CacheNet: Leveraging the Principle of Locality
in Reconfigurable Network Design

Chen Griner and Chen Avin
School of Electrical and Computer Engineering
Ben Gurion University of the Negev, Israel
griner @post.bgu.ac.il, avin@cse.bgu.ac.il

Abstract—Emerging optical communication technologies sup-
port the dynamic reconfiguration of datacenter network topolo-
gies depending on the traffic they serve. However, to reap the
benefits of such demand-aware networks, a control logic is
required which allows to quickly learn and adapt to traffic
patterns. This paper presents CacheNet, a novel approach to
efficiently control demand-aware networks. CacheNet leverages
temporal and spatial locality in the traffic by managing the
reconfigurable links of the optical switches as a links-cache.
Network traffic, in turn, can be served either by a link from
the link-cache component or by a demand-oblivious topology
component. We study several classic caching algorithms and
provide an analytical model which captures their performance
benefits compared to an all demand-oblivious topology. Our
analytical results show that based on the hit ratios and the links-
cache size, our hybrid design can outperform designs that are
based only on demand-oblivious topology.

I. INTRODUCTION

Traditional datacenter networks have in common that they
rely on a topology which is demand-oblivious, i.e., indepen-
dent of the current traffic pattern it serves. Recently, recon-
figurable optical technologies have introduced an intriguing
alternative to design datacenter networks, allowing to dynam-
ically establish shortcuts, depending on the demand [1]-[3].
However, designing demand-aware networks is challenging.
Existing architectures , including Helios [1], RE-ACToR [2]
and Mordia [3], among others, are based around creating
a schedule of reconfigurations for a snapshot of the traffic
matrix. More specifically, most existing reconfigurable optical
technologies allow to provide dynamic matchings between a
set of endpoints (e.g., top-of-rack switches), and throughput
can be optimized by cleverly scheduling a sequence of such
matchings. This paper presents a novel approach to design
demand-aware and self-adjusting networks, which is inspired
by the success of leveraging the locality principle [4] in other
computing systems using caching (e.g., CPU, memory, web
caches). That is, rather than aiming to collect information
patterns explicitly, we propose an implicit approach in which
the different optical switches manage their reconfigurable links
as a distributed cache. The links in the cache serve communi-
cation requests with very low latency and high capacity, and
are adjusted in an online manner, according to the changing
demand in the network. We propose CacheNet, a hybrid

Annex to ISBN 978-3-903176-39-3© 2021 IFIP

architecture which consists of both demand-aware links, that
can be realized as a distributed link cache, and demand-
oblivious links. Ideally, the demand-aware component adjusts
to changing network demand patterns to serve large flows at
lower overhead, while the demand-oblivious component han-
dles any remaining traffic which the cache cannot handle (e.g.,
all-to-all shuffle traffic). In particular, the demand-oblivious
component of CacheNet relies on RotorNet [5], which has
serve shuffle traffic particularly well; We provide a formal
analysis of CacheNet which allows us to shed light on the opti-
mal distribution of demand-oblivious and demand-aware links
in the datacenter. We further complement these insights with
an empirical evaluation, considering both important synthetic
and real-world workloads. Our results reveal that CacheNet
can greatly benefit from its hybrid design. To the best of our
knowledge, we are the first to establish a connection to explore
the opportunities of a distributed link cache to enhance an
otherwise demand-oblivious topology. The complete technical
details will appear in the full version of the paper.

II. HYBRID ARCHITECTURE MODEL

We consider a hybrid architecture model which will al-
low us to compare trade-offs between demand-oblivious and
demand-aware networks. In particular, in this paper, we will
use an abstract view RotorNet [5] as the demand-oblivious
network, henceforth denoted as rotor-net. For the demand-
aware network, we will use cache-net, also described in this
section, which is based on our distributed link cache approach.
We will refer to our hybrid architecture combining rotor-net
and cache-net, as CacheNet. To this end, we will assume
that for the design of CacheNet, we are given a link budget
(or synonymously edge budget) of m edges (optical links)
to serve the communication between n nodes (i.e., possible
source or destinations). In a data-center network, sources
and destinations could be different ToR switches (as in our
empirical traces), but more generally they may represent any
type of network nodes (e.g., hosts). Each of these edges can be
assigned to either the rofor-net component or to the cache-net
component. In the following, we will denote the number of
edges assigned to either rofor-net or to the cache as m, and
m, respectably, and m, + m. = m. We will first introduce
the two networks in turn and then describe CacheNet.

A. The Demand-Oblivious Network: rotor-net

We consider an abstract model of RororNet [5] which
we denote by rotor-net. In a nutshell, rotor-net is simply a
reconfigurable network which cycles periodically through a
sequence of matchings, in a demand-oblivious manner. rofor-
net has m, links and is operated by cycling in a round robin
manner through all n(n — 1) possible links of the all-to-all
directed complete graph. In every time slot rofor-net connects
a set of m,. links and disconnects the previous set of m,. links,
until all possible links have been covered in a single full cycle.

