Simulation framework for EtherCAT over TSN

Balakrishna Balakrishna
NGNI
Fraunhofer FOKUS
Berlin, Germany
https://orcid.org/0000-0002-7168-8565

Abstract—EtherCAT is a real-time industrial Ethernet tech-
nology suitable for hard and soft real-time requirements. It
is based on new technology, ‘“on-the-fly processing”, which
significantly reduces cycle times and jitter to further expand
the capabilities of IIoT. IEEE 802.1 TSN in recent years gained
more attention in IIoT because it offers real-time communication
over a shared Ethernet medium with predictable end-to-end delay
and jitter. However, there is no work presented to showcase the
benefits of EtherCAT and TSN integration apart from theoretical
information. Therefore, to expedite the analysis of EtherCAT
over a TSN network, we used OMNeT++. Here, we will compare
the cycle time and jitter by evaluating different scenarios of
EtherCAT communications over a NeSTiNg TSN network.

Index Terms—TSN, EtherCAT, Network Simulation, Real-
Time Communication, IToT, Industry 4.0.

I. INTRODUCTION

NDUSTRY 4.0 is the next step in combining traditional

manufacturing methods with the upcoming highest-end
technologies. Cyber-Physical Systems (CPS) are the main fo-
cus in these technologies and they are well-structured systems
comprised of different entities, which directly interact with the
physical world while being controlled, operated, and integrated
by a centralized core. The core could analyze the data received
by sensors and execute the tasks for the system.

Usually, the CPS and its entities are connected over a
network and the network has unpredictable jitter and unfore-
seeable delay. It is necessary to minimize these characteristics
while working with time-critical data. To meet the hard real-
time requirements in time-sensitive CPS, deterministic com-
munication is obligatory.

In order to sufficiently minimize jitter and delay, many dif-
ferent Fieldbus technologies are developed such as EtherCAT,
ProfiNet, etc. Each Fieldbus technology is developed for a
specific application’s requirement and has its advantage over
the other Fieldbus technology. Development of new Fieldbus
technology is always necessary due to new requirements in the
latest industrial applications. The introduction of new Fieldbus
technology does not only bring advantages to deterministic
communication but also adds disadvantages such as new hard-
ware type, incompatibility with legacy Fieldbus technologies,
etc. Therefore, Time-Sensitive Networking (TSN) is evolved
to address these disadvantages to provide deterministic com-
munication in an Industry.

ISBN 978-3-903176-39-3© 2021 IFIP

Boris Meinardus, Leonidas Kontopoulos
NGN / AV
Technical University of Berlin
Berlin, Germany
{b.meinardus, kontopoulos} @campus.tu-berlin.de

TSN Components

Time synchronization

Timing and Synchronization [802.1AS-2020]
{a proflle of IEEE 1588)

Hot Standby [P802.1ASdm]
'YANG [P802.1ASdn]
Soniod D
Reliabllity

Latency

High availability / Ultra reliability

[Frame Replication and Elimination [802.1CB]
[Path Control and Reservation [802.1Qca]
Per-Stream Filtering and Policing [802.1Cci]
[Reliabiltty for Time Sync [802.1AS-2020]

Dedicated resources & API

Stream Reservation Protocol [802.10a]
Link-local Registration Protocol [802.1CS]
ITSN Configuration [802.1Qcc]

[Foundational Bridge YANG [802.1Qcp]
esource Management) [YANG for GFM [PBO2.10cK]
[YANG for LLDP [P802.1ABcu]
T [YANG for 802.1Qbv/QbuQci [P802.1Qcw]

[YANG & MIB for FRER [P802.1CBcv]

Bounded low fatency

Credit Based Shaper [802.1Qay,
Frame Preemption [802.10bu & 802.3b
Scheduled Trafflc [802.1Qby]

Cyelic Queuing and Forwarding [802.1Qch
Asynchronous Traffic Shaping [802.1Qc
QoS Provisions [P802. 1DC]————>'

