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Abstract—Fine-grained, real-time, and accurate monitoring 

data can better help detect equipment failure and perform 

traffic engineering. However, existing in-band network 

telemetry (INT) implementations still exhibit a few drawbacks 

such as lack of real-time monitoring, relatively high overheads 

due to per-packet operation, and limited monitoring range. This 

paper proposes an INT+PDP-based fine-grained real-time 

telemetry scheme by observing and recording on the 

programmable data plane (PDP), referred to as O&R. The key 

idea lies in designing some registers on data plane to observe the 

states of packets forwarded by it as well as adding a customized 

header on a normal data packet to record how it is forwarded 

on its routing path. Except for measuring some conventional 

performance parameters such as end-to-end delay, jitter, 

throughput, and packet loss rate, O&R designs a clock offset 

elimination algorithm to realize the time synchronization of two 

adjacent switches, based on which we can complete more fine-

grained measurement such as queuing delay, processing delay, 

transmission delay, and propagation delay on any hop. O&R 

also can measure the queue state that includes real-time queue 

depth and how many flows share the queue. Extensive 

experimental results for the K=4 fat-tree data-center network 

demonstrate the effectiveness of O&R in terms of higher 

accuracy, better real-time performance, less overheads, and 

better fine-graining compared to existing schemes. The 

measurement accuracy of O&R is 46.3% higher than that of 

INT-like method. The measurement delay of O&R is ~1 ms, 

while INT-like method needs ~20 ms. The measurement 

overhead of O&R is only 2.19% of Pingmesh.   

Keywords—In-band network telemetry, programmable data 

plane, monitoring, fine-graining, real time 

I. INTRODUCTION 

In recent years, as a result of the proliferation of non-elastic 
services and the adoption of novel paradigms, monitoring 
networks with a high level of detail is crucial to correctly 
identify and characterize situations related to faults, 
performance, and security [1]. In other words, fine-grained 
and real-time monitoring is an urgent requirement. 

In-band network telemetry (INT)[13] has emerged as a 
promising approach to meet the above-mentioned demands, 
enabling production packets to directly report their experience 
inside a network. This enables unprecedented monitoring 
accuracy and precision but leads to performance degradation 
if applied indiscriminately using all network traffic. An 
alternative to avoid this situation is orchestrating telemetry 
tasks and using only a portion of traffic to monitor the network 
via INT. However, this brings about a dilemma problem 
regarding assigning subsets of traffic to perform INT and 
providing full monitoring coverage while minimizing 
overheads. Besides, INT can only detect fixed telemetry 
indicators on the specified paths but cannot adapt to the 
changing network environment and telemetry requirements. 
INT cannot detect the network status on other paths to cover 
the whole network, thereby making it difficult to obtain a 
global network view. Meanwhile, encapsulating telemetry 
commands and data into normal data packets leads to high 
overhead, and the complexity of deployment, operation, and 
maintenance leads to poor scalability. 

Behind these above-mentioned drawbacks, it is the rigidity 
of the data plane that the fundamental limitation of existing 
INT-based network monitoring solutions lies in—off-the-
shelf switching ASICs can only provide simplistic functions 
to compute fixed and aggregated counters or mechanically 
mirror packets to the management plane. Thus, despite the 
origin of measurement target (such as delay, queue, and packet 
loss event) is on the data plane, performing sophisticated 
monitoring logics (such as event detection, data cleaning, and 
compression) must rely on the remote management plane, 
which results in low real-time, huge traffic transmission, and 
computation overhead. 

Naturally, performing monitoring logics directly in the 
origin—the switch data plane itself should be one promising 
way to achieve fine-granularity, cost efficiency, and real-time 
monitoring. Fortunately, recent advances on the 
programmable data plane (PDP) have provided us a new 
foundation to realize this vision. Programming protocol-
Independent packet processors (P4)[8] is a reconfigurable, 
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protocol independent and platform independent data plane 
programming language. P4 makes it possible to reach deep 
inside the switch to obtain highly accurate network state 
information. 

