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Abstract—With the proliferation of mobile networks, we face
strong diversification of services, demanding the network to
be more flexible. To satisfy this dire need, network slicing is
embraced as a promising solution for resource utilization in
5G and future networks. However, this process is complicated
that the traditional approaches cannot effectively perform re-
source orchestration due to the lack of accurate models and
the existence of dynamic hidden structures. We formulate the
resource allocation problem as a Constrained Markov Decision
Process and solve it using constrained reinforcement learning.
Specifically, we use the adaptive interior-point policy optimization
and projection layers to handle cumulative and instantaneous
constraints. Our evaluations show that our method is effective in
resource allocation and outperforms baselines.

Index Terms—Resource Allocation, Network Slicing, 5G, Con-
straints, Deep Reinforcement Learning

I. INTRODUCTION

With the proliferation of mobile networks, we face strong
diversification of services. These services demand the network
to embed more flexibility. In 5G and future networks, network
slicing [1], enabled by network function virtualization (NFV)
and software defined networking (SDN), is embraced as a
promising solution for flexible resource provisioning.

Network slicing is a generalized resource allocation problem
in compliance with the complex network dynamics, in the
long run. However, resource allocation is a highly compli-
cated that the traditional approaches cannot solve effectively
and efficiently. First, traditional approaches require accurate
mathematical models with parameters known, which is often
difficult to achieve in practice. Constraints from the physical
systems or service demands are prevalent and complex, which
further adds to the difficulty. Second, traditional methods
do not adapt to epistemic uncertainty, exhibited as hidden
structures in networks, due to a lack of knowledge and ability
to explore and learn from the studied system.

We propose a resource allocation method for network slicing
using constrained reinforcement learning (RL). The learning-
based methods are beneficial because they explore and learn
from the network without knowing those prior knowledge. We
model the problem as a Constrained Markov Decision Process
and develop efficient RL algorithms for network slicing under
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both cumulative and instantaneous constraints. To the best
of our knowledge, we are the first one to apply RL for
network slicing with constraints. To deal with cumulative
constraints, we propose adaptive Interior-point Policy Opti-
mization (IPO) [2]. For instantaneous constraints, we project
a resource allocation decision generated by the RL policy to
its nearest feasible decision [3].

II. SYSTEM DESCRIPTION

We describe the network slicing architecture with con-
strained RL, as shown in Fig. 1a. It is developed from the ETSI
reference model [4] colored in blue, and our contribution is
highlighted with green. The Virtual Network Functions (VNF)
consist of the virtual resources. They provide different service
functionalities that make up the Network Slice. The Network
Slicing Manager (NSM) is responsible for the initialization,
configuration, and managing the life cycles of the network
slices. A policy trained with constrained RL algorithms, is in
charge of providing solutions for the resource allocation on
network slices to the NSM and the Orchestrator, and receive
feedback to improve the policy on further decisions.

Fig. 1b shows in details. The service providers submit the
requirements to the RL engine. The NSM monitors the current
system state and sends it to the RL engine. Based on the state
and the requirements, the RL engine proposes the resource
allocation plan to the NSM. The NSM configure the network
slices with the proposed plan. This plan is passed to the
VNF manager to further map the virtual resources to physical
resources. For each configuration in a decision time slot, the
NSM monitors the system and network slices to measure the
rewards(constraints) and send the rewards(constraints) to the
RL engine for further policy improvement.

III. PROBLEM FORMULATION
A. Radio Access Network Slicing

To be clear, we formulate how to apply constrained RL
for radio access scenario with hidden dynamics, as suggested
in [5]. We simulate a scenario containing a Base Station (BS)
with three types of services (i.e., Video, VOLTE, URLLC).
Each service has a random number of users. The total band-
width of the BS is fixed and given (100 Mbps).

The network slicing problem is to allocate bandwidth to
each type of user (a slice). At the beginning of each decision
time slot, the BS decides the bandwidth allocation b; (7 is user
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Fig. 1: Network slicing with Constrained Reinforcement Learning
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type) based on the observation of number of users in each dissatisfaction ratio, where C;(s,a) = 1 — M The

slice. Let #; be the actual traffic demand for each slice, then
the throughput is min(b;, ¢;). There is a dissatisfaction ratio
1-— % representing their dissatisfaction with respect to
the service received. The latency [; for each type of user, which
does not yield easy mathematical formulation, is decided based
on a queue maintained at the BS. Moreover, dynamic hidden
structures exist. Each user arrives and departs the network
following a Poisson distribution with mean \; and p;. The
arrival rate \; adapts based on the satisfaction ratio of the last
time slot. Furthermore, users may depart early if the service
is unsatisfactory. We assume these user traffic patterns
and mobility are unknown to the slicing algorithms. This
is one of the reasons why learning-based approaches,
which incorporate exploration, perform better than the
traditional methods based only on observed states.

B. Constrained Markov Decision Process (CMDP)

We formulate the network slicing problem as a CMDP,
which is represented with the tuple (S, A, R, C,~). The net-
work observations constitute the state set S. The resource
allocation decisions constitute the action set A. The reward
and costs of taking action a under state s is defined as R
and C}, separately. There are m cost functions and each is
under a constraint. The discount factor is «. The actions
are constrained by two types of constraints. A cumulative
constraint requires that the cumulatively sum of a cost is
within a limit, while an instantaneous constraint requires that
a cost needs to satisfy a limit in each time slot. Instantaneous
constraints can be further divided into explicit and implicit
instantaneous constraints. An explicit constraint has a closed-
form expression that can be numerically checked. An implicit
constraint does not have an accurate closed-form formulation.

