IPFS-FAN: A Function-Addressable Computation
Network

Alfonso de la Rocha
Protocol Labs
alfonso@protocol.ai

Abstract—Permissionless computation is one of the missing
pieces in the web3 stack in order to have all the tools needed
to “decentralise Internet services”. There are already proposals
to embed computation in decentralised networks like smart
contracts, or blockchain networks for computational offloading.
Although technically sound, their computational model is too
restrictive to be used for general purpose computation. In this
paper, we propose a general architecture of a decentralised
network for general-purpose and permissionless computation
based on content-addressing. We present a proof-of-concept
prototype and describe in detail its building blocks.

Index Terms—P2P, Permissionless, merkle-link, IPFS, Web
Assembly, distributed computing

I. INTRODUCTION

Blockchain technology set the beginning of a new golden
age for P2P technologies with the appearance of Bitcoin. Since
the Bitcoin blockchain was introduced more than 10 years ago,
lots of new blockchain-based platforms have been developed,
launched, and are being in active use. Initially the vast majority
of blockchain platforms targeted the financial system, but
these platforms gradually evolved to accommodate increas-
ingly ambitious use cases such as Ethereum’s decentralised
applications [1], or a variety of decentralised storage platforms,
such as IPFS [2] This new generation of P2P systems does
not limit itself to the financial system, but is building the
substrate to fix the Internet from its most commonly spread and
well-known flaws, mainly centralization, big tech dominance,
vendor lock-in, and privacy. The overarching idea is to deal
with those issues through a decentralised architecture built
upon P2P protocols. This substrate of P2P protocols aiming to
overcome the current limitations and unbalances of the Internet
are commonly referred to as the Web3 stack.

From decentralised storage, to transport abstractions, the
Web3 stack has already consolidated projects to supersede
many of the components of the current centralised Internet.
However, a general proposal to embed computation in de-
centralised networks that is able to scale and compete with
its centralised counterparts is still missing. There are existing
proposals for decentralised computation: from Ethereum smart
contracts [1]; to global collaborative computational infras-
tructures like iExec [3] and Golem [4]; and decentralised
general-purpose computation networks such as the Fluence
Network [5] and Dfinity’s Internet Computer [6]. These

ISBN 978-3-903176-39-3© 2021 IFIP

Yiannis Psaras
Protocol Labs
yiannis @protocol.ai

David Dias
Protocol Labs
david@protocol.ai

platforms use varying approaches to embed computational
capabilities in a global decentralised network, but lack in
some way the ability to become the “de-facto” architecture
for general-purpose computation in P2P networks.

Along with P2P technologies, content-addressable networks
have also received significant attention during the last decade,
due to the promising features that they offer. Location-
independent content retrieval and arbitrary in-network caching
can increase delivery performance significantly and reduce net-
work resource requirements. Content-based object addressing
offers a way to uniquely identify every resource that exists
in the network - not only content. All of these features are
extremely useful for the construction of a network hosting
heterogeneous resources.

The recent advances in these two fields already offer all
the fundamental components required to build a consistent
proposal of a decentralised network for general-purpose com-
putation. In this paper we present a general model to build a
decentralised network for general-purpose and permissionless
computation based on content- and function-addressing. In our
system, both, content and functions are uniquely identifiable
and globally addressed. Functions run code and perform com-
putations over content in the network. The input of functions
are content-addressed, i.e. uniquely identified, objects stored in
the network. The output is the identifier of a newly generated
content-addressable object, together with the result of the
computation. Data and code are available by all peers in
the network, enabling the composability of functions and the
deployment of complex use cases. These unique features,
primarily based on the content-addressing principle, eases the
decentralization of the system and improves its scalability
compared to existing projects. The modular architecture of our
proposal builds a core that can be leveraged by other projects
(including the aforementioned ones) to flexibly embed compu-
tation in decentralised networks. The reference implementation
of our system is built on top of the InterPlanetary File System
architecture [7].