Range-customizable measurements can be achieved faster 
and more accurately using INT+PDP [4, 9, 10, 11]. INTOpt 
[10] assigns probing tasks to suitable flows, but some ports are 
repeatedly probed. Another INT-based packet-level network 
monitoring scheme [4] also has several disadvantages. First, 
its real-time monitoring performance is limited because events 
are firstly pushed to a database and the network controller then 
queries the information from it. Second, its monitoring range 
is limited, and the maximum number of hops is limited to six. 
In addition to poor real-time performance, excessive 
overhead, and limited measurement range, INT+PDP-based 
solutions find it difficult to monitor the global view event, 
such as throughput of the whole network. 

As a new network frame, software-defined networking 
(SDN) [3] separates the control plane of the network from the 
data plane, thus enabling flexible control over network traffic. 
Most importantly, SDN provides a controller that can control 
the entire network in a centralized manner to obtain a global 
view.  

Thus, we propose an INT+PDP-based fine-grained real-
time telemetry scheme by observing and recording on the 
programmable data plane, and referred as O&R. The key idea 
is that by using programmability of switch data plane, on 
which some registers are design to observe the states of 
packets forwarded by it; moreover, a customized header is 
added to  piggyback on normal data packet to record how does 
it be forwarded on its routing path. A measurement controller, 
which is deployed on the SDN controller, reads collected data 
from the registers to compute the delay, jitter, throughput, 
packet loss rate, queue state, and route tracing. In summary, 
the main contributions of this paper are as follows: 

(1) An INT+PDP-based fine-grained real-time telemetry 
scheme through the cooperation of the register on switch and 
customized header on the packet is proposed. We design a 
clock offset elimination algorithm to realize the time 
synchronization of adjacent two switches, based on which we 
can complete more fine-grained delay and jitter measurement, 
such as, queuing delay, processing delay, transmission delay, 
propagation delay on any hop. 

(2) A method to measure queue state that includes real-time 
queue depth and how much flows share the queue is proposed.  

(3) Through extensive experimental results for K=4 fat-tree 
data-center network, we demonstrate the effectiveness of 
O&R in terms of higher accuracy, better real-time monitoring, 
and better fine-graining than existing schemes. 

II. RELATED WORK 

Probe packet-based measurement schemes make up the 
majority of existing network telemetry methods, mainly 
including traceroute, Swift [9], INTOpt [10], sINT [11], 
NetSeer [15], OmniMon [16], ML-INT [17], PINT [2], and 
HyperSight [14].  

For congestion control, swift[9] proposed a closed-loop 
measurement method, which requires the delay information to 
be transmitted back to the sending host through the CTS 
response packet, which has a large delay, and this method 
integrates various delays on the link as a link delay, it can only 

be found that the link is congested, but the exact location of 
the congestion cannot be judged. PINT[2] is an INT 
framework that limits the amount of information added to a 
packet. OmniMon[16] decomposes network telemetry into 
partial operations through segmentation, and schedules these 
partial operations among different entities. But the algorithm 
tracks every flow in the whole network; at the same time, the 
controller manages and comprehensively analyzes the whole 
network resources of all terminal hosts and switches, which 
will have greater requirements on the operation of switches 
and controllers, and the cost of equipment update is 
unrealistic. ML-INT [17] is a flexible multi-layer in band 
network telemetry system based on P4. In ML-INT, some 
packets in IP stream are selected to encode INT header, which 
is biased for accurate real-time measurement and is not 
conducive to the diagnosis of network performance.  

In  short, although the network performance can be 
accurately measured using probe packets, such measurements 
also have drawbacks, such as the limitation in the time span of 
the measurement and great difficulty in measuring the whole 
network. In addition, the header of a probe packet occupies 
considerable network bandwidth. 

