
It’s Good to Relax: Fast Profit Approximation
for Virtual Networks with Latency Constraints

Robin Münk∗, Matthias Rost†, Harald Räcke∗, Stefan Schmid‡

∗Technical University of Munich
†SAP SE & Technische Universität Berlin

‡Faculty of Computer Science, University of Vienna

Abstract—This paper proposes a new approximation al-
gorithm for the offline Virtual Network Embedding Prob-
lem (VNEP) with latency constraints. Our approximation
algorithm Flex allows for (slight) violations of the latency
constraints in order to greatly lower the runtime. It relies on a
reduction to the Restricted Shortest Path Problem (RSP) and
leverages a classic result by Goel et al. We complement our
formal analysis with a simulation study demonstrating our
algorithm’s computational benefits. Our results generalize to
any other additive edge metric, as e.g., hop count or even
packet loss probability.

I. Introduction

The Virtual Network Embedding Problem (VNEP) is
a fundamental resource allocation problem in networks
and has received significant interest in the network
algorithms community over the last decade. Given are
a set of request graphs (the virtual networks, sometimes
also called “guest graphs”) and a single substrate net-
work (the physical infrastructure, also called the “host
graph”). For every request graph the task is to either find
a feasible embedding that maps each request node to a
substrate node and every request edge to a path in the
substrate graph, or to reject the request. The cumulative
resource consumption of the embeddings may not vio-
late the substrate capacities on both nodes and edges. In
this paper we additionally consider latency constraints,
restricting the length of request edge embeddings. Every
admitted and feasibly embedded request yields a given
profit and the goal is to maximize the total profit.

The VNEP is hard so solve in many variants. Even
when neglecting the cumulative feasibility constraints,
known as the Valid Mapping Problem (VMP) [3], it re-
mains NP-hard [5]. Importantly, solving the VMP is an
essential building block for approximating the VNEP [3].

This paper presents a novel, fast and practical ap-
proximation algorithm Flex for the VNEP with latency
constraints. Flex provides both analytical approximation
guarantees and performs well in practice, as demon-
strated in our computational evaluation. Flex is based
on the insight that a slight relaxation of the latency guar-
antees can result in significantly faster and hence more
practical solutions. The latency violations can be made
arbitrarily small, by trading off for a longer runtime.

To achieve this, Flex builds upon the dynamic pro-
gramming and randomized rounding framework by Rost
et al. [3], which solves an all-pairs Restricted Shortest
Path Problem (RSP) as a subroutine. In order to solve the
RSP, we employ a classic result by Goel et al. [1] which
allows, in one execution, to calculate the routes for all
destination nodes at once for a given source node.

Compared to the state-of-the-art algorithm, referred to
as Strict, which provides strict latency guarantees, Flex

is orders of magnitudes faster, sometimes reducing the
runtime from over nine hours to below three minutes.
At the same time, the profit approximation and average
latency achieved by Flex is similar to the one obtained by
Strict, making Flex a much more practical solution. A
full account of the algorithm together with an extended
evaluation is given in our technical report [2].

II. Model and Preliminaries

The substrate network is given as a directed graph
GS = (VS, ES). Each component of the network, i.e., each
substrate node vS ∈ VS and each substrate edge eS ∈ ES,
has a capacity dS : GS → R≥0. For nodes, the capacity
may refer, e.g., to the number of available CPU cores, and
restricts the number of virtual nodes that can be mapped
onto it. Further, each substrate component x ∈ GS may
be attributed with a cost value cS(x) ∈ R≥0 for its usage.
Substrate edge latencies are given by lS : ES → R≥0 and
represent the time delay between adjacent nodes.

A request is likewise represented by a directed graph
Gr = (Vr, Er) with demands dr : Gr → R≥0 for
each virtual component and an associated latency bound
Tr ∈ R≥0 such that all virtual edges of Er must be
embedded with a lesser or equal latency. Every request
r yields a given profit br ∈ R≥0 if it is embedded.

A mapping represents how a request is embedded
in the substrate. We allow the specification of a set of
forbidden nodes and edges with each request. Formally,
a valid mapping of request r onto the substrate GS is
defined as a tuple mr = (mV

r , mE
r) of functions, such that:

• The function mV
r : Vr → VS assigns a valid substrate

node to every virtual node. A substrate node is valid
if it is not forbidden and has sufficient capacity.