[Extended Stream Identiiication [P802.1CBdb]
[Resource Allocation Protocol [PB02.1Qdd]

[TSN Configuration Enhancements [P802.1Qd]]
LLDPV2 for Multiframe Data Units [P802.1ABdh]

zerocongestion 0ss= o |\ icact and Local Adaress Assionment (P802.10Q]

Bounded latency

Note: A *P'in front of an ID indicates an ongoing Project

Fig. 1. List of IEEE 802.1 TSN standards [1]

IEEE created the IEEE 802.1 TSN Task Group (TG) to
develop TSN and the TG formally known as Audio Video
Bridging (AVB) TG. TSN is a set of standards specified by
IEEE 802.1 as shown in Fig. 1, which enable the transportation
of different traffic class over a network through the use of
Ethernet. High transportation speed and simplification of the
network structure are two of the most significant benefits
offered. TSN operates in Layer 2 of Open Systems Intercon-
nection (OSI) model and it does not have an application pro-
file. Therefore, enabling legacy Fieldbus Technologies to TSN
opens many advantages such as resource management, ultra-
reliability, bounded low latency and time synchronization.

Many Field-level devices manufacture provide TSN specifi-
cation [2] [3] [4] for their new devices but the existing Filed-
level devices are still incompatible with TSN. Moreover, only
a few automation networks over TSN [5] [6] [7] are analysed.
Clock synchronization between EtherCAT and TSN is only
assessed in [5]. Therefore, it is necessary to investigate the
differences using EtherCAT with and without TSN. Since the
availability of TSN compatible legacy Field-level devices in
the market are few, this paper focuses on EtherCAT over TSN
in a network simulation tool to analyse cycle time and jitter.

EtherCAT short for Ethernet for Control Automation Tech-
nology, developed by the EtherCAT Technology Group is first
introduced back in 2003 as a real-time industrial Ethernet
technology. EtherCAT is suitable for hard and soft real-time
requirements, by using Ethernet as a transport medium for
a Fieldbus. Its main goals are guaranteeing a reduced cycle
time to less than 100 us and jitter to less than 1 us [8]. Their
approach to achieving those goals is by some new innovative

features, one of which is on-the-fly processing.

TSN components IEEE 802.1 Qbv, also known as Time
Aware Shaper (TAS), and IEEE 802.1 AS-Rev, also known
as profile of Generalized Precision Time Protocol (gPTP)
are the minimum two standards required for deterministic
communication in a TSN domain. In short, TAS propagates
the incoming data to the respective egress port. Here, the data
will be buffered in a queue representing its traffic class before
a Transmission Selection Algorithm determines which data
will be selected first. The gPTP is responsible for the time-
synchronization of all nodes in the network with a common
and aligned schedule for deterministic event handling. There-
fore these two TSN sub-standards are most relevant for this
project.

Multiple alternatives exist to analyze the effectiveness and
proper functionality of EtherCAT over the TSN network. Real-
time application is one of them but the lack of necessary
equipment and resources can render it to be quite the struggle.
Mathematical analysis is another. However, to analyze bigger
and more complex networks it is necessary to describe the
network topology mathematically, which is not trivial. From
previous experience obtained in [9], we decided to go with
the more subtle approach: simulation. By utilizing Objective
Modular Network Testbed in C++ (OMNeT++) and two
open-source projects, Network Simulator for TSN (NeSTiNg)
[10] which covers the IEEE 802.1 TSN network and Ether-
CAT_Simulation [11], we managed to create a depiction of
intended network to inspect.

OMNeT++ is an open-source Integrated Development En-
vironment (IDE), which uses C++ as its main programming
language and NEtwork Description (NED) as its network
description language. By combining the two languages it is
possible to create any kind of wireless or wired communication
simulation for testing and experimentation. This will help us
test out our frameworks in a controlled environment.

In order to proceed, we first need to integrate the frame-
works to run our simulations and extract data. One of our
tasks is to check the compatibility of the two frameworks
and make the required changes to effectively combine the two
domains. After the successful combination of the frameworks,
we need to evaluate performance characteristics and create
proof-of-concept test cases by comparing the best and worst-
case communication over a TSN network.