Switch-based probing methods mainly include BasisDetect 
[5], NetPilot [7], and CorrOpt [6]. They record network 
performance by deploying registers on the switch. The 
management layer extracts measurement data from the 
registers as needed. However, such methods also have 
drawbacks such as an increase in the hardware overhead of the 
switch upon register addition and latency in measurement data 
extraction. 

III. SYSTEM DESIGN 

A. System framework 

The first step is to design the P4 program according to the 
measurement task and deliver it to the P4 switches, during 
which O&R designs two customized headers (i.e., loss_t and 
hop_t). O&R also designs 28 registers for storing 
measurement data for each P4 switch. As shown in Fig.1, the 
measurement process is as follows: 

(1) The administrator initiates relevant measurement rules via 
the controller according to the measurement task. 

(2) When a packet arrives at the first-hop switch, the ingress 
pipeline of the switch adds the required customized header 
(which is used to record the measurement data) to the normal 
header of this packet according to the measurement task. In 
addition, the switch stores the measurement data in its 
corresponding register, and the packet is subsequently 
forwarded to the next hop along the preset route[18]. 

(3) When the packet travels through the P4 switch, the switch 
first parses the packet according to the measurement task. If 
the packet does not contain the required customized header, 
then the ingress pipeline of the switch adds the required 
customized header to the normal header of this packet when 
receiving this packet. If the packet already has the required 
customized header, then no header is added. In addition, the 
switch reads the measurement data recorded in the customized 
header from the switch on the previous hop and calculates the 
data with its own measurement data. The calculation result is 
stored in the register of this switch. 

(4) The above procedure repeats until the packet reaches its 
destination. The final-hop switch removes the added 



customized header so that the measurement remains 
transparent to the sender and the receiver. 

(5) Depending on the requirements of the task, the controller 
reads the data from the required switch registers as well as 
analyzes and processes such data to obtain the final 
measurement results for in-band telemetry purposes. 
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Fig. 1. Overall system architecture 

B. Key measurement schemes 

1) Clock offset elimination algorithm 
Emerging applications such as interactive augmented 

reality (AR)/virtual reality(VR) and industrial Internet have 
higher requirements for deterministic low delay and 
deterministic low jitter. Clock synchronization between 
switches is the basis for accurate measurement of delay and 
jitter, as well as the key to achieving deterministic low latency 
and deterministic low jitter. The current mainstream time-
sensitive networking (TSN) achieves clock synchronization at 
the link layer, which requires underlying hardware support. 
We propose a clock offset elimination algorithm to eliminate 
the clock offset of the switch without any hardware 
modification. 

As shown in Fig.2., a probe packet is sent first, and it carries 
the start timestamp (lastswitch_sendtime) of the data sending 
by the sender. After receiving the probe packet, the receiver 
returns a reply packet that carries the receiving timestamp 
(thisswitch_rectime) and sending timestamp 
(thisswitch_sendtime) of the probe packet and the receiving 
timestamp of the final reply packet being returned to the 
original switch (ingress_global_timestamp). Based on these 

timestamps, the clock offset of the two switches (△S) is 

calculated, which is then introduced into the delay calculation 
so as to achieve clock synchronization. The calculation 
process are as follows: 

  �����1 = 	ℎ���
�	�ℎ_���	��� − ���	�
�	�ℎ_����	��� +△ �           (1) 

�����2 = �������_������	���_�	��� − 	ℎ���
�	�ℎ_����	��� −△ �             
(2) 

  �����1 = �����2                                                                                     (3) 

Based on Eqs. (1), (2), and (3), we can obtain: 
△ � = (�������_������_	����	��� − 	ℎ���
�	�ℎ_����	��� −
 	ℎ���
�	�ℎ_���	��� + ���	�
�	�ℎ_����	���)/2                                  (4) 

In the clock offset elimination algorithm, the switch needs 
to support loopback forwarding to calculate the loopback 
time. Therefore, the P4 switch herein has two forwarding 
behaviors: loopback forwarding and normal IP forwarding. 
The choice of the forwarding behavior is made by determining 
whether values have been stored in the switch’s synchronous 
time difference register (synchronous_diff_time). If yes, 
normal IP forwarding is selected; if no, loopback forwarding 
is selected. 
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Fig. 2. Clock offset elimination algorithm 