• The function mE
r : Er → PS maps each virtual edge

(i, j) ∈ Er to a valid simple path in the substrate
network connecting mV

r (i) to mV
r (j).Annex to ISBN 978-3-903176-39-3 c© 2021 IFIP

With regard to latencies, a mapping is further called valid
- under the strict latency constraint if it additionally

fulfills ∑(u,v)∈mE
r (i,j)

lS(u, v) ≤ Tr for all (i, j) ∈ Er
such that all latency bounds are met exactly, or

- under a (1+ ε)-approximate latency constraint for some
ε > 0 if it is valid and fulfills

∑(u,v)∈mE
r (i,j)

lS(u, v) ≤ (1 + ε) · Tr

for (i, j) ∈ Er, allowing for small latency violations.
For a valid mapping mr = (mV

r , mE
r) and substrate

element x ∈ GS the induced resource allocation A(mr, v)
is the sum of the demands of all request nodes or edges
that are mapped onto x by mr. For a single request
r the Valid Mapping Problem (VMP) asks to find a
valid mapping mr that minimizes the mapping cost
c(mr) = ∑x∈GS

cS(x) · A(mr, x).
For the definition of the VNEP a set of requests R

is given. We refer to a set of mappings {mr}r∈R′ for a
subset of requests R′ ⊆ R as a feasible embedding iff.
the cumulative resource allocation on any substrate ele-
ment does not exceed its capacity, i.e., if for all x ∈ GS it
holds ∑r∈R′ A(mr, x) ≤ dS(x). It is important to note that
the validity of mappings only considers the feasibility
of single node and edge mappings while the feasibility
of embedding takes the cumulative resource allocations
of a set of mappings into account. The (offline) Virtual
Network Embedding Problem (VNEP) then is to find
a feasible embedding {mr}r∈R′ of a subset of given
requests R′ ⊆ R which maximizes the profit ∑r∈R′ br.

The Restricted Shortest Paths Problem (RSP) is an
important subproblem when solving the VNEP with
latencies. For the RSP a directed graph G = (V, E) is
given, where each edge e ∈ E is associated with a cost
ce and a latency le, both non-negative. Then for a given
source s ∈ V and target t ∈ V the goal is to find a cost-
minimal path from s to t such that the path’s latency
does not exceed a given limit T ∈ R≥0. For the purposes
of this paper, the graph G will be the substrate GS and
the limit T will be equal a latency bound Tr of a request.

III. Algorithm and Evaluation

In order to approximate the VNEP with latency con-
straints, we build upon the framework by Rost et al. [3]
which is parametrized by the treewidth of the request
graphs, a measure of similarity to trees. As a result the
algorithm’s runtime is only polynomial if the maximal
treewidth of the request graphs is a constant.

Their approach tackles the problem in multiple steps.
First, for each request graph Gr a tree decomposition
Tr of limited treewidth tw(Tr) is computed. It is then
shown that the Valid Mapping Problem (VMP) can be
solved on this tree representation using the DynVMP
algorithm using dynamic programming (in time and
space exponential in the request’s treewidth) [3]. Given
the ability to solve the VMP (without latencies), the

fractional VNEP is then shown to be solvable via column
generation techniques where the DynVMP algorithm is
used as a separation oracle. The thus computed frac-
tional solution can then be interpreted as a ‘probability
distribution’ over the valid mappings constructed in the
column generation step and can be easily converted
into a solution to the VNEP via (repeated) randomized
rounding. Altogether this approach results in an algo-
rithm that produces approximate solutions to the VNEP
without latencies.

As latencies only change the notion of validity of
mappings and pertain to individual request graphs, the
DynVMP algorithm needs to be adapted to return so-
lutions respecting latency constraints. This restriction is
handled when edge mappings are calculated by approxi-
mating the underlying Restricted Shortest Paths problem
for each pair of substrate nodes and each request edge.
As the RSP needs to be solved for every pair of sub-
strate nodes, the All-Pairs Restricted Shortest Path Problem
(APRSP) needs to be solved. Given the NP-hardness of
the RSP, the APRSP can only be approximated.

We propose the algorithm Flex to solve the APRSP
subproblem, which results from using the procedure by
Goel et al. [1] to calculate latency-constrained shortest
paths for the DynVMP algorithm. This approach comes
with a trade-off. The algorithm by Goel et al. calculates
cost-optimal paths at the expense of allowing for a
violation of the latency constraint by a factor of up to
(1 + ε). The approach starts with a coarse scaling of
the edge latencies to integers. The modified problem is
solved exactly using dynamic programming resulting in
cost-minimal paths for a weakened latency constraint. If
all paths are also valid for the (1 + ε)-approximate con-
straint, the algorithm terminates. Otherwise the process
is repeated with a finer scaling until a solution is found.

The crucial advantage of the procedure by Goel et al.
are that one execution gives the results for all destination
nodes at once for a given start node. This leads to
a significant decrease in runtime as it only has to be
executed |VS| times to produce paths between all pairs of
source and target nodes. This subroutine, APRSP_Goel,
only requires |VS| calls to Goel et al.’s algorithm to
prepare the cost and path tables for DynVMP.

