Poster: Multipath Extensions for WireGuard

Konrad-Felix Krentz! and Marius-Iulian Corici
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
konrad.krentz(at)it.uu.se, marius-iulian.corici(at)fokus.fraunhofer.de

Abstract—The tunneling protocol WireGuard outperforms its
main competitors OpenVPN and IPsec in terms of throughput
and latencies. These improvements are due to WireGuard’s use
of faster crypto primitives, as well as to the implementation of
WireGuard as a Linux kernel module that uses multithreading
and advanced locking strategies. Independently of the WireGuard
project, Lukaszewski et al. demonstrated improvements in end-
to-end goodput when tunneling protocols exploit alternative com-
munication paths. In this poster, we combine these two research
directions by proposing multipath extensions for WireGuard.
Our extensions involve additions to the WireGuard header, which
enable obtaining real-time statistics on the performance of each
path. Further, these real-time path performance statistics enable a
self-adaptive selection of paths. As a proof of concept, we adapted
the WireGuard Linux kernel module accordingly and prototyped
four example path schedulers, two of which adopt multi-armed
bandit algorithms.

Index Terms—WireGuard, MPTCP, multipath, self-adaptive

I. INTRODUCTION

Tunneling protocols serve for relaying packets between
physically distant networks. Well-known instances of such
protocols are OpenVPN and IPsec. Both come with security
features that ensure the confidentiality, integrity, and authentic-
ity of the relayed packets. WireGuard is a modern alternative
to OpenVPN and IPsec [1]. Compared to OpenVPN and
IPsec, WireGuard provides higher performance, better user-
friendliness, as well as stronger security [1].

Independently of the WireGuard project, Lukaszewski et al.
conducted a series of experiments to test whether end-to-end
goodput improves when tunneling protocols exploit alternative
communication paths [2]. In their experiments, a user down-
loaded files from an Apache2 web server over a tunnel that
can use two paths. The tunnel’s underlying transport protocol
varied across experimental runs. Lukaszewski et al. tested
the Transmission Control Protocol (TCP), Multipath TCP
(MPTCP), the User Datagram Protocol (UDP), and Multipath
UDP (MPUDP) - a version of UDP that balances datagrams
across all available paths according to a configured split ratio.
The main results of their experiments are (i) that MPTCP
consistently achieves better end-to-end goodput than TCP, (ii)
that MPUDP consistently achieves better end-to-end goodput
than UDP, and (iii), most interestingly, that MPUDP achieves
better end-to-end goodput than MPTCP if the configured split
ratio is manually adjusted to the current round trip times
(RTTs) of both paths, just like the path scheduler of the tested
MPTCP implementation does.

' Dr. Krentz is now with Uppsala Universitet
Annex to ISBN 978-3-903176-39-3© 2021 IFIP

While WireGuard lacks native multipath support, one work-
around is to tailor Lukaszewski et al.’s MPUDP to WireGuard.
That is, WireGuard’s outgoing packets, all of which are UDP
datagrams, can be balanced across all available paths, e.g.,
according to a static split ratio. However, Lukaszewski et al.
showed, balancing packets as per a static split ratio yields
suboptimal results in terms of end-to-end goodput. Rather, the
split ratio should continuously be adapted to the current perfor-
mance of the available paths. Yet, real-time path performance
statistics are not readily available to WireGuard peers. This
is because WireGuard is based on UDP, which does not send
acknowledgments. Conversely, in MPTCP, each segment is
being acknowledged, which enables computing various real-
time path performance statistics, such as RTTs. This is actually
what allows MPTCP path schedulers to self-adapt [3].

Another workaround to add multipath support to WireGuard
builds on MPTCP. The idea is to set up one WireGuard
tunnel per available path. These WireGuard tunnels can then be
treated as paths by an MPTCP-based tunneling protocol. The
main advantage over the above MPUDP-based workaround
is that existing MPTCP path schedulers can be used to
balance segments across all available paths in a self-adaptive
manner. But, this second workaround has three drawbacks.
First, it incurs a high communication overhead. MPTCP, e.g.,
acknowledges each segment and each WireGuard tunnel addi-
tionally creates its own control traffic. Second, when tunneling
TCP over MPTCP, TCP-over-TCP issues arise [2]. Finally,
switching from UDP to TCP leads to latency degradations,
too [4].

The main contribution of this poster is to propose multipath
extensions for WireGuard. Unlike the workarounds described
above, our multipath extensions intimately integrate into Wire-
Guard. This avoids the overhead and performance penalties
of the MPTCP-based workaround, while also avoiding the
lacking self-adaption of the MPUDP-based workaround. In the
following, we describe the design of our multipath extensions
for WireGuard and sum up first experimental results. For space
reasons, we assume familiarity with the WireGuard protocol.

