computer Applications, 2021, 177: 102865.

·

Fig.7. Comparison of packet loss measurements

0%

10%

20%

30%

40%

50%

1s 3s 5s 7s 9s 11s 13s 15s 17s 19s 21s 23s 25s 27s 29s 31s 33s 35s 37s 39s

Experiment time

 Actual loss Measured loss