The contributions of our work are: (i) the identification of
the general building blocks required to build a decentralised
network for general-purpose and permissionless computation
based on content-addressing; and (ii) a functional proof-of-
concept prototype of the “IPFS Function Addressing Net-
work”, IPFS-FAN [8], leveraging existing modules from the
Web3 stack and without the need of ad-hoc implementations.

II. RELATED WORK

Current proposals for permissionless computation in decen-
tralised networks can be classified in three different groups:

(i) Smart Contracts offer a constraint environment to per-
form computations in blockchain networks. They are generally
identified by a network-wide unique id that can be used by any
peer in the network to call functions in it. Calling a function
of a smart contract triggers the execution of its code in all the
peers of the network (or at least in the ones responsible for
the consensus in the network), as any update in the state of
data triggered by a smart contract needs to be validated and
consensuated by all peers in the network. In order for this to be
possible, executions in smart contract must be deterministic.
They are extremely useful for the use cases accommodated
by blockchain networks, but are not suitable to deploy use
cases that require general-purpose computation, or are CPU-
intensive. Smart contracts are widespread in a great gamut of
projects in the blockchain space [1], [9].

(i1) Decentralised Computation Marketplaces [3], [4] ap-
peared as an alternative way of overcoming the computa-
tional limitations of smart contracts. Platforms like Golem
[4] and iExec [3] offer a way of executing computationally
intensive and general-purpose programs in a decentralised
manner. Decentralised Computation Marketplaces aggregate
computational resources from providers in a decentralised
network. Developers can rent resources from the available
pool of resources to run their jobs. Unlike smart contracts,
in computation marketplaces the data and the code being
executed is not public, and developers request their execution
“on-demand”, sending the code and the data to the network.
The output of the computation is reported to the user, an
application or a blockchain network (or a multitude of them),
while a cryptocurrency over a blockchain network is used
to pay for the resource rental. Decentralised Computation
Marketplaces, however, are not suitable to host decentralised
applications running general-purpose computations.

(iii) Finally, Decentralised General-Purpose Networks are
general-purpose, permissionless computation platforms that
can host any kind of decentralised application. The main
exponents of this type of networks, Fluence Network [5],
Dfinity’s Internet Computer [6], share many of the core
components proposed by our model, such as: the use of a
universal runtime based on WebAssembly embedded in every
peer in the network; the concept of functions as the minimal
unit of code executable in the network; the use of a declarative
or programming language to orchestrate the composability of
functions deployed in the network; and the use of an entry
point to describe the code or application deployed.

Both proposals lack components required for the implemen-
tation of a complete general-purpose permissionless network:
none of them use self-describing strategies to identify code
so it can be uniquely and globally addressed in the network -
Fluence functions have a unique id per deploying peer, while
the Internet Computer uses a unique id per subnetwork; they
do not use globally accessible decentralised data structures

to represent application’s state (data is locally accessible and
location-dependent); they are not completely permissionless
and limit in some way the peers that can participate from
the protocol. Our proposed architecture for a general-purpose
permissionless network addresses all of these limitations. The
generality of our model offers the core over which projects
such as Fluence and Dfinity’s Internet Computer would be able
to deploy their proposals and leverage many of their already
implemented assets.

Finally, function-addressing, i.e. the identification of code
deployed in the network through a unique identifier, is not
a new concept, and it has been proposed in different ways
in the academic literature in the field of Information-Centric
Networks (ICN). Named Function Networking (NFN) [10]
presents a scheme were names are computation expressions
which include data and function names. Additionally, the
authors in [11] propose NFaaS, a framework that extends the
Named Data Networking architecture to support in-network
function execution. Functions can be downloaded and executed
in any node of the network, extending computation to the edge
of the network.

III. USE CASES AND IMPACT

A distributed network equipped with a content-addressed
computation model as the one described in this paper opens
the door to a great a gamut of applications and use cases “out
of the box” such as:

Global serverless infrastructure: The ability to deploy
code that can be called and run from anywhere through a
unique identifier offers application developers a platform to
deploy their back-end functions without the need for additional
infrastructure. End-users’ front-ends can directly interact with
content and trigger the execution of code in the network,
unleashing the promise of real decentralised applications,
improving applications maintainability and scalability, and
developers’ User Experience [12].