II. DESIGN

Our multipath extensions for WireGuard are organized into
a data and a control plane, as shown in Fig. 1. The data plane
mainly collects real-time statistics on the performance of each
path. Remarkably, these statistics are gathered without sending
acknowledgments or other extra messages. Besides, the data
plane provides an interface for retrieving its statistics, as well
as for selecting the path on which an outbound WireGuard

WireGuard Peer WireGuard Peer
O O

Fig. 1. Overview of our multipath extensions for WireGuard

4 bit 4 bit

| remote interface| local interface |

16t 96 bit

i — T \
| path ID | path counter | timestamp |

Fig. 2. Fields added to WireGuard messages>

message” is to be sent. The control plane interfaces with the
data plane to tune the path selection.

A. Data Plane

To obtain real-time path performance statistics, the data
plane makes additions to the headers of WireGuard messages.
One set of additions relates to enabling receivers to get real-
time statistics on how well paths perform in the inbound
direction. Another set of additions to the headers of WireGuard
messages relates to enabling senders to get real-time statistics
on how well paths perform in the outbound direction.

Concretely, the first set of additions consists of the following
three new header fields in each WireGuard message?, as shown
in Fig. 2. The first new header field is named Path ID. It
contains an 8-bit ID of the path on which the message is sent.
The lower 4 bits identify the local network interface, while
the upper 4 bits identify the remote network interface. Many
paths may exist between two WireGuard peers, each of which
has an individual Path ID, as shown in Fig. 1. The second
new header field is named Path Counter. It contains a
16-bit rolling-over counter counting the overall number of
WireGuard messages® that were sent on the path on which
the message is sent. The third new header field is called
Transmission Time. It contains a TAI64N timestamp
of the time span between boot time and the moment of
transmitting the message.

By means of these new header fields, the receiver side can
infer a path’s current throughput, delivery ratio, and “relative
path latency”. Throughput becomes measurable thanks to
Path IDs. They inform the receiver side via which path
a received WireGuard message’ was sent. This hint can
serve to compute the amount of data received via a certain
path. Delivery ratios become measurable thanks to Path
Counters. These incrementing counters allow the receiver
side to notice if a WireGuard message” got lost. Further, by
keeping track of missed and received Path Counters, and
by accommodating out-of-delivery, per-path delivery ratios can
be calculated. Finally, the latencies of the available paths be-
come comparable thanks to Transmission Times. Using

2 here, we only mean WireGuard messages of type Handshake
Initiation, Handshake Response, and Transport Data

4bit

r T 1

4bit

‘remote interfacel local interface l

16rb‘it-/"'/ 32 bit

I path ID | path counter | centered relative path latency

‘ entry 1 | entry 2 | | entryn

piggybacked statistics

Fig. 3. Wire format of piggybacked real-time path performance statistics

these timestamps, the receiver of a WireGuard message” can
compute the “relative path latency” as the difference between
the receiver’s time since boot at the moment of receiving the
message and the message’s Transmission Time. Though
the result deviates from the real path latency, it suffices for
deducing how much faster or slower a path is than another.

The header additions described so far enable the receiver
side to get real-time statistics on how well paths perform in
the inbound direction. Next, we detail the second set of header
additions, which report back on these statistics to the sender
side, allowing senders to make informed decisions on which
path to select even when paths perform asymmetrically.

For reporting back real-time path performance statistics,
the data plane uses the fact that WireGuard sends replies
to many messages anyway. Specifically, a Handshake
Initiation message triggers a Handshake Response.
Likewise, a Handshake Response triggers a Transport
Data message, and a Transport Data message trig-
gers, unless it is itself a reply, another Transport Data
message. Consequently, the data plane piggybacks statistics
it wishes to send back on Handshake Response and
Transport Data messages.

The statistics that the data plane wishes to send back are
buffered in a list. A new entry is appended to this list upon
receiving a fresh authentic WireGuard message®. Such a new
entry encompasses (i) the Path ID of the path on which the
received message was sent, (ii) the path counter of the received
message, (iii) the relative path latency subtracted by the first
measured relative path latency so as to roughly center relative
path latencies around zero, and (iv) an initially non-zero
redundancy counter. The redundancy counter is decremented
each time when the entry is sent back to the sender side. Once
the redundancy counter of an entry reaches zero, the entry is
deleted from the list. The purpose of retransmitting entries is
to avoid, to a configurable extent, that the sender side falsely
concludes that a message got lost, though it is actually the
reply that got lost. The wire format of piggybacked statistics
is shown in Fig. 3.

For security reasons, the data plane encrypts and authen-
ticates all its header additions. Encrypting Transmission
Times is critically important since sending them unencrypted
would entail the risk of leaking side-channel information to
attackers. Authenticating all header additions is also crucial

because if attackers tampered with these header fields, this
could result in suboptimal path selections.

As for Transport Data messages, header additions are
encrypted and authenticated in the same way as the encapsu-
lated packets. However, as for Handshake Initiation
and Handshake Response messages, symmetric keys are
not yet established when these messages are being sent. To
this end, the data plane uses a temporary symmetric key that
is available at this stage. This key is denoted by « in [1].