We will begin with a brief description of the concept of
EtherCAT and TSN in Section II, followed by Section III
provides the necessary information of the two frameworks
(NeSTiNg and EtherCAT) before diving deeper into our ap-
proach. Finally, we will analyze the performance simulations
in Section IV and conclude with our findings and possible
future work at Section V.

II. BACKGROUND AND RELATED WORK

A brief overview of EtherCAT and TSN is described in this
section. In addition to this, a short literature survey is provided.
This survey focuses on field-level communication integration
into TSN.

A. EtherCAT Overview

As briefly mentioned in the introduction, EtherCAT is a
real-time industrial Ethernet technology suitable for real-time
communication requirements. A typical EtherCAT network
consists of one master and a finite number of slaves. To
increase the predictability of the network, the master is the
only one allowed to generate packets. The most common
topology encountered is the ring and daisy chain topology,
while a star topology is also possible. In the case of a daisy
chain setup, the master sends out a frame that is transmitted
from one slave to the next. Each slave processes the data
addressed to it without making an exact copy of the entire
frame, while at the same time continuing the propagation of
the frame. The frame is read on the physical layer, therefore
only adding a hardware propagation delay and manifesting a
predictable network performance. This concept is considered
“on-the-fly processing” and is EtherCAT’s main feature.

How does each slave acknowledge which datagram is
addressed to it, if the slave is not making a copy of the
ingressing frame? That is where EtherCATs unique frame
structure becomes relevant. The frame that is being circulated
through the network is of Ethernet structure since EtherCAT
is an Ethernet-based framework. The EtherCAT functionalities
are found in the payload, where they consist of a 2 Byte
long header and the datagrams destined for the slaves. The
EtherCAT header consists of 11 bits for the length of all
datagrams combined, a reserved bit and 4 bits for the protocol
type. The header is followed by the datagrams destined for the
slaves as showcased in Fig.2. Each datagram has a 10 Byte
long header, data, and a 2 Byte long Working Counter (WKC).

‘ Ethernet Header Ethemnet Data FCS ‘
EtherCAT header
14 Bytes 11 Bits 1Bit 4 Bits 44*-1498 Bytes 4 Bytes
[Ethernet Header |Length| Res. | Type 1...n Datagrams FCS]
............. PPEEEEE }
[18! EtherCAT Datagram and ni EtherCAT Datagram]
10 Bytes 0-1486 Bytes 2Bytes :
Working Counter
[Datagram Header Data (WKC)]
| 8Biis 8Bits 32 Bits 11Bits 3Bits 1Bit 1Bit 16 Bils:
[Cmd Idx Address Len R c M IRC ‘

Fig. 2. EtherCAT frame structure

As shown in Fig. 2, the first 8 bits contain the command
which the slave shall execute. A list of those commands
can be found in [12]. EtherCAT master uses four possible
addressing types to communicate between and slave that are
Positional, Node, Logical and Broadcast. The master uses
positional addressing to locate all the slaves. Node addressing
is usually used when the master wants to access registers of
individual and discovered slaves. Broadcasting, as the word

itself indicates, addresses all slaves in the segment to check
the status of each slave or initialize them. Each slave has a
Fieldbus Memory Management Unit (FMMU), which it uses
to translate logical addresses to physical addresses and store
the data in its local addressing space.

B. TSN Overview

TSN implements multiple scheduling mechanisms, where
IEEE 802.1 Qbv being the most important one. It is responsible
for splitting the communication on the medium into fixed
cycles, which in some ways is similar to Time Division
Multiple Access (TDMA). The fixed cycles, also referenced as
time slices, are issued based on Virtual Local Area Network
(VLAN) priority. By creating VLAN communication channels,
more time-critical data can easily be separated from Best-
Effort (BE) data, thus conflicts between the two of them can
be avoided.