As shown in Figure 3, the loopback forwarding steps are 
as follows: 

Step 1: The initial state of the re_flag field in the loss_t 
header is set to 2. At the time, normal IP forwarding is 
performed. The values in the synchronous_diff_time register 
of the switch are stored into the last_synchronous_diff field in 
the loss_t header, and the time when the packet arrives at the 
switch’s egress port is stored in the thisswitch_sendtime field 
in the loss_t header. Then, the re_flag field in the loss_t header 
is set to 0, and the packet containing this header is sent to the 
next switch. 

Step 2: When the next switch receives the packet in which 
re_flag=0, the switch determines whether 
last_synchronous_diff is 0. If last_synchronous_diff is 0, the 
switch records the timestamp of the packet entering the 
switch’s ingress port in the thisswitch_sendtime field in the 
loss_t header, and the timestamp of the packet’s arrival at the 
switch’s egress port in the lastswitch_sendtime field. Finally, 
re_flag is set to 1, and loopback forwarding is performed. 

Step 3: If the value of the re_flag field in the packet arriving 
at the next switch is 1, it means that three timestamps of the 
packet, namely thisswitch_sendtime, thisswitch_rectime, and 
thisswitch_sendtime have been recorded. In this case, the 
switch extracts the ingress_global_timestamp. Eq. (4) is used 

to calculate △S, the synchronization time difference between 

s1 and s2. Subsequently, re_flag is set to 2, and △S is 

recorded in the synchronous_diff_time register. 

The synchronization time difference between the two 
switches in forward and reverse directions is a pair of opposite 
numbers. Besides, the register cannot store negative numbers, 
so we add a synchronous time difference flag, i.e., 
last_synchronous_diff_flag. When the computed synchronous 
time difference last_synchronous_diff is negative, 



last_synchronous_diff_flag is set to 1. last_synchronous_diff 
and last_synchronous_diff_flag are stored in the respective 
locations in the synchronous_diff_time and 
synchronous_diff_time_flag registers. 
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Fig. 3. Schematic of the loopback forwarding 

2) Route tracking 
To observe the routing paths of packets in the network, we 

design the route tracing functions, involving three switches—
Src router, intermediate router, and sink router. The 
measurement process is shown in Fig.4. 

(1)The controller obtains the IP address of each router port and 
then sends it to the corresponding router. When h1 sends out 
a packet, the router receives it and then checks its quintuple. 
If the port number is 45,000, then src router inserts the hop_t 
header. The receiving port and forwarding port are used as 
matching ports to obtain the corresponding IP addresses, 
which are then filled in the header. The packet containing this 
header is then forwarded. 

(2)When the intermediate router receives a packet containing 
the hop_t header, it directly fills in the routing and delay 
information. 

(3)When the sink router receives a packet containing the hop_t 
header and the next hop is the host (i.e., the packet is to be 
delivered to the destination host h2), the switch extracts the 
information from the hop_t header and temporarily stores it 
into the register and then removes the header before delivery 
(as can be seen from the sink router in Fig.4). When the 
controller completes extracting the switch registers, it clears 
them. 
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Fig. 4. Route tracking principle 

IV. EXPERIMENTS 

A. Experimental setup 

We built a network prototype to demonstrate the proposed 
O&R. The hardware is G4560 CPU and 16-GB memory, 
running Ubuntu 16.04 OS. We used Mininet to implement the 
K=4 fat-tree data-center network, as shown in Fig.5, where the 
default bandwidth each link is 10 Mbps. Specifically, we 
adopted the P4 software switch (i.e., bmv2) to achieve the 

capability of forwarding of customized INT packets. The 
queue comprises 1000 packets. To simulate the 
communication in a real network, we also generated 
background traffic in the network. We let each host in the 
topology send communication requests to other hosts, with 
any two hosts communicating with each other simultaneously. 
The communication process is described as follows: 

 The communication request process is according to a 
Poisson process, whereas the source and destination of 
each flow are selected uniformly at random.. For each 
host, the parameter τ is independently and randomly 
generated in (150, 200).  

