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Abstract—Segment Routing (SR) provides Traffic Engineering
(TE) with the ability of explicit path control by steering traffic
passing through specific SR routers along a desired path. How-
ever, large-scale migration from a legacy IP network to a full
SR-enabled one requires prohibitive hardware replacement and
software update. Therefore, network operators prefer to upgrade
a subset of IP routers into SR routers during a transitional pe-
riod. This paper proposes SmartTE to optimize TE performance
in hybrid IP/SR networks where partially deployed SR routers
coexist with legacy IP routers. We use two centrality criteria in
graph theory to decide which IP routers should be upgraded into
SR routers under a given upgrading ratio. SmartTE leverages
Deep Reinforcement Learning (DRL) to infer the optimal traffic
splitting ratio across multiple pre-defined paths between source-
destination pairs. Extensive experimental results with real-world
topologies show that SmartTE outperforms other baseline TE so-
lutions in minimizing the maximum link utilization and achieves
comparable performance as a full SR network by upgrading only
30% IP routers.

Index Terms—Traffic Engineering, Segment Routing, Deep
Reinforcement Learning

I. INTRODUCTION

Segment Routing (SR) [1] enables fine-grained explicit path
control by specifying a list of SR routers through which traffic
has to pass. Traffic Engineering (TE) can distribute traffic
across multiple pre-defined paths between source-destination
pairs, with an aim to minimize maximum link utilization.

However, large-scale migration from a legacy IP network
to a full SR-enabled one requires prohibitive hardware re-
placement and software update. ISPs may prefer to upgrade a
subset of IP routers into SR routers, and then gradually expand
the scale of SR router deployment to the whole network.
Therefore, partially deployed SR routers will coexist with IP
routers during the transitional period. How to implement TE
in such hybrid IP/SR networks remains a critical problem.

Node-constrained TE is proven NP-hard [2], in which traffic
is constrained to pass through specific SR routers. Therefore,
we explore the potential of Deep Reinforcement Learning
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(DRL) [3] to tackle this NP-hard problem. DRL learns an
optimal control policy from experience by interacting with the
environment in a trial-and-error manner. SmartTE leverages
DRL to infer the optimal traffic splitting ratio across multiple
pre-defined paths between source-destination pairs.

Our contributions are as follows:
• We use two centrality criteria from graph theory to decide

which IP routers should be upgraded into SR routers
under a given upgrading ratio.

• We leverage DRL to infer the optimal traffic splitting
ratio across multiple available paths between source-
destination pairs.

• Experiments with real-world topologies show that
SmartTE outperforms other baselines in minimizing max-
imum link utilization by upgrading only 30% IP routers.

II. SYSTEM OVERVIEW

Fig. 1: System overview of SmartTE

Fig.1 shows all IP routers running the OSPF protocol
forwards traffic along the shortest path via X . We select to
upgrade W into an SR router. In such hybrid IP/SR networks,
two paths are available for traffic from the source S towards
the destination D. Once detecting congestions on the shortest
path, the DRL agent deployed in W will offload part of the
traffic to the non-shortest path by adjusting the traffic splitting
ratio between Port 1 and Port 2. The SR router W infers an
optimal traffic splitting ratio (at) based on dynamic link load



condition (st) and the feedback reward of previous inference
(rt).

III. SR ROUTER DEPLOYMENT

The first step in SmartTE is to select a subset of legacy
IP routers and then upgrade them into SR-enabled ones. We
draw upon two centrality concepts [4] from graph theory,
namely Group Betweenness Centrality (GBC) and Group
Degree Centrality (GDC), to rank IP routers in terms of their
contributions to explicit path control.

A. Group Between Centrality

For a network topology G = (V,E), Group Between
Centrality (GBC) for a subset of nodes W ⊆ V is defined
as the fraction of all-pairs shortest paths passing through any
node in W :

GBC(W ) =
∑

s,t∈V−W ;s6=t

σ(s, t |W )

σ(s, t)
(1)

where σ(s, t) is the number of shortest paths between the
node pair (s, t) and σ(s, t | W ) is the number of these paths
passing through any node in W at the same time.

According to the OSPF protocol, IP routers forward traffic
on the shortest path by default. Therefore, selecting to upgrade
a group of routers with larger GBC can maximize the chances
of path control for traffic on the shortest path.

B. Group Degree Centrality

Similarly, Group Degree Centrality (GDC) for a subset of
nodes W ⊆ V is defined as the fraction of links connected to
any node in W :

GDC(W ) =
∑
w∈W

deg(w)

|E|
(2)

where deg(w) is the degree of the node w and |E| is the
total number of links in the network topology G = (V,E).

The essence of multi-path routing is to fully exploit avail-
able network resources on non-shortest paths, so as to alleviate
possible congestions on the shortest path. Therefore, a group
of routers with larger GDC have a higher degree of routing
flexibility to offload traffic to other non-shortest paths.

IV. SMARTTE ALGORITHM

SmartTE leverages Deep Deterministic Policy Gradient
(DDPG) [5] to compute optimal traffic splitting ratio across
multiple available paths between source-destination pairs. This
section defines the state space, action space, and reward
function in DDPG, and presents the detailed DDPG algorithm.