Each TSN capable node has TAS implemented in its ports.
There are up to eight queues, which are controlled by gating
mechanisms to determine when buffered packets will be prop-
agated to their next destination. Each packet is equipped with
a VLAN tag, which contains a three-bit Priority Code Point
(PCP). Based on the PCP value, the packet is enqueued in the
corresponding queue. For an enqueued packet to be forwarded
over a port, the gate responsible for the respective queue needs
to be opened. The order under which gates open is determined
by a Gate Control List (GCL). Here, a gating schedule defines
the duration of the entered gate states. After the last gate state
is terminated, the schedule is reset. Multiple ports of different
devices can have codependent GCL. In order to keep those
synchronized and predictable, IEEE 802.1 AS-Rev is used.

IEEE 802.1 AS-Rev, is a profile of gPTP, enables the
highest precision of time synchronization. The core principle
is the usage of a Grandmaster clock and hardware produced
timestamps. Frame residence is calculated in each bridge and
the propagation delay between two neighboring switches. The
Grandmaster clock is the root of all timing after which selected
masters coordinate themselves and thus the slaves in their
segments.

C. Related Work

The clock synchronization between EtherCAT and TSN is
evaluated in [5] using UPPAAL model checker. The authors
develop three UPPAAL models with and without TSN network
inside the EtherCAT network domain. After evaluating the
three models, the author concluded that the proposed clock
synchronization mechanism for the EtherCAT-TSN network
achieves at least 3 times higher clock synchronization pre-
cision compared to not using any clock synchronization.
Although the authors have provided the basic insight on the
EtherCAT-TSN clock synchronization, still the shared Ethernet
medium feature is not evaluated using IEEE 802.1 Qbv.

In [6], a simulation approach is introduced for field-level
communication over TSN, which is Sercos over TSN. Sercos
Master/Controller is connected to its devices using a TSN
switch in tree topology with three short lines. The TSN switch

also consists of BE talkers to exhibit the shared medium
feature. The authors demonstrated the TSN TAS feature to
protect the time-critical Sercos Frames from interfering with
BE traffic. In a test case where the tree topology is consists of
13 Sercos slave devices and a jitter 0.94s is identified where
the duration is 1.3s, the cycle time is 2ms and the obtained
values are 650. Here, TAS feature of TSN helped to achieve
the jitter (< 1us). After evaluating multiple use cases with
different combination of data rate and topology, the authors
have concluded that Sercor over TSN brings more benefits
such as huge bandwidth and topology migration.

Apart from the work presented above, only specification
[2] [3] [4] is available for TSN integration by other field-level
device manufacturers. To analyze EtherCAT performance over
TSN, we considered [4] as a reference architecture in this

paper.
III. APPROACH IN CONNECTING DOMAINS
A. EtherCAT Framework

The main difficulty while constructing an EtherCAT frame-
work is implementing a structure that can replicate the on-
the-fly processing feature. We have chosen to use [11] as our
EtherCAT framework, which implements a Type 12 Process
Data Units (PDU) system to realize the feature. The framework
sends out each byte after a provided time interval(byte-to-byte
delay). This way the EtherCAT slave is processing one byte
and propagates it before the next one arrives at its gate. Besides
the byte-to-byte delay, a frame-to-frame delay is present,
which is responsible for the timing at which the succeeding
frame will be scheduled. For every single byte created, the
following function is used to determine its scheduled time:

scheduletime = dy - ny, +dy - ny (D)

dy: Delay byte to byte, ny: Index of current byte to send,
dy:Delay frame to frame, ny: Index of current frame sending

The payload size of each frame and the number of EtherCAT
frames that will be sent out are predetermined before the
initialization of the simulation. Once the frame is sent, it is
propagated throughout a daisy chain, and this is the only
implemented topology. However, certain EtherCAT specific
characteristics, such as WKC, Interrupt Request (IRQ), RE-
SERVED, C-bit, NEXT, and DATA, are implemented but never
used, and Distributed Clocks are also absent. Therefore, direct
communication between master and slaves is a basic level
implementation of the physical layer.

