
Poster: Network Performance Upgrade by Cut
Spanners

Guy Rozenberg and Michael Segal, IEEE, Senior Member
School of Electrical an Computer Engineering

Ben-Gurion University, Beer-Sheva, Israel

Abstract—In this paper, we introduce a new spanner algorithm
which is based on computation of minimum cuts, and insertion
of the edges crossing the cut to the spanner. The aim is to
decrease the number of active links in the network while still
maintaining the ability of the SDN (software defined networking)
controller to perform load balancing. The spanner also can be
used in order to reduce the running time of the SDN centralized
routing algorithm to use. We present an algorithm to dynamically
maintain the spanner under link insertion, deletion and changed
weight. The analysis and simulation results show the superiority
of our approach in many cases.

Index Terms—spanner, centralized networking, minimum cut

I. INTRODUCTION

Software-Defined Networking (SDN) technology is an ap-
proach of computer network that facilitates management and
enables programmatic efficient network configuration to im-
prove network performance and monitoring. It is based on
centralizing network intelligence in one network component.

For centralized networks, several algorithms for increas-
ing network utilization have been recently proposed, based
on SDN architecture. All these approaches use the Multi-
Commodity Flow (MCF) problem formalization to maximize
the link utilization. The best known solution for the MCF
problem is from [2], where the running time of the algorithm
(for the explicit version) increases in a quadratic ratio to the
number of edges. The aim is to decrease the number of edges
in the network, by creating a spanner, while still maintaining
the ability of the SDN controller to perform load balancing.

In the traditional spanner algorithm, the subgraph is con-
structed according to the edge’s weight. The problem, with
respect to sub-graph creation for the SDN routing algorithm
to use, is that we would like to create a subgraph with the
maximum flow (or minimum cut) between any two vertices
and use the subgraph as an input to SDN routing algorithm.

In this manuscript, we propose to build a min cut spanner,
using the fact that minimum cut guarantees a certain amount
of bandwidth that can be used by the centralized routing algo-
rithm. In order to cope with the dynamic nature of the network
traffic, we also present an algorithm to dynamically maintain
the spanner under edge insertion, deletion and changed weight.

II. ALGORITHM AND THEORETICAL RESULTS

A. Min cut spanner algorithm
We build the spanner using recursive calls of the minimum

cut algorithm. At each iteration of the algorithm, we shall find

the minimum cut of the graph, and add the edges crossing
the cut to the spanner. After each iteration of finding the
minimum cut, we increase the weights of the edges crossing
the cut by W =

∑ñ
1 wi · 1

ñ , where w1, . . . , wñ are the
weights of the edges crossing the cut and ñ is their number.
In this work the weights of the edges are based on the
Current-Flow Betweenness Centrality CCB(e) of the edge e
which is defined as the amount of current that flows through
e averaged over all vertex pairs. The edge’s weight in the
graph G is w(e) = 1

CCB(e) since we want that the recursive
run of the minimum cut algorithm will first pick the edges
with high value of betweenness.

Algorithm 1: min cut spanner algorithm
Input: undirected weighted graph

G = (V,E,W = 1
CCB

).
Output: min cut spanner, min cut list.

1 Build an empty graph G′ with all the vertices from G.
2 Remove all the vertices from G with degree 1, and

add their edges to G′.
3 Calculate the Minimum cut C.
4 while G′ is not connected do
5 Add to G′ the edges crossed by the cut, that were

not added to G′ before.
6 Add C and w(C) (relative to the original graph) to

min cut list if at least one edge was added to G′.
7 Increase the weight of the edges in G crossing C

by W =
∑ñ

1 wi · 1ñ .
8 Recalculate C.
9 end

Running time: The algorithm to construct min cut spanner
is composed of several iterations of the minimum cut algorithm
run. Gomory and Hu [4] have shown that in a weighted graph
G = (V,E) with n vertices there are only n − 1 different
minimum cut values. Thus, the maximum number of minimum
cut iterations is O(n). However, since we continue with the
algorithm until the spanner graph is connected, the number
of iteration would be much smaller. We get that the running
time of the min cut spanner algorithm is O(n) times the
running time of the single minimum cut algorithm. If we
use the algorithm of Gawrychowski et al. [3], with a running
time of O(m log2 n), the running time of the min cut spannerAnnex to ISBN 978-3-903176-39-3 ©2021 IFIP



algorithm would be O(nm log2 n).