 Some micro-burst flow, congestion, packet loss events are 
created by setting the bandwidth of a certain link and 
enabling the host to send packets randomly. 

 Flow scheduling mechanism: equal-cost multipath routing 
(ECMP). 
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Fig. 5. K=4 fat-tree data-center network 

B. Experimental results 

O&R can measure any one-hop link, end-to-end path, or a 
particular network in the entire network. Fig.6(a) shows the 
changes in end-to-end delay, queuing delay, transmission 
delay, processing delay, and jitter over time in 10 s for the link 
S11-S3. 

As shown in Fig.6 (a), end-to-end time delay = processing 
delay + queuing delay + transmission delay. The processing 
delay accounts for the majority, which is due to the small 
queuing delay and transmission delay caused by the large 
enough bandwidth at the time of measurement. From the ninth 
to tenth seconds, the end-to-end network delay rises, while 
jitter changes more dramatically compared to the end-to-end 
delay. A comprehensive analysis of the changes in end-to-end 
delay, processing delay, and jitter shows that the dramatic 
change in jitter may be due to the sudden increase in 
processing delay of individual packets. The end-to-end delay, 
processing delay, and jitter are values averaged in a period of 
time. Therefore, when the processing delay of a packet 
increases suddenly, a large delay occurs. After this sharp rise, 
the delay falls to a steady state. In this process, two large jitters 
occur, so the jitter change is more drastic than the delay 
change. 

Fig. 6(b) shows the real-time change in queue depth, queue 
sharing degree, and packet loss rate over time on the link S11-
S3 within 10 s when there is congestion on the link. Within 1–
4 s, the packet loss rate shows a negative correlation with the 
queue depth. This is because the increase in queue depth 
during this time leads to further congestion of the network. In 
this case, the switch has to directly discard a batch of packets 



to ensure that the queue depth does not exceed the upper limit. 
This phenomenon does not occur from the fourth to tenth 
seconds because the packet loss rate and queue depth are 
relatively stable during the time. The queue-sharing state is 
always that the switch is simultaneously shared by three 
queues. This is due to the fact that only three flows are set for 
measurement. 

 
(a)  

 
 

 
(b)  

Fig. 6. Network performance measured by O&R 

The path tracking experiment was conducted for the path 
h1->s1->s9->s18->s11->s3->h5. The results of six hops in 
non-congestion conditions were obtained. Table I lists the 
time required for each hop and the traveling paths of the 
packet. 

TABLE I.  COMPARISON OF ROUTE TRACKING MEASUREMENTS 
 Actual 

path 

O&R Traceroute 

Link IP Link IP Delay per 

hop 

Link IP Delay per 

hop 

1  h1->s1  h1->s1  688us 10.1.1.1  688us 

2  s1->s9  s1->s9  2124us 20.1.9.2  1782us 

3  s9->s18  s9->s18  3100us 20.9.17.2  4799us 

4  s18->s11  s18->s11  2723us 20.11.17.1  4006us 

5  s11->s3  s11->s3  3460us 20.3.11.1  4454us 

6  s3->h5  s3->h5  4769us 10.3.5.2  4769us 

C. Performance of measurement schemes 

For the path h1->s1->s9->s18->s11->s3->h5, we 
compared the performances of different measurement 
schemes, namely O&R, traditional measurement schemes 
(ping and traceroute), INT-like (a method similar to the probe 
packet method of INTOpt [10]), and Pingmesh [12] in terms 
of the accuracy, real-time performance, and measurement 
overhead. 