B. NeSTiNg Framework

NeSTiNg framework [10] developed by the University of
Stuttgart and managed to establish a very accurate and precise
version of the real-world application [13], by extending the
INET [14] library. It implements multiple modules, such as
different hosts and TSN capable switches to create a coherent
and synchronized network. Out of the IEEE 802.1 standards
required to create a TSN network, the two most relevant to
us, [EEE 802.1 Qbv and IEEE 802.1 AS-Rev, are applied in

il e
master
oscillator
:
legacyClock

m

VianECATMabterGateWay

=)

¥ filteringDatabase

Il

interfaceTable

Fig. 3. OMNeT++ NeSTiNg_ECAT_Master Module. Here, the 3 submodules
used for the NeSTiNg_ECAT_Master Module can be observed. The manip-
ulated master submodule, VlanECATMasterGateWay and Ethernet interface
card

an interesting manner. /EEE 802.1 Qbv is most noticeably
integrated into the ports of the TSN switches. Here, besides the
usual encapsulation and decapsulation process of the frames,
8 queues are implemented to replicate the PCP values of
IEEE 802.1p [15]. Each one of these queues is controlled
by a gating mechanism. Which gates will be open at what
time is determined by a bit vector and the provided duration
of that configuration. When one of the gates is open, the
data enqueued in the respective queue is propagated to a
Transmission Control Algorithm (TCA), which determines the
order in which the packets will be sent out, based on their
priority.

On the other hand, /IEEE 802.1 AS-Rev conspicuously differs
from the real-world application. While TSN integrates the
gPTP to synchronize its network, NeSTiNg does by having
a global discrete clock that every device in the network is
connected to it. This way, every device is indirectly connected
and synchronized with one another, leading to a representative
application of the gPTP. Each time a packet is received by
the switches and processed, the opening of the egress gates
is determined by the clock. However, the main difference
between gPTP and the usage of a global clock is that the
gPTP is more susceptible to unsynchronized behaviour in case
the grandmaster clock fails. In this case, a new election needs
to be started, during which all devices in the network may
not be synchronized. With a global clock, such failures are
avoidable. Therefore, a global discrete clock is used for IEEE
802.1 AS-Rev substitution.

C. EtherCAT and NeSTiNg Framework Integration

To implement a TSN capable master module, we have
decided to use the already existing basic EtherCAT master
from the EtherCAT framework as a submodule for our NeST-
iNg_ECAT_Master as shown in Fig. 3. In the first step, we had
to adjust the byte-to-byte delay. To be more precise, it is set to

zero since it is not suitable for a standard frame transmission,
thus having the master send out all bytes of a frame at the same
time. In order to propagate the frame through a NeSTiNg TSN
Network, the frame needs to be extended with tags such as a
VlanID, a Drop Eligible (DE) bit, the PCP value and all the
necessary Ethernet header characteristics. For this purpose, we
need to develop a gateway that can extend or rather convert
the frame sent out by the basic EtherCAT master into the
NeSTiNg suitable frame structure. To create the gateway, we
copied the VlanTraffGenScheduler module from NeSTiNg and
made a few modifications to it. Once the gateway receives all
the bytes of one frame, it first modifies the Ethernet header and
includes a VLAN tag. For the payload of the packet, we used
INETs Byte Chunk [16] structure to copy all the necessary
information related to the EtherCAT datagrams.

Since all the bytes received from the EtherCAT Master are
empty, we only focused on inserting the Type 12 PDUs in the
payload. To make the Master TSN compatible, an Ethernet
Interface needs to be implemented that enables IEEE 802.1
QObv. Once the payload is created together with the Ethernet
header, it is packed into an INET packet before forwarded to
the Ethernet Interface. Here, the packet is encapsulated with
the missing Frame Check Sequence (FCS) and gets enqueued
in its corresponding queue of the egress port. The packet’s PCP
value is set to be the highest in the network since it is time-
critical. Based on the GCL that is defined in an Extensible
Markup Language (XML) data file, together with the GCL
of every device in the Network, the respective gate awaits its
opening to propagate the packet in the network. Every port,
where the EtherCAT packet is propagated through, has the
same schedule as the EtherCAT Master module to synchronize
the network.