B. Dynamic maintenance of the spanner

The next step is to find a way to maintain the min cut
spanner under edge insertion, deletion or an update in one
of the edge’s weight. The min cut spanner is built by select-
ing minimum cuts in an increasing order according to their
weights. If one of the edges is changed we could change only
the cut associated with this edges. But a change in a single
edge can cause a cascade of changes to the minimum cuts
selected later. We now claim that all the cuts that were found
during the run of the min cut spanner algorithm are part of
the cut tree of the original graph G.

Theorem 4.1. Let λC1
, . . . , λCn

be the weights of the cuts
that were chosen during the build of the min cut spanner in
relation to the weights of the original graph G. Each one of
the weights λi is equal to one of the edges in the cut tree of
the original graph T0.

Corollary 4.2. Each min cut C0, . . . Cn, chosen during the
run of the min cut spanner algorithm, is a minimum u−v cut
for some (u, v) ∈ V on the original graph G.

Reuse of cuts: We shall now present the algorithm which
maintains the min cut spanner under edge insertion, deletion
or weight change. In order to find the non-reusable minimum
cuts after a change in the graph G, we need to determine in
which order the reusable minimum cuts from the old spanner
are inserted to the new spanner G′, and where to assign the
new cuts in the sequence of minimum cuts. For each case,
insertion or deletion, the cuts from the previous cut list C are
inserted to the new spanner G′ in an non - decreasing order,
according to the weight of the cut, and the weights in G′ are
increased accordingly, until the first cut Ci which can not be
reused. Now, we need to find if the minimum cut of Gi, the
graph after i− 1 iterations of the min cut spanner algorithm,
is a new cut, not part of the old spanner, or not and for that
the weight of the minimum cut should be evaluated. To do so,
the algorithm presented by Karger [5] is used, which finds the
weight of the minimum cut within a (1 + ε) multiplicative in
O(m+n(log3 n)/ε4) time. Moreover Karger showed a way to
maintain an O(

√
1 + 2/ε) approximation of the cut’s weight

under insertion at a cost of Õ(nε) time. We shall repeat the
algorithm of the static min cut spanner, but at each time we
shall find the weight of the Gi minimum cut, λGi

first. If
some of the weights of the reusable cuts are smaller then λGi ·
O(

√
1 + 2/ε), we shall add them to the spanner, and increase

the weight of the graph accordingly, else we shall find the
minimum cut of Gi itself. We continue with this procedure
until the spanner G′ is connected.

Edge insertion / weight increase:
Algorithm (2) depicts the dynamic spanner algorithm in

the incremental scenario. Algorithm for edge deletion/weight
decrease is similar and not presented here due to lack of space.

The runtime of the dynamic min cut spanner is T = O(m+
n(log3 n)/ε4) ·NC +O(m log2 n) · (NC −Nreuse), where the
number of cuts that were reused in the dynamic algorithm is
Nreuse and total number of cuts in minimum cut list is NC .

Algorithm 2: min cut spanner under insertion / weight
increase
Input: undirected weighted graph G = (V,E).
Changed weight of edge eb,d.
{Ci|0 ≤ i ≤ L} minimum cut list.
Output: updated min cut spanner and minimum cut

list.
create new minimum cut list.
i = 0.
Build an empty graph G′ with all the vertices from G.
Remove all the vertices from G with degree 1, and
add their edges to G′.

while Ci does not cross eb,d do
Add to G′ the edges crossed by the cut Ci.
Add Ci and w(Ci) (relative to the original graph)
to the new minimum cut list.

Increase the weight of the edges in G crossing Ci
by W =

∑ñ
1 wi · 1ñ .

i = i+ 1.
end
Remove from the minimum cut list all the cuts that
cross eb,d.

while G’ is not connected do
Find λ ·O(

√
1 + 2/ε) - the approximated weight

of the minimum cut of G, λ, using [5].
if λ ·O(

√
1 + 2/ε) > λCi then

add Ci to G′ and to the new
minimum cut list.
i = i+ 1.

end
else find the minimum cut of the graph G, add it

to the spanner G′ and to minimum cut list ;
Increase the weight of G by W =

∑ñ
1 wi · 1ñ

according to the added cut.
end

III. EMPIRICAL RESULTS

We simulated the algorithms described above using three
useful data center network topologies - dragonfly, hypercube
and torus with different topology sets parameters. For each
test and topology set we made 100 repetitions, every time
randomly selecting the edge’s parameters.

A. Number of edges and the average stretch factor

First we compared the number of edges and the average
stretch factor with a spanner built using the classical spanner
algorithm presented by Althöfer et al. [1], both of which with
the same stretch factor. In order to find the average stretch
factor we introduced a new concept called local stretch factor
tx, which is the stretch factor of a vertex v. The average
stretch factor is then the average over the lower half of the
local stretch factors of every vertex. The following graphs in
Fig. 1 present the average stretch factor in the x-axis versus
the number of edges in the y-axis, for the two spanners.