B. The Demand-Aware Network: Cache-Net

cache-net has a total budget of m. links. Each link in
the cache is either connected and ready to be used for
packet transmission, or it is being reconfigured, and therefore
currently unavailable. When a packet from u to v is sent and
the corresponding physical link (u, v) is in the cache, we have
a cache hit. The decision of when to reconnect a link (insert
it to the cache and remove another link from the cache) is left
to a cache replacement policy (a.k.a. caching algorithm).

C. The CacheNet System

We assume that all packets are sent either on rofor-net or
on cache-net. When a packet arrives to the CacheNet system,
if an appropriate cache edge is available, the packet is sent
immediately on that edge to its destination, in a single hop.
Otherwise, the packet is sent using rotor-net, and the system’s
cache is updated as necessary. During the reconfiguration time
both the new and the old links are not usable, and all messages
for those links are transmitted using the rofor-net system.

Given some edge budget m and a traffic pattern o, which
is a sequence of requests, our goal is to find a partition of
the edges into m, and m. such that the performance of the
network is optimized.

We study both the hit ratio of basic caching algorithms and
the optimal partition of the total budget m (to m, and m.)
that will maximize the performance of CacheNet analytically.
One extreme of our system is a completely demand-oblivious
network, that is m, = 0 and m, = m: a pure rofor-net.
Another extreme is a pure caching system where m, = m: a
pure cache-net.

III. OVERVIEW OF ANALYSIS OF CACHENET

We evaluate the performance of CacheNet on a ToR-to-ToR
network, by analyzing at the average delay for a packet from
the moment it first reached the source ToR, until it arrives
at its destination ToR. To derive a concise formula for this
delay we assume all packets are of the same size and type,
and differ only by their timestamps, source and destination
nodes. All packets are transmitted using direct single hop
connections. Consider the three main elements of the average
delay: that is, the delay for packets transmitted on the cache-
net subsystem and rotor-net subsystems, and the cache hit ratio
of the hybrid system, denoted as t,., t. and h respectively. Let
us first consider ¢.. When a packet is transmitted on the cache-
net subsystem, it’s sent using a single hop so the average delay

is t. = t i.e, where t is the transmission time. For the rotor-net
subsystem the average delay ¢,, must be greater than ¢, as it
is also a function the number of links m,.. More links would
reduce the length of time which is required for rofor-net to
cover a complete graph. A full analyses of this is reserved for
the full version of this paper. Lastly, the hit ratio 0 < h < 1,
namely, the fraction of times that a packet arrived when the
correct link is already in the cache.

This is the ratio between the number of packets sent using
the cache, and the number of total packets sent, i.e., the
length of the trace |o|. The average delay per packet in the
entire CacheNet system AD(h) can therefore be seen as the
weighted average of the delay of each subsystem according to
the hit ratio h: AD(h) = ht. + (1 — h)t,. In order to have
a useful metric for the functionality of CacheNet we compare
our system to a baseline system, which is completely demand
oblivious, rotor-net, with the same link budget m as the total
budget of our system. For this pure rotor-net we denote it’s
expected delay as ¢ . To compare both systems and see what
improvement can be gained by using our system, we define
the effectiveness ratio as the ratio of the average packet delay
of both systems, assuming that ¢ is negligible:

Definition 1 (Effectiveness ratio):

_ Average delay CacheNet ~ AD(h)
~ Average delay pure rotor-net t*

Cm(mr, h) (D

Assuming that the transmission time is negligible this ratio
can be summed up to the following result.
Claim 1: The Effectiveness ratio of CacheNet is:
m
m(me,h) =(1—h)— 2
Gy) = (1= h) @

T

The values of the effectiveness ratio can range from 0 to
oo, and desired values lie in the range 0 to 1. A value less
than 1 means that CacheNet improves on the baseline system
in our case, pure rotor-net.

IV. EMPIRICAL RESULTS

First, let us shortly discuss the dataset used in our eval-
uation. We tested CacheNet on the a set of six traces three
rack level Facebook traces [6], two HPC traces, MultiGrid
and Mocfe [7], and a pFabric trace [8]. The full details of the
datasets are found in the full version of this paper, here we
present the results of three traces. We consider the performance
of three basic cache replacement policies: Least recently used
(LRU), Least-frequently used (LFU), and OPT (optimal). The
OPT policy (a.k.a. Belady’s algorithm) can be obtained offline
and it always discards the item (a link) that will not be needed
for the longest in the future. Reconfiguration times of the cache
were not taken into account when evaluating the hit ratios.