The NeSTiNg_ECAT_Slave module is very similar to the
NeSTiNg_ECAT_Master, with the only key difference being
the substitution of the EtherCAT Master with the Slave. Once
the packet arrives at the Slave Gateway, it gets decapsulated
and sent to the EtherCAT slave one byte after the other. There
a small processing delay is added and the bytes return to the
gateway ready to be sent back to the master. This process
restarts for every frame.

IV. EVALUATION

This project aims at simulating a network, in which time-
triggered and non-time-triggered traffic is transmitted to deter-
mine how beneficial the integration of a TSN network inside
an EtherCAT infrastructure would be. Next, we will showcase
the main networks we tested to achieve our final results.

A. Worst case network

In Fig. 4, our main network setup is showcased with
one time-triggered device (MACMaster), and two non-time-
triggered workstations (Workstation I and Workstation 2).
All three devices, combined with the MACSlave and back-
upServer, share the same link between SwirchA and SwitchB.
All links have a bandwidth of 1Gbits~! and a propagation
delay of 20ns. Each queue at every port is capable of storing

;5.
&

(D

works tion2
Frames e: 10 bytes ;)
workstatmm THIEERE
Frame size: 10 b)rhe
PCP: 6
!!n-/ "!suﬁ

switchA
9]

MACMaster
Frame size: 128 bytes, PCP: 7

MACSIa\re

Fig. 4. Exemplary worst-case network test case with three traffic flows, one
of which is the time-critical EtherCAT communication

30 MTU-sized frames (MTU of 1522 bytes). Workstation 1
and Workstation 2 are BE hosts and they are assigned with the
PCP values 5 and 6 respectively, while MACMaster receives
the value 7 for the highest priority. The workstations send
out 10 bytes sized frames, while the frames generated by the
master have a payload of 100 bytes, which accumulates to
128 bytes in total for the Ethernet packet. Both time-critical
and BE data are given the same cycle time of 3us. Since
we want to minimize any additional queuing delay, the GCL
has the same cycle time as the MACMaster, i.e every 3us
the gate for queue 7 opens to propagate the EtherCAT frame.
For the transmission of a 128 bytes frame on a 1Gbits ™!
line the delay is 1.072us, hence the gate for queue 7 is open
for 2us and the remaining gates are open for 1us. To draw
conclusions, we used the same setup as showcased in Fig. 4
and changed certain parameters to create different test cases
as seen in Table 1. We also created a best test case, where the
additional traffic is removed together with the GCL and the
traffic between the MACMaster and MACSlave is constant.
To evaluate the implementation of EtherCAT over TSN we
compared the Round Trip Time (RTT) and the jitter.

Name Description

Test Case 1 | TSN functionalities

Test Case 2 | TSN functionalities with an additional slave

Test Case 3 | All traffic streams assigned with different PCP (no TAS)
Test Case 4 | All traffic streams assigned with the same PCP (no TAS)
Test Case 5 | Best test case (only EtherCAT traffic stream presents)

TABLE T
DIFFERENT TEST CASES

B. Performance Evaluation

After presenting the basic functionality of our implementa-
tion, we continue with the evaluation of our simulations.

1) Setup: All simulations are performed on a machine with
4 Intel I7-7700HQ processors at a clock speed of 2.8 GHz,
and a total RAM of 16 GB, running on Ubuntu version 18.04.4
LTS. The used OMNeT++ simulation tool version is 5.5.1.

2) Parameters: For our worst test case (Test Case 1), we
scheduled our MACMaster to send out frames size of 128
bytes on every 3us. In this case, TAS is enabled and the
EtherCAT frames are assigned with the highest PCP value.

