Abstracting Networks with Measurable Guarantees

Vitalii Demianiuk
Ariel University, Israel

Abstract—To simplify definitions of network-wide behaviors
(e.g., in datacenter transports), networks are often represented
by virtual switches. In most cases, the buffering architecture of
a representing virtual switch is inherited from analytic models
implementing the desired properties, and is completely decoupled
from the represented network topology. Thus, it is unclear how
well the network infrastructure is exploited. This paper makes
the first attempt in understanding which buffering architectures
can best represent a given network, and how buffer management
decisions can be mapped back to a represented network.

I. INTRODUCTION

Recently, there has been a significant amount of effort to
devise efficient network-wide behaviors optimizing perfor-
mance in modern datacenters [1-6]. The design process of
such schemes is complex and, as a result, usually consists of
the following simplifying steps: (1) represent a given network
topology G by a virtual switch S; (2) for switch S, select
algorithm A® optimizing the desired objective according to
specific traffic characteristics; (3) construct network-wide be-
havior A€ on G, emulating the behavior of AS. For instance, in
pFabric [1]: (1) a combined input-output queued (C1I0Q) switch
S represents a network topology G; (2) the approximation
algorithm A minimizing average flow completion time in S is
selected; (3) to emulate the behavior of A° in G, the proposed
pFabric transport exploits remaining flow sizes as priorities
during the processing of flow packets in individual switches.
In this example, the choice of a representing virtual switch
is mostly motivated by the existence of a buffer management
policy for the considered objective, and is completely decoupled
from the represented network topology. Such virtual switch
representations mostly guide design principles of network-wide
behaviors and do not allow to map decisions in the representing
virtual switches to decisions in the corresponding network-wide
behaviors with the same performance guarantees.

In this paper, we are going in the opposite direction, and
propose transformations of given networks to virtual switches
that incorporate network topology constraints and do not depend
on specific buffer management policies. In the long term, we are
interested in building a procedure for automating the process
described above. This procedure automatically constructs a
virtual switch S representing a given topology G, and selects
an algorithm A° minimizing the desired objective on S (Steps

T Kirill Kogan died on 13 March 2021 from complications of the COVID-19
disease.

$ The work was supported in part by: Israeli Innovation Authority under the
Knowledge Transfer Commercialization Program (MAGNETON), grant 71249;
Ariel Cyber Innovation Center in cooperation with the Israel National Cyber
Directorate in the Prime Minister’s Office; Regional Government of Madrid
(CM) grant EdgeData-CM (P2018/TCS4499, cofunded by FSE & FEDER);
Spanish Ministry of Science and Innovation grant ECID (PID2019-109805RB-
100, cofunded by FEDER)

Annex to ISBN 978-3-903176-39-3© 2021 IFIP

Kirill Kogan®
Ariel University, Israel

Antonio Ferndndez Anta
IMDEA Networks Institute, Spain

1 and 2). Then, the proposed automation system maps the buffer
management decisions of A” to the scheduling decisions of
A% preserving measurable guarantees (throughput, latency,
fairness, etc.) on the originally given network G (Step 3). To
implement this mapping automatically, link capacities in G
should be somehow represented in .S. This can be naturally
achieved by tuning buffer sizes in .S, where buffers in our case
represent bottleneck capacities of paths connecting sources
with destinations. This paper is devoted to the initial deep
understanding of this network virtualization process.

II. NETWORK AS A VIRTUAL SWITCH

Consider a virtual network represented by a weighted
directed graph G = (V, E,¢). The set V consists of source
vertices having only outgoing source links, destination vertices
having only incoming destination links, and intermediate nodes.
Traffic in G is transmitted from sources to destinations across
simple paths. For simplicity, we assume that the time is slotted,
and in every time slot each source receives a set of unit-sized
packets destined to various destinations. The capacity c(u, v) of
a link (u,v) € E defines the maximum number of packets that
can be transmitted through (u,v) per time slot. Since several
virtual networks can share the same physical infrastructure, that
is tailored for specific application requirements, link capacities
in G can be highly heterogeneous even for regular physical
datacenter topologies. The scheduling algorithm A% on G
transmits packets from sources to destinations minimizing a
desired objective. Each time slot consists of two phases: (1)
for each link (u,v) in G, AY chooses a subset of packets to
be sent through (u,v) (selection phase); (2) AY transmits the
selected packets (transmission phase).