Load-balancing by design: The properties of content-
addressing ensures that code and content are location-
independent. This means that the execution of functions does
not need to necessarily occur where the content or the code
is hosted. The higher the demand for a specific function in
the network, the more nodes get to store the code, and are
capable of running the function. Scalability becomes a much
easier challenge to deal with, as the closest peer with available
resources could run the function without having to scale the
infrastructure.

Increased Availability Backends: By not relying on a central
infrastructure and hosting an application in a decentralised
network, applications relying on the system ensures close to
100% availability as long as the required code and data are
replicated in enough providers in the network.

Collaborative computation and computation offloading:
Computationally expensive tasks can benefit from a network
of peers contributing their computational resources to per-
form certain tasks. P2P collaborative computation networks
have traditionally been used for research purposes (such as

to perform complex simulations [13]). More recently, these
collaborative computation networks have been used to offload
computations to more powerful devices.

Computation near the data: When performing computa-
tions over large datasets, it normally becomes more expensive
to transfer the data to the computation, rather than the opposite.
With IPFS-FAN, users can easily get the code near the data
for this type of use cases instead of the other way around.

IV. GENERAL-PURPOSE CONTENT-ADDRESSING
COMPUTATION NETWORK

A permissionless computation network builds an infrastruc-
ture where peers share their computational resources to host
data and run computations collaboratively. Its trustless nature
ensures that any peer can join, leave, and perform operations in
the network without requiring special permissions or supervi-
sion from a central authority. Our system is built upon content-
addressing, offering in this way a scheme to uniquely identify
every resource in the system and link them unambiguously.

In order to build a content-addressable computation net-
work, the following modules are required:

1) P2P Substrate: Peer routing, content routing, p2p trans-
port protocols, etc. to enable the communication and interac-
tion between the different peers in the network.

2) Decentralised storage: Responsible for the collaborative
storage of data and code in the network.

3) Universal runtime and bytecode: Execution environment
with a portable binary instruction format capable of targeting
any architecture, and that can be compiled from many high-
level programming languages. Code in the network is always
represented using this binary format so it can target the
universal runtime embedded in every peer (interoperability).

4) Universally addressable and linkable data structure: To
uniquely identify every resource in the network, and enable the
representation of self-describing code and data. The identifier
of the resource should include all the information required to
identify its type and verify its integrity.

5) Decentralised programming model: Every piece of code
in the network is identified with its unique ID and exposes an
interface with its available functions and signatures. In our
model, each piece of code in the network is an independent
actor, that consumes data from the network and generates new
data to it. Everything in the network is identified with a unique
identifier (both code and data). When a function in an actor is
triggered, we pass as arguments the ids/links for the data to be
computed in the function’s actor. The output of the function
execution is new data added to the network and referenced
by an id. Using a universally addressable and linkable data
structure enables the de-duplication of data so that if an output
for an actor is already stored in the network, it can be directly
referenced by its id without requiring to explicitly add it (and
conveniently store it) again. Every actor in the system needs
to expose the signature of the functions it has exposed. This
is done through an ABI (Application Binary Interface). The
ABI is the entry point manifest of every actor. An actor’s
ABI specifies the unique ID of the actor’s bytecode (in order

. o] °.
. o.'.o
o
L] .O ..
o . ° o
0.
) ® Y

H If: Universall
code addressable
Self-describing linked data

data structures

Decentralized Programming Language
(optional)

Compiler (optional)

Universal

Runtime M

P2P Substrate L4

Decentralized
Storage

Peer

Figure 1: IPFS-FAN Architecture

to be able to fetch it from the network), and the signature
of all the functions exposed by the actor. The unique ID of
an actor is inferred from its ABI, not from its bytecode (as
the ABI already links to the bytecode of the actor). Over this
programming model, a programming language can be designed
to orchestrate the resources and interaction with actors in
the network: from the deployment of new actors, to calling
them, referencing data, and implementing complex programs
composing the operation of several actors over data.