Test Case 2 is the same setup, with one extra slave. Therefore,
the payload size expands to 218 bytes. Test Case 3 uses again
one slave but the TAS is removed by constantly having all the
gates open. In test case 4, TAS is absent and the PCP values of
the Workstations are the same as the MACMaster, which fully
removes the main TSN functionalities. Finally, Test Case 5 is
the best test case, where all additional traffic is removed and
the gates of the switches are constantly open. Each simulation
is run 10 times for 100us, with the number of frames ranging
from 100 to 1000 with steps size 100. For the final results,
the simulations with 1000 frames are used.

3) Results: Fig. 5 depicts the calculated RTT for each
test case. The theoretical RTT can be calculated through
dtot =2 (2 ! dproc +3- (dtrans + dprop))7 where dp'roc
is the processing delay of the switches, which is assigned
random values between 300ns and 500ns to further add an
element of realism, dj,., the propagation delay and diqns
the transmission delay. For test case 1 we calculate the total
RTT is ~ 8.312us. The value is just half from the one shown
in Fig. 5 because of the additional queuing delay. When the
frame arrives at the switches, it first needs to be processed.
Due to the change of the gating state from the GCL while
frame processing, the window under which it can be sent out
is almost closed, leading to its gate getting shut for 1us. When
this additional queuing delay is added to the RTT, we strive
for a value closer to ~ 16.312us, which closely resembles the
one showcased. Since the gates are strictly controlled, the RTT
of the first two test cases leads to constant. This manifests the
correct implementation of the TAS creating a deterministic and
predictable traffic flow. On the other hand, test case 3, 4, and
5 have much smaller RTT. This is because of the absence of a
GCL, hence adding no extra queuing delay leads the test case
to a RTT that is closer to the one calculated at ~ 8.312us.
However, the graphs only showcase the traffic of the EtherCAT
frames. If the gates are constantly open, the additional traffic
gets heavily delayed, which leads to further delays when more
time-critical infrastructures are connected to the network.

Fig. 6 shows the jitter of each test case and the jitter is
measure on RTT after reception of EtherCAT frame inside
the EtherCAT master. Since the RTT of the first two cases
is constant, the accumulated jitter is zero, further proving
the desired predictability of the TSN network. The remaining
cases have strongly differing values for the first 100 frames
received, but this phenomenon is due to the random processing
delay. Once enough frames have been received, they all start
equaling out into a constant line at approximately 1.7us.

4) Conclusion: In conclusion, the demonstrated perfor-
mance evaluation shows that the integration of TSN in an
EtherCAT network comes with additional processing and
queuing delays due to the addition of gating mechanisms.
However, it renders the entire network synchronous and
predictable, hence keeping the time-critical element that is
obligatory for EtherCAT. Combined with further domains,
such as ProfiNET, SERCOS III, the overall implementation
cost can be decreased by sharing a medium with slightly
increasing the total delay.

le—5 Round Trip Time

16 -
Do1a-
g ® TestCasel
= @ TestCase?2
=3 Test Case 3
= 12- @ TestCase4
E Test Case 5
b |
o
o
10 -
0.8 -
0 200 400 600 800 1000

Number of Frames

Fig. 5. Round Trip Time of Frames: The time it takes for the EtherCAT
frame to propagate to the EtherCAT slave and back to the EtherCAT master

le—7 Jitter

—— Test Case 1

8- —— Test Case 2

Test Case 3

—— Test Case 4

Test Case 5
6 -

)
g 4
2 -
0-
0 200 400 600 800 1000

Number of Frames

Fig. 6. lJitter updated on each frame reception in the EtherCAT master.

V. SUMMARY AND FUTURE WORK

In this paper, we noticed the implementation of EtherCAT
over TSN is possible. Additional hardware required that
properly encapsulates and decapsulates the packets and it is
synchronised with the TSN Network. One of the main goals
of EtherCAT is to have a RTT that is smaller than 100us and
jitter of less than 1us. From our performance evaluations, we
can showcase that it is possible to accomplish these numbers
since our RTT is constant at approximately 16us and the jitter
is approximate to zero. Both these values do not perfectly
represent a real-world application but come very close to it.