Besides the fewer required subroutine calls, the al-
gorithm has some additional benefit. Specifically, the
algorithm progressively improves the approximation’s
quality which allows for early stopping of the algorithm
in the case of strict computation time limits. In that case,
if a path has been computed, it is cost-optimal for some
weaker latency constraint.

Theorem 1 (Flex). For n ≥ 3 the Flex algorithm finds
a solution to the VNEP under (1 + ε)-approximate latency
constraints with a profit of at least 1/3 of the optimal profit
and resource augmenations as in [3] with high probability.

(a) Flex (b) Strict

Fig. 1: Total runtime for different values of limit and
ε, split by algorithm type. The results are averaged for
ERF, NRF and over all topologies.

The runtime is bounded by O(poly(τFlex)) with

τFlex = ∑
r∈R

n2 ·
(
|Vr|3 · n2·tw(Tr) +

m + n log n
ε

)
.

Proof. The proof is given in [2].

To complement our theoretical contribution we imple-
mented Flex and the current state-of-the-art algorithm
Strict as proposed by Rost et al. [3]1. Strict approxi-
mates the RSP while strictly enforcing latency limits [3].

Our first evaluation considers five real-world networks
from the Topology Zoo with the number of edges rang-
ing from 20 to 62. To impose meaningful latency limits
on substrates of different sizes, we set the limit per
request via scaling the average edge latency, computed
based on the geographic information of adjacent nodes.
The general experiment design closely follows Rost et
al. [3], [4], using node and edge resource factors (NRF
and ERF) to control resource scarcity. To enforce the
distributed placement of nodes, each virtual node may
only be mapped to a quarter of the substrate nodes.

Figure 1 depicts the runtime of the respective algo-
rithms as a function of the approximation guarantee
ε and the latency limit scaling factor. Clearly, Flex

provides a much better scalability both in terms of the
latency limit and the approximation guarantee: for the
highest latency limit and the smallest approximation
factor Strict’s runtime averages to about 9 hours while
Flex takes less than 2.2 minutes. Importantly, In Fig-
ure 1a we can observe another favorable quality of the
Flex algorithm. Specifically, for small limit values (3 and
5) when very few mappings are generated, Flex shows
no change in runtime for different values of ε.

We observe that the profits of the Flex and the Strict

algorithm are very similar: Figure 2 (top) shows the
averaged profit across topologies for the worst approxi-
mation factor ε = 0.5 and a medium latency limit factor
of 10. Besides the profits of Flex and Strict generally
lying close together, we note that the baseline’s profit
only slightly exceeds the latency limited ones.

1The code can be found at https://github.com/vnep-approx-latency

Fig. 2: Boxplot of the average achieved profits (top) and
latency (bottom) by topology for ε : 0.5, limit: 10.

Furthermore, the average edge latency of Flex only
slightly exceeds the one of Strict and both strictly lie
below 50% of the limit in all topologies. The experiments
also showed that the latency of the Flex algorithm rarely
reaches its (1 + ε)-approximated upper bound [2].

In a separate evaluation on larger substrates (between
122 and 158 edges), on which using Strict was compu-
tationally prohibitive, the scalability of Flex alone was
studied and it was shown that it can produce high-
quality solutions within a reasonable amount of time [2].

IV. Conclusion

This paper presented a novel approximation algorithm
for the embedding of virtual networks with latency con-
straints. Our algorithm is significantly faster than state-
of-the-art algorithms, as we have also shown empirically.

Acknowledgments.
This project received funding from the European Re-

search Council (ERC) under grant agreement 864228
(AdjustNet), Horizon 2020, 2020-2025.

References

[1] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis.
Efficient computation of delay-sensitive routes from one source to
all destinations. In Proceedings IEEE INFOCOM 2001, pages 854–
858. IEEE, 2001.

[2] R. Münk, M. Rost, S. Schmid, and H. Räcke. It’s Good to Relax:
Fast Profit Approximation for Virtual Networks with Latency
Constraints. Technical Report arXiv:2104.09249 [cs.NI], April 2021.

[3] M. Rost, E. Döhne, and S. Schmid. Parametrized complexity
of virtual network embeddings: dynamic & linear programming
approximations. ACM SIGCOMM Computer Communication Review,
49(1):3–10, 2019.

[4] M. Rost and S. Schmid. Virtual network embedding approxima-
tions: Leveraging randomized rounding. IEEE/ACM Transactions
on Networing, 27(5):2071–2084, 2019.

[5] M. Rost and S. Schmid. On the hardness and inapproximability of
virtual network embeddings. IEEE/ACM Transactions on Network-
ing, 28(2):791–803, 2020.