V. PRELIMINARIES

1) IPFS and the Web3 Stack: TPFS is a hypermedia protocol
that builds on the principles of: i) peer-to-peer (P2P) network-
ing and ii) content addressing. IPFS builds a distributed and
decentralised, P2P storage and delivery network, which runs
entirely on end-user devices and has no centrally controlled
components. Under the hood, the IPFS Architecture is com-
posed of a collection of subsystems each of which can be used
independently of IPFS, but together form a robust foundation
for a distributed, content-addressable, P2P storage and delivery
network. All these modules are known as the Web3 stack.

e libp2p is a modular network-layer library for P2P net-
works. In libp2p, peers are identified by the hash of their
public key. The library includes all the essential tech-
niques to discover and connect peers, that is, from peer-
discovery to peer routing, NAT-traversal and provision for
several different transports that are easy to integrate.

o The InterPlanetary Linked Data (IPLD) layer is a naming
and data management layer used by IPFS. IPLD builds
on the concept of “Merkle-DAGs”, that is, Merkle-Trees
out of Directed Acyclic Graphs. Every file added into the
IPFS system is converted into a Merkle-DAG, locally on
the device that adds the file. Each node of the DAG has
its own content address, which is the result of hashing of
the content itself. Once converted, every node within the
DAG is compatible with any data structure that wishes
to make use of them, or include them as nodes in their
own DAG.

o Multiformats is a set of formatting rules with specific
structure that is used to declare the set of protocols used

in a P2P session. In other words, Multiformats is a data
representation scheme that adds self-describing attributes
to the data it formats.

2) Content IDentifier (CID): IPFS uniquely identifies con-
tent in the network through a CID. CIDs are structured by
Multiformats inherently include the following properties:

e CIDs are immutable and permanent: given that the iden-
tifier of content is its own hash-digest means that any
change to the content itself will result in a totally different
hash and therefore, identifier. This makes every content
added to the IPFS network immutable and therefore,
permanent as an identifier of a version of an object that
will never change. The notion of permanence here is not
to be confused with the property of permanent availability
in the system.

o CIDs are self-certified and verifiable: upon fetching a
content chunk from the IPFS network, a user calculates
the hash of the content he received and compares it
against the hash digest which he requested from the
network. If the two match, then the content is guaranteed
to be authentic and received without errors.

3) Adding and fetching content in IPFS: When adding
content to the IPFS network, the content is not replicated or
uploaded to any external server. The content stays local on
the user’s device. Instead, it is the Content Identifier (CID)
together with a pointer to the user’s machine that is made
known to the network and in particular to the Content Routing
component of the system. This is so that others can point
their requests to the right machine and retrieve the content
through the content resolution process described below. The
user adding content is called "Content Provider or Publisher”
and the record given to the content routing system is called
”Provider Record”.

To fetch content from the network, a peer can either use the
DHT to find the provider records that point to the providers
storing the content it is interested in, or it can run Bitswap
(a gossip-based protocol to fetch content in P2P networks), to
try to gather the content from its neighbors [14].

4) Web Assembly: WebAssembly (abbreviated Wasm) is
a binary instruction format for a stack-based virtual ma-
chine [15]. It is designed as a portable compilation target for
programming language, and it already has support to be run
in several environments such as client and server applications.
The Wasm stack machine is designed to be encoded in a size-
and load-time-efficient binary format. WebAssembly aims to
execute at native speed by taking advantage of common
hardware capabilities available on a wide range of platforms.
WebAssembly describes a memory-safe, sandboxed execution
environment.

VI. IPFS-FAN: PROOF OF CONCEPT

IPFS-FAN is the proof-of-concept prototype ([8]) of a de-
centralised network for general-purpose, trustless computation,
which is based on the model presented in Section IV. IPFS-
FAN builds upon already existing modules from the Web3

calg !

Figure 2: Actor model (left), and word-count example of PoC
(right)

stack, and does not require any extra implementation to make
it work. IPFS-FAN uses libp2p for the P2P substrate, IPFS
for the decentralised storage, Wasm as the universal runtime,
and IPLD for the universally addressable and linkable data
structure.