Our goal is to transform network G to a virtual switch S
satisfying two conditions:

o feasibility — for any work-conserving buffer management
policy A on S, there is scheduling algorithm A% on G,
delivering the same subset of packets;

o completeness — for any scheduling algorithm A% on G,
there is buffer management policy A° on S delivering
the same subset of packets.

The feasibility condition guarantees that one can pick up a
buffer management algorithm A, and the infrastructure will
be able to map its decisions to A® in the represented network
G. The completeness condition guarantees that a virtual switch
representation does not restrict the algorithmic decisions on
G. We show how to construct a virtual switch representation
satisfying these two conditions for networks containing at most
two bottlenecks on each path from a source to a destination.

2-width networks. First, we consider 2-width networks,
where every path connecting a source with a destination
contains at most two links. The set of such network topologies



includes commonly used star topologies, bipartite graphs, and
leaf-spine topologies [7]. In the following, vi,va,...v; 1S a
set of intermediate nodes connecting sources si, Sa, ...Sk to
destinations dy, ds, ...d, in a 2-width network G (see Fig. 1).
Every path in G going from a source to a destination contains
at most one intermediate vertex.

We represent 2-width network G by CIOQ switch S, where
each source link (s;,v;) corresponds to a separate input port
I; 5 in S with its attached input queue, and each destination
link (v;,d;) corresponds to an output port O; ; in S with its
attached output queue (see Fig. 1). The port rates and the
queue sizes are equal to the capacities of the corresponding
links. For every queue @ in S, a buffer management policy
AS defines an admission policy deciding which packets are
admitted to @. That is further translated into the selection
phase of the corresponding scheduling algorithm A® for the
link represented by the port of (). The transmission policy of
(@ defines the transmission phase of the corresponding link.

Observe that in a 2-width network G, there may be multiple
paths between each source and each destination. The path for
each packet either (1) is selected in advance, or (2) should
be chosen by the scheduling algorithm A%, In the first case,
for each incoming packet, the corresponding input queue in
S is already defined. In the second case, for each packet p
arrived at source s;, buffer management policy A° should also
select a queue that will contain p among queues corresponding
to source links originated in s;; this selection defines how s;
chooses a path in G for packet p. Note that intermediate nodes
do not make any routing decisions, since every path from an
internal node to a destination consists of a single link.

Assume that, in Fig. 1, at the current time slot, s; has ten
packets ready for transmission to d; and all sources have no
other packets ready for transmission. First, s; selects four
packets for the transmission through (s1,v;) and two packets
through (s1,v9) according to the routing decisions made by
A% and the admission policies of the corresponding queues
in S. In the next time slot, v; selects three packets from the
four received according to the admission policy of the queue
assigned to Oq,; and sends them to dy, while v, transmits all
received packets to d;.

The proposed transformation of 2-width network G to the
virtual switch S satisfies both feasibility and completeness
conditions since port rates and queue sizes are equal to
the capacities of corresponding links. Note that this would
not be the case if the port rate of input port I; ; and the
size of the attached queue are both strictly greater than
c(si, vj): the feasibility condition is not satisfied since there
is a buffer management policy A° that in one time slot can
fetch more packets from I; ; than the number of packets that
can be transmitted simultaneously through link (s;,v;) by any
algorithm A“. If the size of I, ;’s queue would be strictly less
than c(s;, v;), the completeness condition will not be satisfied
since A® can simultaneously transmit c(s;, v;) packets through
(si,v;), while any A® can fetch at most c(s;,v;) — 1 packets
from I; ; in a single time slot. The same observations hold for
output ports and output queues in S.