Nevertheless, our simulation is very minimal because there
are certain factors NeSTiNg does not support, for example,
IEEE 802.1 AS-Rev. Additionally, the sending intervals be-
tween frames is constant and the EtherCAT functionality is

not fully implemented in the EtherCAT framework. Despite
these little imperfections we managed to set the foundation
for the simulated integration of EtherCAT over TSN.

For future work, a separate TSN gateway can be introduced
for EtherCAT devices because existing EtherCAT devices do
not support TSN functionalities and it is essential to analyze
their performance with TSN integration. Furthermore, changes
to the EtherCAT framework can be made to improve its
similarity to the real-world application. For example, the daisy
chain topology of the slaves can be improved by adjusting
the propagation and transmission delay between slaves, thus
possibly needing to adjust the cycle time. Additionally, the
EtherCAT frame format used can be adjusted to accurately
resemble the real-world application, by adding a detailed
Ethernet header and datagrams. IEEE 802.1 AS-Rev can also
be introduced to verify the time synchronization between
EtherCAT and TSN Network because the time synchronization
of EtherCAT and TSN devices provides more insights on RTT
and jitter.

REFERENCES

[1] Time-Sensitive Networking (TSN) Task Group. [Online]. Available:
https://1.ieee802.org/tsn/

[2] PROFINET over TSN Guideline. [Online]. Available: https://www.
profibus.com/download/profinet-over-tsn

[3] CAN to TSN. [Online]. Available: https://www.cast-inc.com/interfaces/
automotive-bus-controllers/can2tsn/

[4] EtherCAT and TSN. [Online]. Available: https://www.ethercat.org/en/
ethercat_and_tsn.htm

[5] D. Mateu, D. Hallmans, M. Ashjaei, A. Papadopoulos, J. Proenza,
and T. Nolte, “Clock Synchronization in Integrated TSN-EtherCAT
Networks,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), October 2020, pp. 214—
221.

[6] S. Nsaibi, L. Leurs, and H. D. Schotten, “Formal and Simulation-based
Timing Analysis of Industrial-Ethernet Sercos III over TSN,” in 2017
IEEE/ACM 21st International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), October 2017.

[7] P. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
Source OPC UA PubSub over TSN for Realtime Industrial Communi-
cation,” in Emerging Technologies in Factory Automation (ETFA), July
2018, pp. 1087-1090.

[8] EtherCAT - the Ethernet Fieldbus.
/Iwww.ethercat.org/en/technology.html

[9] M. Pahlevan, B. Balakrishna, and R. Obermaisser, “Simulation Frame-

work for Clock Synchronization in Time Sensitive Networking,” in

2019 IEEE 22nd International Symposium on Real-Time Distributed

Computing (ISORC), July 2019, pp. 213-220.

NeSTiNg Omnet++ Simulation Framework.

https://gitlab.com/ipvs/nesting

EtherCAT Omnet++ Simulation Framework.

https://github.com/ayoubsoury/ethercat-simulation

Ethercat Hardware Data Sheet Section L [Online].

Available: https://download.beckhoff.com/download/document/

io/ethercat-development-products/ethercat_esc_datasheet_secl_

technology_2i2.pdf

J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Diirr, S. Kehrer, and

K. Rothermel, “NeSTiNg: Simulating IEEE Time-sensitive Networking

(TSN) in OMNeT++,” in 2019 International Conference on Networked

Systems (NetSys), March 2019.

INET Omnet++ Simulation Framework. [Online]. Available: https:

//github.com/inet- framework/inet

PCP value definitions. [Online]. Available: https://en.wikipedia.org/

wiki/IEEE_P802.1p

Working with Packets. [Online]. Available: https://inet.omnetpp.org/

docs/developers- guide/ch-packets.html

[Online]. Available: https:

[10] [Online]. Available:

Available:

[11] [Online].

[12]

[13]

[14]

[15]

[16]