Specifically, IPFS-FAN is written in the Go programming
language, and is a fork of an IPFS Lite peer slightly modified
to embed in it a Wasmtime runtime. Wasmtime is a small
and efficient runtime for WebAssembly and WASI [16]. IPFS-
Lite [17] is an embeddable, lightweight IPFS peer which runs
the minimal setup to provide all the basic operations to interact
with the IPFS network: mainly, add and get IPLD nodes
identified through a CID. For IPFS-FAN, three additional
functions were added to the peer (as part of the programming
model): (i) deploy, which deploys the ABI and bytecode of
a decentralised actor, and makes it available through the CID
of the ABI; (ii) call, which calls a function from an actor
identified by a CID, using as arguments the data identified
with a CID; and (iii) abi which outputs the ABI for an actor
CID (if it exists) to understand the available functions exposed
by an actor. In the proof-of-concept implementation of IPFS-
FAN, the peer calling the call operation is the one responsible
for running the code, but as described in section VII, in future
versions, additional execution strategies could be devised.
Listing 1 presents the signature of the new functions included
to IPFS-lite, as well as the ABI format.

Listing 1: IPFS-FAN functions

// ABI
type ABI struct {
Fxs []Functions

Bytecode Cid
}
// Function signature
type Functions {
Id string
Args []interface({}
Outputs []interface({}
}
// Returns CID of ABI
> deploy (bytecode: []byte, abi: ABI) cid
> abi (cid: Cid) // Returns Actor ABI
// Returns CID of output
> call (actor: Cid, fx:

string, Args interface{}...)

With these actions, we have all the pieces in place to
perform more complex computation over the model. We tested
our model with the hello world! of distributed computation, a
map-reduce word count program (see figure 2 and listing 2).
We deployed a wordcount, cidy., actor with two functions:
a map function that counts the words of the text received as

an argument; and a reduce that receives as an argument the
partial computations of different map operations and computes
the final result. Let’s consider n different text fragments:
cidyy, ..., cidy, already in the network. The programming
script to run a word count over these fragments leveraging the
actor at cidy, is of the form shown in the following listing. In
its current implementation, /PFS-FAN is not able to infer the
ABI of the actor from its bytecode (this will be possible in
the future, once compilers and tooling for this programming
model are implemented).

Listing 2: Wordcount Wasm actor pseudocode

// Map function
MAP ([]cid_texts):
output := map[string]int
for all text in cid_texts do
for all word in text do
output [term] ++
return output
// Reduce function
REDUCE ([]cid_intermediate)
output := map[string]int
for all count in cid_intermediate do
output [term] += count
return output

Listing 3: Wordcount map-reduce

// Specify actor ABI

> abi = { Fxs:
fx{Id: "map", Args: ...string,
Output: interface{}}}
fx{Id: "reduce", Args: ...interface{},
Output: interface{}}}

}

// Deploy wordcount actor

> cid_wc = deploy(wordcount.wasm,
// Count words for tl to ti

abi)

> cid_resl = call (cid_wc, "map",
[cid_t1, ..., cid_ti])

// Count words for tl to ti

> cid_res2 = call (cid_wc, "map",
[cid_t]j, ..., cid_tn])

// Aggregate partial results
> cid_out = call (cid_wc, "reduce",
[cid_resl, cid_res2])

In depth, the script runs the following steps:

1) Deploying the actor: The actor is deployed specifying its
ABI and bytecode. This adds the objects to the IPFS network,
first the bytecode of the actor, and then the ABI which includes
a link to the CID of the bytecode. The CID of the ABI, cid,,.,
uniquely identifies the actor in the network. Code and data in
IPFS-FAN are fetched and provided in the same way as it is
currently done in IPFS (see section V-3).