Mapping to the radio access scenario, the state s
(NVideos "VoLTE, MURLLC) 1is the number of users ob-
served at the beginning of each time slot. The action
a = (bVidemeoLTE;bURLLC) is the bandwidth allocation
for each type of users. The reward R(s,a) is the total
throughput min(bvideo, tvideo) + min(bvorre, tverre) +
min(byrrre,turrLe)- Moreover, each type of users has a
cumulative constraint, which is the expectation of cumulative

explicit instantaneous constraint is the sum of allocated band-
width, by ;geo+bvorrE+bURLLC, Which must be less or equal
to the total bandwidth (100 Mbps). The implicit instantaneous
constraint is on the average latency of each type of user, which
we cannot get a closed-form solution and needs to be learned.

Constrained RL learns a policy 7y takes states as input
and output actions. Let trajectory 7 (s0, a0, $1,0a1-..)
and T mp. The objective is to select a policy 7y,
which maximizes the discounted cumulative reward Jp’
Erry D peo V' R(St, ar, se+1)], while satisfying discounted
g'f =Ervr, [Z:io 7' C; (8¢, at, St41)]

~

cumulative constraints .J,
and instantaneous constraints. Formally, the problem is

maxigmize max Jg’ (1)
subject to J& < w;, for each i, ()
Cj(s,a;) <e¢j,foreachjandt, (3)

IV. CONSTRAINED REINFORCEMENT LEARNING
A. Cumulative Constraints

We handle cumulative constraints built on our previous work
IPO [2]. IPO augments the objective of PPO LELIP () [6]
log(—J 5!

t
However, IPO is conducted with fixed

with logarithmic barrier functions (;S(jg") = = ), where
JE = JE
hyperparameter ¢ for (b(jgf’) , while we propose a method
in an adaptive manner. By taking IPO, our objective is

URDICED

— W;.

LCLIP(

“4)

max L'PO(9) =

B. Adaptive IPO

We improve IPO in an adaptive manner, to change the
hyperparameter ¢ adaptively in the tradeoff of approximation
accuracy and algorithm performance [2]. Specifically, we start
with a small ¢ to have more stable policy updates, and
gradually increase ¢ to achieve better policies on convergence.

Our adaptive IPO has two phases. In Phase I, the cumulative
costs are successively optimized to obtain a feasible policy.
In Phase II, the policy is initialized with the feasible policy
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Fig. 2: Average performance under Video cumulative constraint.

achieved in Phase I. Then we start with a moderate small ¢
and adaptively increase it with a factor p > 1 when policy
convergence criteria are satisfied. In each iteration, we update
the policy by maximizing L'7°(6) in Eq. (4). The pseudo-
code is shown in our previous workshop paper [7].

C. Instantaneous Constraints

To satisfy instantaneous constraints, one way is to project
the infeasible action to the feasible space [3]. One can intro-
duce another additional layer to my, whose role is to solve

min 2 fla — mo(s)| “
sit. Ci(s,a) <¢j

In other words, we project the action from the policy 74(s) to
the /5 nearest feasible action a that satisfies the instantaneous
constraint. The projection idea can apply to both explicit and
implicit constraints. One challenge for implicit constraints is
that the function C} (-, ) is unknown. To address the problem,
we take advantage of another neural network to learn the value
of C(s,a) simultaneously, as in [3].

V. EXPERIMENTS
A. Settings

The above formulation and algorithm can be applied to
general network slicing problems. Here, we evaluate on the
radio resource slicing scenario, as described in Section III-A
and it can be extended to more general cases easily.

We apply traditional methods based on observed states,
which result in the baselines of One-third equal allocation,
User-number-based allocation, Packet-number-based alloca-
tion and Traffic-demand-based allocation, as suggested in [5].
For each method, the total bandwidth is sliced weighted by
the number of observed states separately. We also choose the
most commonly applied RL algorithm, PPO [6] as a baseline.

B. Evaluation Results

We demonstrate results among three network slices, with
one cumulative constraint which is selected from cumulative
dissatisfaction ratio of Video, VOLTE and URLLC separately.
The results show in Fig. 2, where the figures for VOLTE and

URLLC are omitted with the same pattern. Fig. 2a, 2b show
the results of long term reward (throughput) and cumulative
constraints (dissatisfaction ratio) with respect to the iterations
of policy updates. For our method and PPO, the rewards and
cumulative cost values are updated during the training process,
while the traditional baselines does not adapt to the changes
in the environment. Even though PPO can get a little higher
reward, its cost significantly violates the constraints.

We collect the policy after training and demonstrate the
performance on the implicit instantaneous constraints (latency)
, shown in Fig. 2c. Our algorithm satisfies the latency re-
quirements best. Moreover, since explicit instantaneous con-
straints (bandwidth allocation) can be numerically checked.
Our method can always make sure that they are satisfied. All
above, the final policy learned by our method outperforms all
the baselines in either reward or constraint cost, if not both.

VI. CONCLUSION

We formulate the network slicing problem as a Constrained
Markov Decision Process and solve it with constrained re-
inforcement learning. Our evaluation results show that our
method can solve network slicing problems effectively. Much
future work exists, including stronger theoretical bounds,
improved sample efficiency and real world evaluations.
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