I
I T
(L« 0%
I o—{ITIT7T>
o Switch
1> fabric
T3 0
I32 Do-z.z
(1] — L]~

Switch S

Figure 1. Representing a 2-width network GG by virtual CIOQ switch S.

Note that a 2-width network G’ may contain link (s;,d;)
directly connecting source s; with destination d;. The capacity
constraint for such a link is independent from the capacity
constraints of other links in G. Hence, (s;,d;) is represented
in S by a separate port P; ; with the attached queue of size
c(si,d;); the port rate of P; ; equals to ¢(s;,d;). In S, packets
fetched from P; ; do not traverse the switching fabric. Hence,
we can omit such queues and the corresponding links from the
future consideration.

Representing bottlenecks. Many recent datacenter trans-
ports, as Homa [5], pHost [4], pFabric [1], etc., were designed
under the assumption that in the network, only source and
destination links can be bottlenecks, i.e., the network can
transmit every set of packets satisfying capacity constraints
of source and destination links. Such network G can be
represented by a virtual switch S in almost the same way as a 2-
width network: (1) every source/destination link is represented
by the input/output port with the attached input/output queue;
(2) the port rates and sizes of the attached queues are equal
to the capacities of the corresponding links; (3) the admission
policy of the queue defines a selection phase of the scheduling
algorithm A® for the corresponding link in G. As in the case
of 2-width networks, for a packet p without predefined path, a
buffer management policy A must also select input and output
queues that will hold p, among the queues corresponding to
links outgoing from the source of p and links incoming to
the destination of p, respectively; this selection defines all the
bottlenecks appearing on a path of p.

III. SIMPLIFYING VIRTUAL SWITCH

Both the resource and operational complexities of the
buffering architecture inside a virtual switch S depend on the
number of queues in S and their total size. Here, we propose
simplifying transformations of a virtual switch S representing
a 2-width network G. Note that these transformations can be
extended to representations of general networks containing
bottlenecks only at source and destination links.

Simplifying transformations. Let c;,(v;) be the total
capacity of all source links incoming to v;. Consider output
port O; ; such that c(v;,d;) > ¢ (v;). In this case, node v,
can always transmit all received packets going to d;. It means
that the selection phase of A“ for link (v;,d;) is trivial and
does not require any additional computational resources. A
specification of an admission policy for the corresponding
output queue is not required, since it always accepts all given
packets. Hence, we can assume that the queue assigned to



L e
Switch

fabric 1
. e NN

Switch S

(a)
I

ORI ol 4,530}1

@ Switch
8 2 Is 1 fabric 1]

Switch S
(b)
Figure 2. Simplifying transformations: (a) removing the output queue; (b)
reducing the size of the input queue.

port O; ; is not required. In Fig. 2a, the maximum number of
packets that can be transmitted from all sources to v; per time
slot is six, which is less than the maximum number of packets
that d; can receive from v; in one time slot. Hence, the queue
assigned to port Op ; can be safely removed.

In the extreme case, this transformation can remove all output
queues in the virtual switch representation. In such scenario,
the switching fabric inside the virtual representation is not
required, and a given 2-width network can be represented by a
single queue per-port (SQ) switch S that consists of multiple
independent ports with attached queues corresponding only to
source links. For instance, consider a network G whose link
capacities are the same as in Fig. 2a except the capacity of
(v1, d2) that now equals to six. This network can be represented
by a SQ switch, since the capacities of the destination links
do not impose any constraints on the traffic transmission.

Let cout(vj) be the total capacity of all destination links
outgoing from v;. For a source s; in G, it makes no sense to
send more than ¢, (v;) packets to v; in one time slot, since all
packets traversing link (s;, v;) and reaching destinations at time
t can be transmitted to v; at time ¢ — 1 if ¢(s;,v;) > Cout (vj).
Hence, for each source link (s;,v;) with ¢(s;,v5) > cout(v)),
we assign to the corresponding input port a buffer of the size
Cout(vj) instead of c(s;,v;). In this case, the total size of
a buffering architecture becomes smaller but the number of
queues in S remains the same. In Fig. 2b, the size of the queue
assigned to I is cout(v1) = 4.