2) Calling actor functions: From there on, a peer A in
the network can call the actor through its CID, cid,,.. When
a peer calls an actor, it first downloads the actor’s ABI,
inspects if the function called is available in the actor, map,
and if the function’s signature is correct. If this is the case,
the bytecode for the actor is downloaded using the link in
the actor’s ABI, and the arguments specified. The bytecode
for the actor is downloaded from the network following the
link included in the ABI, and the arguments for the function

are downloaded using their CIDs, cidyy, ..., cidy,. Using the
downloaded bytecode and arguments, the peer then runs the
function, and adds a new object to the network with the
result, cid,es1. In parallel, any other peer B can do exactly
the same computation using the same actor function with other
arguments generating a different result, cid, 2.

3) Using results from previous computations: Other peers
in the network are able to continue with the partial results
from previous computations, cid,es1 and cid,es2, as these
are globally accessible in the network. For example, peer
C can call an actor function and reduce on the data gen-
erated by previous computations. This is done by calling
the function’s actor as it was done by peers A and B,
Cidoyt = call(cidye, " reduce”, [Cidyest, Cidresa]), benefiting
from peer A’s and B’s previous results and not having to
compute them again.

This simple proof-of-concept served to show practically all
the features of our network model: (i) self-describing code and
data, accessible by any peer in the network. (ii) A universal
runtime that enables any peer to run the code hosted in the
network. (iii) A distributed directive language to program
complex operations composing functions from several actors
leveraging the code deployed in the network.

VII. DISCUSSION AND FUTURE WORK

This proof-of-concept presents the basic implementation
of a general-purpose content-addressed computation network,
and it gives a foundation to implement many of the use cases
presented in section III. It also serves as the core layer over
which to implement other computational networks. At the
same time, there are several open research problems calling
for further effort to reach the levels of efficiency of centralised
cloud environments.

o Configurable execution strategies: In the baseline imple-
mentation of the network, the peer calling an actor’s
function is the one responsible for the execution of the
code over the data in its own runtime, but the network
allows other execution strategies too. Similarly to IPFS,
in IPFS-FAN, provider records are stored in a redundant
manner. Jobs could, therefore, be run in the ‘k‘ closest
nodes with enough computational resources available to
run the load, balancing in this way load in the network;
alternatively a strategy could be designed so that loads
are forced to be run spatially proximal to the input data
to avoid having to download it in the machine executing
the code. This concept could be extended even further to
the point of extending the call directive so peers can also
choose and configure their desired execution strategy.

o Full-fledged programming languages and tooling: Our
proof-of-concept uses a low-level directive language
based on three operations to showcase the programming
model of the network. To unleash its full potential, the
network should include a full-fledged programming lan-
guage that enables the seamless deployment of actors and
references to data as if they were traditional stack calls
and pointers to local data offering a seamless developer

experience. The programming language would compile
the code to be run in the network (functions are actors,
variables are links to data). This would require the design
of compilers that automatically generate the code, inter-
acts with the network deploying actors and inferring their
ABI. The fact that our model has a general architecture
and shares the common runtime with other projects in
the space would allow the adaptation of existing tools
that these projects use in our model,

o Security and privacy: The proof-of-concept does not
consider the privacy and security of the system. Every
peer in the network can see all the data and code, and
run any load. In a real environment this shouldn’t be
the case, and additional security and privacy schemes
need to be put in place to enable access policies over
data and code, denial of service attack prevention, and
privacy over the code executed and the data used. A lot
of consistent proposals for this are already in place in
other decentralised computation network proposals that
can serve as good inspiration for our case.

o Heterogeneous resources in the network: In this proof-of-
concept all peers are treated equally. In a real deployment
of the network may have a pool of peers with different
capabilities and resources ABIs could include information
about the minimum amount of resources required for
the execution of a function, so that the right peer is
selected to optimise resource usage. This also enables
the aggregation of a pool of resources for users to rent
in order to run their computations.