We note that x is not available when sending WireGuard
messages of type Cookie Reply, which raises two sub-
tleties. First, to encrypt and authenticate header additions to
Cookie Reply messages, the data plane would have to
generate such a key. This would, however, contradict the
purpose of Cookie Reply messages, which is to avoid
time-consuming computations until the initiator has made
additional efforts. As a solution, the data plane forgoes us-
ing Cookie Reply messages for collecting real-time path
performance statistics, as well as forgoes using them for
reporting back on such statistics. Second, x is also not
generated upon reception of a Handshake Initiation
message if a Cookie Reply message is to be sent. To this
end, the data plane ignores the header additions contained in
Handshake Initiation messages in such cases. Sub-
sequently, when the initiator retransmits the Handshake
Initiation message containing the received cookie, that
message must use the same path counter as the origi-
nal Handshake Initiation message. This avoids that
the initiator falsely concludes that the initial Handshake
Initiation message got lost.

B. Control Plane

Our prototyped control plane offers a choice between four
different path schedulers and is extensible to support further
path schedulers, as well. A path scheduler encapsulates the
logic of selecting the paths via which outgoing Handshake
Initiation, Handshake Response, and Transport
Data messages are to be sent. Cookie Reply messages,
on the other hand, are always sent via the same path as
was used by the corresponding Handshake Initiation
message. This obviates allocating memory for communication
with unauthenticated peers, which would be security-critical.

Two basic path schedulers we prototyped are the round-
robin (RR) and the minLatency path schedulers. The RR path
scheduler, on the one hand, distributes outgoing WireGuard
messages across all available paths in a round-robin fashion.
The minLatency path scheduler, on the other hand, selects the
path with the lowest sample mean of the relative path latencies
in the outbound direction after an initial sampling period.

Both other path schedulers we prototyped treat path se-
lection as a piecewise-stationary multi-armed bandit (MAB)
problem [5], [6]. That is, paths correspond to arms, the path
scheduler takes the role of the agent, and, after selecting a path
for an outgoing WireGuard message, the path scheduler gets
a reward in accordance with the path’s performance. Specifi-

cally, we defined the reward for sending the ¢-th message via
path k as:

0, if Vi =0

Kt = 1
a+B8(1-— e ey), else

(D

where:

e Y3, is a Bernoulli random variable with value 1 if the
message arrives and 0 otherwise

e a,3 €[0,1],(a+ B8 = 1) are parameters for balancing
priorities between delivery ratios and path latencies

e Zj. is a random variable that represents the message’s
relative path latency

e 21,1 is the first measured relative path latency and serves
for centering relative path latencies roughly around zero

e g is the logistic growth rate of the logistic function
T which normalizes relative path latencies,
as required by the MAB algorithms we chose [5], [6]

III. CONCLUSIONS AND FUTURE WORK

The tunneling protocol WireGuard is gaining popularity due
to its performance, user-friendliness, and security. However,
WireGuard lacks native multipath support and the described
workarounds have limitations. To fill this gap, we have inte-
grated multipath extensions into WireGuard. We have followed
the software-defined networking paradigm so that path sched-
ulers are exchangeable. This has paved the way for comparing
various path schedulers in our preliminary evaluation. On the
poster, we will present that preliminary evaluation. The results
suggest that our sliding-window upper confidence bound (SW-
UCB)-based path scheduler performs best in terms of latencies
and delivery ratios [6]. For future work, we suggest (i) miti-
gating out-of-order delivery, which currently occurs when our
MAB algorithm-based path schedulers explore unrewarding
paths, (ii) investigating the use of only some of WireGuard’s
messages for collecting real-time path performance statistics,
and (iii) considering contextual bandit algorithms for path
scheduling so as to take contextual information into account.

REFERENCES

[1] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,” in
Proceedings of the 24th Annual Network and Distributed System Security
Symposium (NDSS 2017). Internet Society, 2017.

[2] D. Lukaszewski and G. Xie, “Multipath transport for virtual private
networks,” in Proceedings of the 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17). USENIX, 2017.

[3] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE Com-
munications Surveys Tutorials, vol. 21, no. 4, pp. 3584-3608, 2019.

[4] 1. Coonjah, P. C. Catherine, and K. M. S. Soyjaudah, “Experimental
performance comparison between TCP vs UDP tunnel using OpenVPN,”
in Proceedings of the 2015 International Conference on Computing,
Communication and Security (ICCCS). IEEE, 2015, pp. 1-5.

[5] Y. Cao, Z. Wen, B. Kveton, and Y. Xie, “Nearly optimal adaptive
procedure with change detection for piecewise-stationary bandit,” in Pro-
ceedings of the 22nd International Conference on Artificial Intelligence
and Statistics (AISTATS). PMLR, 2019, pp. 418-427.

[6] A. Garivier and E. Moulines, “On upper-confidence bound policies
for switching bandit problems,” in Proceedings of the International
Conference on Algorithmic Learning Theory (ALT 2011). Springer, 2011,
pp. 174-188.