Modifying link capacities. The modification of link ca-
pacities can additionally reduce the number of output queues
in a virtual switch S representing a 2-width network G. For
instance, to remove the output queue assigned to port O, ;
in S we can increase c¢(vj,d;) to be no less than ¢;,,(v;). In
Fig. 2a, we can remove the queue assigned to port Og ; if we
increase c¢(v1,ds) by 2. Note that extra capacity is a scarce
resource that should be allocated wisely to simplify S.

An additional approach for removing output queues arises
from the reduction of source link capacities. In particular, the
capacity reduction of source link (s;,v;) decreases c;y,(v;)
and hence increases the applicability of the transformation
that removes output queues corresponding to destination links
outgoing from v;. For instance, in Fig. 2a, the reduction of
¢(s1,v1) by two allows to remove the output queue assigned to
O3 1. The total value of source link capacity reduction controls

—e— Cout = 340
& 20 —— Cout = 360
= p cout = 380
SRS B —e— Cout = 400
<
.
0 |
0 5 10 15

C, % of cout

Figure 3. The total capacity reduction A (in %) of source links required in a
leaf-spine network G to represent G by a SQ switch using C' (in %) extra
capacity; network G contains 10 sources, 10 destinations, and 2 intermediate
nodes; the total capacity c¢;,, of source links in G equals 200; the total capacity
cout Of destination links in GG varies from 340 to 400; each destination can
receive packets from at most two sources.

a fundamental tradeoff between network bandwidth capabilities
and the simplicity of the representing virtual switch.

To represent a 2-width network G with a SQ switch S,
we can use both of the approaches described above. First, to
decrease the values of ¢;,(v;) in G, we reduce capacities of
source links. Then, we increase capacities of destination links
to make them no less than the reduced values of ¢;y,(v;). For
instance, to represent a network from Fig. 2a with a SQ switch,
we can reduce ¢(sq,v1) by one and increase ¢(v1,ds) by one.

Extra knowledge about traffic patterns can further simplify
representing virtual switches. For instance, assume that in
given network G only sources in set S; can transmit packets to
destination d;. In this case, we can remove the queue attached
to port O; ; in S representing G even if ¢(v;,d;) is smaller
than ¢;,,(v;) and no less than the total capacity of all links
connecting sources in S; with v;. Fig. 3 shows that, under such
partial knowledge about traffic patterns, a leaf-spine topology
can be represented by a SQ switch after the reduction of source
link capacities by 2% in total and the increase of destination
link capacities by 10% in total. We omit the description of the
heuristics selecting links in G for the capacity reduction and
extra capacity allocation due to the lack of space.

IV. CONCLUSION

In this work, we show how virtual switches can abstract given
network topologies and propose transformations simplifying
virtual switch representations. This paper makes the first
steps towards this direction. In the future, we will explore
representations of networks containing multiple bottlenecks
that are not necessarily source or destination links.

REFERENCES

[1] M. Alizadeh et al., “pFabric: Minimal Near-Optimal Datacenter Transport,”
in SIGCOMM, 2013, pp. 435-446.

[2] V. Arun et al., “Copa: Practical Delay-Based Congestion Control for the
Internet,” in NSDI, 2018, pp. 329-342.

[3] M. Dong et al., “PCC: Re-architecting Congestion Control for Consistent
High Performance,” in NSDI, 2015, pp. 395-408.

[4] P. X. Gao et al., “pHost: Distributed Near-Optimal Datacenter Transport
Over Commodity Network Fabric,” in CoNEXT, 2015, pp. 1-12.

[5] B. Montazeri et al., “Homa: A Receiver-driven Low-latency Transport
Protocol Using Network Priorities,” in SIGCOMM, 2018, pp. 221-235.

[6] M. Alizadeh er al., “Data Center TCP (DCTCP),” in SIGCOMM, 2010,
pp. 63-74.

[71 M. Alizadeh et al., “On the Data Path Performance of Leaf-Spine
Datacenter Fabrics,” in HOTI, 2013, pp. 71-74.