A. Long-term impact

A network with these characteristics has the potential to
enable a variety of impactful use cases in the long-run such
as: (i) Coexistence of different permissionless computation
models: Content-addressed and function-addressed networks,
and the use of a common runtime by all the peers in the
network, enables the coexistence of smart contracts and other
proposals for computational sandboxes from other projects [3],
[4], [6], [1], [5]. (ii) Operating system and file-system-less
devices for seamless UX: Once all the data and the code re-
quired to run applications by devices is hosted in the network,
devices can download and leverage all these assets from the
network to operate. We can imagine a scenario where devices
only include the basic drivers to access and interact with the
network, and use the network capabilities and resources as
its decentralised operating and file-system. This would enable
seamless User Experience for end-users between devices. All
devices include the same basic driver to interact with the
network, and all the user-specific information is stored in the
network. (iii) A global cloud infrastructure: We refer to the
cloud as a global platform able to fulfill all our computational
and connectivity needs, when in reality the cloud is a disjoint
group of infrastructure providers capable of fulfilling these
needs. With our proposed network, the cloud would become a
common infrastructure with commodity resources contributed

by the globally accessible peers in the network (including data
centers).

VIII. CONCLUSIONS

Permissionless computation is one of the missing pieces in
the web3 stack to have all the tools needed to “decentralise
Internet services”. There are already proposals to embed
computation in decentralised networks like smart contracts, or
blockchain networks for computational offloading. Although
they are useful and interesting proposals, their computational
model is too restrictive to be used for general purpose com-
putation. Other alternatives such as Dfinity’s Internet Global
Computer are more ambitious but have a longer-term target,
and do not really meet the requirement of a fully permission-
less general-purpose computation.

In this paper, we proposed a general architecture for a
decentralised general-purpose and permissionless computation
network based on content-addressing. We have built and
presented a fully operational proof-of-concept prototype of the
network, leveraging existing components from the web3 stack.
We have shown that by taking advantage of content-addressing
as a core network principle in the decentralised computational
network can unlock several interesting use cases ‘“‘out-of-the-
box”. Our intuition says that by using content-addressing as a
core system primitive would also address scalability concerns.

REFERENCES

[1] Gavin Wood et al.
transaction ledger.
2014.

[2] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[3] Gilles Fedak, W Bendella, and E Alves. iexec: Blockchain-based
decentralized cloud computing. Technical report, Technical Report. 40
pages. http://iex. ec/wp-content/uploads/pdf/iExec-WPv3 ..., 2018.

[4] The golem project whitepaper. https://assets.website-files.
com/60005e3965a10£31d245af87/60352707e6dd742743c75764_
Golemwhitepaper.pdf.

[5] The fluence distributed computing protocol.
fluencelabs/rfcs/blob/main/0-overview.md.

[6] Timo Hanke, Mahnush Movahedi, and Dominic Williams.
technology overview seriesconsensus system. whitepaper.

[7] Ipfs network site. https://ipfs.io.

[8] Ipfs compute base code. https://github.com/adlrocha/ipfs-compute.

[9]1 Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain frame-
work. White Paper, 2016.

[10] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian
Tschudin. An information centric network for computing the distribution
of computations. In Proceedings of the Ist ACM Conference on
Information-Centric Networking, pages 137-146, 2014.

[11] Michat Krél and Ioannis Psaras. Nfaas: named function as a service.
In Proceedings of the 4th ACM Conference on Information-Centric
Networking, pages 134-144, 2017.

[12] Suborbital atmo. https://github.com/suborbital/atmo.

[13] Woodruff T Sullivan III, Dan Werthimer, Stuart Bowyer, Jeff Cobb,
David Gedye, and David Anderson. A new major seti project based on
project serendip data and 100,000 personal computers. In JAU Collog.
161: Astronomical and Biochemical Origins and the Search for Life in
the Universe, page 729, 1997.

[14] Alfonso De la Rocha, David Dias, and Yiannis Psaras. Accelerating
content routing with bitswap: A multi-path file transfer protocol in ipfs
and filecoin. 2021.

[15] Webassembly specification. https://webassembly.github.io/spec/core/.

[16] Wasi: The webassembly system interface. https://wasi.dev/.

[17] Ipfs lite. https:/github.com/hsanjuan/ipfs-lite.

Ethereum: A secure decentralised generalised
Ethereum project yellow paper, 151(2014):1-32,

https://github.com/

Dfinity