1) Measurement accuracy 

Table II presents the measurement results of end-to-end 
delay from h1 to h5. O&R witnesses an improvement in 
measurement accuracy by 39.9%, 45.2%, and 46.3% 
compared to ping, traceroute, and INT-like. However, the 
difference between measured values and actual values of 
O&R is around 1 ms, mainly due to the limited accuracy of 
the time synchronization algorithm. 

The packet loss rate of the h1->h5 path was measured. 
Considering ECMP is a load-balanced flow scheduling policy, 
we let s1->s9 and s1->s10 to randomly discard packets, so the 
packet loss rate is the total packet loss rate of the two links. 
We set the theoretical packet loss rate of the links to be 20%, 
30%, 40%, and 50%. The comparison results of between the 
measured values and the actual value are shown in Fig.7. In 
most cases, O&R can achieve near-100% measurement 
accuracy. Even in cases where the packet loss rate is up to 
50%, O&R can achieve near-100% measurement accuracy as 
well. 

TABLE II.  COMPARISON OF THE ACCURACY OF DELAY 

MEASUREMENTS 
 Theoretical 

reference 

value (ms) 

O&R 

(ms)  

Ping 

(ms)  

Traceroute 

(ms)  

INT-like 

(ms)  

1  16.772 17.981 22.1 21.448 21.987 

2  13.698 14.989 18.1 20.498 21.777 

3  13.437 14.353 21.2 20.498 21.526 

4  14.750 15.099 20.6 19.343 21.566 

5  12.591 13.024 21.9 25.851 21.585 

2) Real-time measurement performance 
The average time of O&R requiring complete all 

measurement tasks for a link is 8.5153 ms. During the time, 
the operation of clearing the registers takes 6 ms due to the 
limitation by the write speed of the memory in the simulation 
environment. That is, the measurement time depends mainly 
on the memory read and write speeds of the P4 switch. 

The time required to complete a single measurement task is 
shown in Table III. O&R is significantly better than the other 
schemes. As O&R obtains measurement results by parsing the 
information from the switch statistics, the measurement delay 
is the time taken to execute the code that extracts and parses 
the register information. However, all other three schemes 
proactively send probe packets, and the probe packets 
eventually need to return to the source host; therefore, the 
measurement delay is minimized as the time taken to return a 
probe packet from the destination host to the source host. The 
route tracking feature of O&R can measure both paths traveled 
through by a packet and the time incurred by the packet 
traveling through that path in a short period of time, whereas 
traditional measurement schemes (traceroute/tracer) take tens 
of times longer. 

V. CONCLUSION  

This paper proposes an INT+PDP-based fine-grained and 
real-time telemetry scheme, observing and recording on 
programmable data plane. Benefitted by proposed clock offset 
elimination algorithm, O&R can complete more fine-grained 
measurement, such as, queuing delay, processing delay, 
transmission delay, and propagation delay on any hop. O&R 
can realize the measurement of the queue depth and shared 
state of queue. Experiment results show that the measurement 
accuracy of O&R is 46.3% higher than the INT-like method. 
The measurement delay of O&R is ~1ms when INT-like 
method needs ~20ms. Furthermore, future studies can be 
performed to develop the mult-grained telemetry, such as flow 
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level, event level, and behavior level telemetry on 
programmable data plane. 

 

TABLE III.  COMPARISON OF THE REAL-TIME PERFORMANCE OF EACH 

MEASUREMENT SCHEME 
Measurement 

indicators 

O&R 

(ms) 

INT-like 

(ms) 

Pingmes

h (ms) 

Tracer

oute 

(ms) 

Transmission delay 0.6184 -   

20.78  

-  

Queuing delay 0.5135 -  -  

Processing delay 0.5135 -  -  

Synchronous time 

difference 

0.6254 -  -  -  

Jitter 1.5660 -  -  -  

Packet loss rate 1.1218 -  -  -  

Throughput 0.6374 21.69  -  -  

Queue depth 0.9468 -  -  -  

Queue shareability 1.9525 -  -  -  

Route tracking 11.254 -  -  21.53  
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Fig.7. Comparison of packet loss measurements 
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