Algorithm 1: DDPG Algorithm for SmartTE

1 Initialize actor network µ(s | θµ) and critic network
Q(s, a | θQ) with parameters θµ and θQ;

2 Initialize target networks µ′(s | θµ′
) and Q′(s, a | θQ′

)

with parameters θµ
′ ← θµ and θQ

′ ← θQ;
3 Initialize Replay Buffer R to store state transitions;
4 Initialize Ornstein-Uhlenbeck random process N to

explore action space;
5 while True do
6 Collect link load condition from OSPF LSA as

input state st;
7 Apply actor network with random process to

generate action at = µ(st | θµ) +Nt;
8 Execute traffic splitting ratio at across available

paths;
9 Calculate reward rt and observe next-state st+1;

10 Store 4-tuple state transitions (st, at, rt, st+1) into
Replay Buffer R;

11 Sample a mini-batch of K samples from R;
12 for i = 1 ... K do
13 Apply target networks to compute target value:

yi = ri + γ ·Q′(si+1, µ
′(si+1 | θµ

′
) | θQ′

);
14 end
15 Update critic network by minimizing the loss:

L = 1
N

∑K
i=1(yi −Q(si, ai | θQ))2;

16 Update actor network by policy gradient theorem:
∇θµJ ≈ 1

N

∑K
i=1∇aQ(si, ai | θQ)∇θµµ(si | θµ);

17 Update target networks with soft synchronization:
θQ

′ ← τθQ + (1− τ)θQ′

θµ
′ ← τθµ + (1− τ)θµ′

18 end

A. State, Action and Reward

At step t, the state space, action space, and reward function
are defined as follows:
• State st is a vector of link load condition across all links

that can be derived from OSPF LSAs.
• Action at is a vector of traffic splitting ratio across

multiple available paths between source-destination pairs.
• Reward rt is a negative value of the maximum link

utilization across all links in the network.

B. DDPG Algorithm

Algorithm 1 shows the details of DDPG algorithm in
SmartTE. Line 1-2 are parameter initialization for actor-critic
networks and target networks. Line 3 initializes a replay buffer
R to store state transitions. Line 4 initializes a random process
called Ornstein-Uhlenbeck (O-U) for exploration in the action
space, which is a common practice in continuous control
task. Line 6 defines the input state st as link load condition
across all links by collecting the information from periodic
OSPF LSA broadcasting. Line 7 obtains the action at by
adding the O-U random process Nt to the output of the actor



(a) Abilene (b) Germany

Fig. 2: All-pairs shortest paths containing SR Routers

(a) Abilene (b) Germany

Fig. 3: Maximum link utilization with SR Ratio

network µ(st | θµ). Line 8 executes the traffic splitting ratio at
across available paths between source-destination pairs. Line
9 calculates the reward rt according to the maximum link
utilization and observes the next state st+1. Line 10 stores
a 4-tuple state transition in the replay buffer R, including
(st, at, rt, st+1). Line 11 samples a mini-batch of K state
transitions from the replay buffer. Line 12-14 computes the
target value yi for each sample. Line 15 updates the parameters
of the critic network by minimizing the loss function L, which
is the square error between yi and the Q-value Q(si, ai | θQ).
Line 16 updates the parameters of the actor network by policy
gradient theorem.

V. PERFORMANCE EVALUATION

We evaluate the performance of SmartTE with real-world
network topologies from SNDlib [6], including Abilene (12
nodes 15 links) and Germany (50 nodes 88 links). We use
PyTorch framework to train the DRL agent of SmartTE. The
actor-critic network in DDPG consists of two hidden layers
with 20 and 10 neurons, respectively. The activation function
is ReLU for the two hidden layers and Softmax for the output
layer. The learning rate is 0.001 for Adam optimizer in both
actor and critic network. The soft update coefficient is 0.001
for parameter synchronization of target networks. We set the
discounted factor to 0.99 to calculate the target Q-value.

Fig.2 demonstrates the percentage of all-pairs shortest paths
containing at least one SR router with an increasing deploy-
ment of SR routers. The result shows that over 80% of shortest
paths will contain at least one SR router after upgrading 50%
IP routers. It means traffic between a majority of node pairs
will encounter at least one SR router during their transmission
along the shortest path, and have a chance to be re-routed to
other non-shortest paths.

Fig.3 shows that the maximum link utilization decreases
with the increasing ratio of SR router deployment. When the

(a) Abilene (b) Germany

Fig. 4: TE performance with increasing traffic intensity

ratio equals 1, the hybrid IP/SR network will become a full
SR one. A growing number of SR routers enable a higher
degree of routing flexibility for traffic demands. However,
the improvement becomes slight after exceeding a certain
threshold, indicating a hybrid IP/SR network is sufficient for
comparable performance as a full SR-enabled one.

Fig.4 compares the performance of SmartTE with other
baseline TE solutions, including OSPF, ECMP, and Multi-
Commodity Flow (MCF). MCF can be regarded as a theoreti-
cal optimum in which every router can fractionally split traffic
with an arbitrary splitting ratio. In SmartTE, only SR routers
can split traffic across multiple available paths but achieve
near-optimal performance as MCF under all traffic intensities.

VI. CONCLUSION

We proposed SmartTE to optimize TE performance by
exploring the potential of Deep Reinforcement Learning. We
determined the upgrading priority of IP routers by two cri-
teria, namely Group Betweenness Centrality and Group De-
gree Centrality. Experimental results with real-world network
topologies showed that less than 30% partially deployed SR
routers can achieve comparable TE performance as a full SR
network.
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