Fig. 1. sparseness test results.

As seen from the results, the average stretch factor of the
min cut spanner is at least as good as, and most of the
times better than, the stretch factor of the classical spanner
algorithm. However, a variation is noticeable between the
topologies in the number of edges. This can be explained
by the average degree of each topology. In the Dragonfly
topology, the degree of each vertex is d = a + h − 1, which
according to the chosen topology parameters, is much bigger
than the degree of the hypercube, d = n, and the degree of
the torus d = 4.

B. The flow of the spanner

Our next test was to compare the amount of flow made
available by the min cut spanner, and compare it with the
classical spanner. Instead of calculating n(n−1)

2 maximum
flows (or s-t minimum cut) between any source and a target, we
computed the Gomory-Hu tree for each spanner. The following
Table (I) presents the average flow for each spanner in each
topology set. As seen from the table, the average flow in the
min cut spanner is bigger, for all topologies, from the classical
spanner algorithm.

C. Number of reuse cuts

The number of reused cuts were tested on the topologies
mentioned above. At each iteration the weight of one edge
was increased or decreased randomly and the spanner was
dynamically updated. At Table (II) there is a number of
reusable cuts divided by the total number of cuts for each
incremental and decremental scenario.

When the change of edge weight ∆ > 0 the majority of cuts
can be reused. For the ∆ < 0 case, only the cuts crossing the

Topology Topology parameters classic spanner
average flow

min cut
spanner average flow

dragonfly
a = 5, p = 3, h = 3 7.812 31.886
a = 6, p = 3, h = 3 7.512 28.316
a = 6, p = 4, h = 4 3.416 19.675

hypercube
n = 5 8.995 14.764
n=6 3.449 8.216
n=7 1.430 5.604

torus
n = 10, m = 10 0.838 1.432
n = 10, m = 12 0.573 1.195
n = 12, m = 10 0.664 1.31

TABLE I
AVERAGE FLOW COMPARISON

Topology Topology parameters reused
cuts ∆ > 0

First
unusable cut
for ∆ > 0

reused
cuts ∆ < 0

Dragonfly
a = 5, p = 3, h = 3 0.89 0.433 0.043
a = 6, p = 3, h = 3 0.91 0.471 0.034
a = 6, p = 4, h = 4 0.91 0.46 0.067

Hypercube
n = 5 0.861 0.42 0.067
n = 6 0.904 0.43 0.034
n = 7 0.933 0.438 0.017

Torus
n = 10, m = 10 0.93 0.444 0.079
n = 10, m = 12 0.943 0.465 0.096
n = 12, m = 10 0.952 0.414 0.108

TABLE II
NUMBER OF REUSED CUTS

changed edge can be reused, which in our experiments was one
or two. A noticeable variation is seen between the dragonfly
and hypercubes topologies and between torus topology. This
occurs because of the sizes of the partition induced by the
cuts selected during the construction of the min cut spanner
algorithm. The minimum cuts selected in the hypercube and
dragonfly topologies tend to induce an uneven partition, which
has only one or two vertices on one side that leads to no
reused cuts. The torus topology has a uniform structure, so
the minimum cuts partition create a more even partition and
if (b, d) ⊆ V/U and |U | ≈ n

2 there is a larger probability that
Ci ⊆ U .

IV. CONCLUSION AND FUTURE WORK

In this work we gave an algorithm to construct a spanner
using the minimum cut algorithm called min cut spanner,
which can guarantee a certain amount of bandwidth that the
centralized routing algorithm can use. We also gave a method
to maintain the min cut spanner under edge insertion, deletion
or an update in one of the edge’s weight.

REFERENCES

[1] Althöfer, I., G. Das, D. Dobkin, and D. Joseph. ”Generating sparse
spanners for weighted graphs”, In SWAT, pp. 26-37, 1990.

[2] Karakostas, George. ”Faster approximation schemes for fractional mul-
ticommodity flow problems”, ACM Transactions on Algorithms, 4, no.
1, pp. 1–17, 2008.

[3] Gawrychowski, Paweł, Shay Mozes, and Oren Weimann. ”Minimum Cut
in O(m log2 n) Time”, arXiv preprint arXiv:1911.01145, 2019.

[4] Gomory, Ralph E., and Tien Chung Hu. ”Multi-terminal network flows”,
J. of the Soc. for Ind. and App. Math., 9, no. 4 (1961): 551-570.

[5] Karger, David R. ”Using Randomized Sparsification to Approximate
Minimum Cuts.” In SODA, vol. 94, pp. 424-432. 1994.