This means that after an event of a cache miss, when
a new link is reconfigured , it will be ready by the next
time a packet with the same source and destination arrives.
This replacement assumption increases the hit ratios in the
results, and therefore, the results should be viewed as an upper
bound on the performance of CacheNet. Figure 1 presents the
effectiveness plot for three traces along with the hit ratio results

--o-- LRUth --o-- LFUh
--x-- LRU:{ =--2&- LFUQ

—A— OPT:h
—o— OPT:

--g-- LRUh --o-- LFU:h
--x-- LRU:{ --&- LFU:Q

--o-- LRU:h --o-- LFUh
--x-- LRU:{ =--4&- LFUQ

Effectiveness/Hit Ratio

Effectiveness/Hit Ratio

0.6

0.4

028"

Effectiveness/Hit Ratio

Cache size (switches)

(a) DB trace

Cache size (switches)

(b) Hadoop trace

g W
0.0

1 2 4 8 16 32 64 128
Cache size (switches)

(c) MultiGrid trace

Fig. 1: The effectiveness plot for three traces with link budget set to 1024, m = 128n

obtained by using three caching algorithms. The plot’s goal is
to show the potential benefits of using CacheNet by converting
rotor links to cache links. Each such plot considers a trace
and a link budget m and contains three curves. The first is
the effectiveness ratio which is denoted by the blue line. The
second red curve, is the hit ratio. The third yellow curve, is
a “reference line” set to y = 1. The Y axis measures both
the hit and the effectiveness ratios. The X axis (logarithmic
scale) shows the size of the cache, i.e., the m,. = kn links in
the cache (recall that a switch has n links). For example when
k = 64, the cache size is m. = 64 - n links. The link budget
m, for each trace is always equal to 128 switches as was used
in the original RotorNet paper [5]. The yellow line acts as a
useful boundary in each plot. If the value of the effectiveness
ratio is greater than one, e.g. 1.1 it means that CacheNet with
the current cache size, m. = kn, has average packet delay
that is 10% worse than a rotor-net, if the effectiveness ratio is
below the line, e.g. 0.9 is means that CacheNet outperforms a
pure rotor-net by 10% in average packet delay. To produce an
effectiveness ratio curve, the values of the empirical hit ratio
are fed into the formula presented in Eq. (1). Typically, when k
is small, close to 1, the effectiveness ratio will be close to 1 as
a CacheNet with a very small cache is similar to a pure rotor-
net. When k is close to 128 the effectiveness will often tend to
grow towards co, as any miss will result in a substantial delay
for messages served by roror-net, unless we have a 100% hit
ratio. when the effectiveness ratio has one global minimum in
the range k € [1...128], it corresponds to an optimal division
of m, and m,. Figure 1 (a) of the DB trace shows an almost
best case example for CacheNet. All tested values for the size
of the cache m, were able to improve on the performance
of rotor-net. With all three algorithms reaching nearly 100%
improvement with m, of about 70 switches. These results can
be explained as a consequence of a relatively high amount of
structure in the trace.

Figure 1 (b) shows the results for the Hadoop trace. They
present a case were CacheNet was able to improve on rotor-
net, but not nearly as significantly as for the DB trace. In par-
ticular we see that LFU and LRU were able to reach about 10%
improvement with a small cache of about 5 to 10 switches,

while the improvement brought by OPT is more significant at
around 20%. These results with Hadoop are surprising, since
the Hadoop trace lacks significant structure [6], which should
lead to negligible improvement. However, looking at the hit
ratio curves where z > 16 the hit ratio seems to grow at a
slightly faster rate, which may indicate some structure that
LFU and OPT are able to use. Figure 1 (c¢) shows an HPC
trace of the MultiGrid application [7]. The effectiveness plot
shows that the hit ratio of LRU is superior to LFU. However,
all three algorithms reach a hit rate of about 100% with 20
switches. One possible explanation for the under-performance
of LFU is that while the HPC trace distributions are skewed,
they are only skewed in the sense that they are sparse; that is,
only a small part of the possible communicating pairs appear
in the trace. The pairs that do appear in the trace are (relatively)
uniformly distributed.

Acknowledgement: We would like to thank Stefan Schimd
for many discussions and his insightful feedback. This project
received funding by the European Research Council (ERC),
grant agreement no. 864228, Horizon 2020, 2020-2025.

REFERENCES

[1] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical
switch architecture for modular data centers,” ACM SIGCOMM CCR,
vol. 41, no. 4, pp. 339-350, 2011.

[2] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,

G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under the

radar with reactor,” in USENIX NSDI, (USA), pp. 1-15, 2014.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing,

Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit

switching into the data center,” in ACM SIGCOMM CCR, vol. 43,

pp. 447458, 2013.

[4] P.J. Denning and P. J., “The locality principle,” Communications of the
ACM, vol. 48, p. 19, jul 2005.

[S] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. of ACM SIGCOMM, pp. 267-280, 2017.

[6] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM SIGCOMM CCR,
vol. 45, pp. 123-137, 2015.

[7]1 U. DOE, “Characterization of the DOE mini-apps.” https://portal.nersc.

gov/project/CAL/doe-miniapps.htm, 2016.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,” in

ACM SIGCOMM CCR, vol. 43, pp. 435-446, 2013.

3

—_

[8

—_

