
VPN-Zero: A Privacy-Preserving Decentralized
Virtual Private Network

Matteo Varvello
Nokia Bell Labs

Iñigo Querejeta Azurmendi
UC3M Madrid

Antonio Nappa
UC Berkeley/UC3M Madrid

Panagiotis Papadopoulos
Telefonica Research

Goncalo Pestana
Brave Software

Benjamin Livshits
Brave Software

Abstract—Distributed Virtual Private Networks (dVPNs) are
new solutions aiming to solve the trust-privacy concern of a
VPN’s central authority by leveraging a distributed architecture.
In this paper, we discuss the requirements of a successful dVPN
system and we present VPN-Zero: a dVPN system with strong
privacy guarantees that provides traffic accounting and has
minimal performance impact on its users.

VPN-Zero guarantees that a dVPN node only carries traffic it
has “allowlisted”, without revealing its allowlist or knowing the
traffic it tunnels. This is achieved via three main innovations: (a)
an attestation mechanism which leverages TLS to certify a user
visit to a specific domain, (b) a zero-knowledge proof to certify
that some incoming traffic is authorized (e.g., falls in a node’s
allowlist, without disclosing the target domain), and (c) a dynamic
chain of VPN tunnels to both increase privacy and guarantee
service continuation while traffic certification is in place. The
paper demonstrates VPN-Zero functioning when integrated with
two production systems: BitTorrent’s Distributed Hash Table and
ProtonVPN. Early evaluation results show that the median setup
time of VPN-Zero is about 10 seconds.

I. INTRODUCTION

A Virtual Private Network (VPN) is a connection method
used to add privacy to private and public networks, like
WiFi hotspots or the Internet. Traffic between the user (VPN
client) and a VPN node is encrypted so that network elements
along the path have no access to this traffic. User’s traffic is
forwarded with the IP address of the VPN node, a feature
many VPN providers offer as a remedy to geo-blocking.

Users have to trust VPN providers not to interfere with
or log any of their personal traffic. It is to be noted that
VPN providers are commercial entities that might offer their
services relying on other commercial entities (e.g., they could
use multiple cloud services to obtain a worldwide footprint
[32]). It follows that even trusted and respectable vendors
might unknowingly incur issues with a specific provider rang-
ing from surveillance [40], misconfiguration [28], and even
hacking [11]. Either of these issues can compromise users’
privacy. In [27] the authors actively investigate 62 commercial
VPN providers and find unclear policies for non logging,
some evidence with tampering of their customer traffic, and a
mismatch between advertised VPN node locations and actual
network location.

Driven by the above issues, decentralized Virtual Private
Networks (dVPNs) arose as a fairly new trend with millions of
daily users (e.g., Hola [45]). In a dVPN, users are both VPN
clients and relay nodes as in a Peer-to-Peer (P2P) network.
In spite of the apparent advantages on their privacy, users of
dVPNs may need to tunnel through their devices traffic that
can be considered harmful or illegal. Indeed, there have been
incidents reported [6], [29], where unaware dVPN users have
been (ab)used as exit nodes through which DDoS attacks were
performed. Similarly, the users have no guarantee on whether
a dVPN might inspect, log, and share their traffic.

In this paper, we first investigate the dVPN ecosystem
and derive a set of requirements from a privacy/performance
standpoint. Next, we propose VPN-Zero, to the best of our
knowledge the first privacy-preserving dVPN with traffic ac-
counting. VPN-Zero is founded on the idea that dVPN nodes
should be able to decide which traffic they want to carry, e.g.,
only news websites. At the same time, they should accept such
safe traffic in zero knowledge, i.e., without being able to tell
what this traffic contains. Ultimately, we aim to offer the above
features with minimum impact on the user experience.

Note that such strong privacy guarantees are only possible in
conjunction with already private traffic, i.e., TLS v1.3 [36] and
DoH (DNS over HTTPS) [20] whose adoption is on the rise.
VPN-Zero further leverages a Distributed Hash Table (DHT)
to pair dVPN clients with nodes currently available to serve
their traffic. This pairing is realized using privacy preserving
announce and lookup DHT primitives. We further rely on VPN
chains which help both in preserving user privacy and allowing
uninterrupted VPN service. Last but not least, we introduce a
zero knowledge traffic attestation mechanism that piggybacks
on TLS to enable privacy-preserving allowlists.

We have integrated VPN-Zero with BitTorrent’s DHT [44]
and ProtonVPN [35], a popular VPN provider. We demonstrate
the feasibility of VPN-Zero while testing a public domain
supporting TLS v1.3. We also benchmark VPN-Zero per-
formance with respect to DHT lookup, VPN tunnel setup,
and zero knowledge proof calculation (about 10 seconds in
median values). We identify the current bottleneck in the proof
calculation, which we plan to speed up as future work.

ISBN 978-3-903176-39-3 ©2021 IFIP



II. MOTIVATION

VPN services enable users to bypass geo-blocking and
enhance their privacy against snooping ISPs and malicious
access points. To avoid the necessity of blindly trusting a
centralized service provider that could harm their privacy (e.g.,
by logging their network connections), dVPNs came to the
rescue. DVPNs are P2P VPNs where users forward their traffic
through other users and vice-versa. This architecture allows
malicious users to abuse the network and perform malicious
transactions via unaware users positioned as exit nodes.

In this paper, we assume malicious dVPN users, hidden
behind benign users’ IPs, abuse the dVPN by: (i) access-
ing illegal content (e.g., child pornography, darknet mar-
kets [14]), or (ii) launching distributed attacks against selected
targets [29]. In addition, we assume a snooping ISP that logs
the network traffic uploaded by the user’s device. These logs
can be used later for purposes beyond the control of the user
(sold to advertisers [26] or handed over to agencies [23]) that
may result in tarnishing the user’s reputation or even falsely
accusing them of illegal transactions.

A. Requirement Analysis

IP Banning: To be usable, a VPN (both centralized and
distributed) needs to publish at least a portion of its vantage
point list. It follows that it is relatively easy for a censorship
entity or a geo-blocking content provider to access such list
and simply ban all the vantage points of a VPN. For centralized
VPNs, this is an issue they constantly face and they can hardly
solve. For dVPNs, such banning is harder due to the dynamic
set of users/IPs involved. DVPN nodes are regular Internet
users who frequently change network locations and connect
from behind Network Address Translators (NATs). In this
case, blocking a NATed VPN node implies blocking the whole
subnet with a potentially massive service disruption.
No-Logging: Privacy is one of the main services offered by
a VPN. This implies that, at no time, a VPN node should
be able to log user traffic. In [27], authors investigate the
usage policy offered by several commercial VPNs on their
website. They find that when a privacy policy was available
(75% of the cases), very few VPN services explicitly claimed
a no-logs policy. This analysis suggests that VPN providers
today should do a better job in terms of transparency of their
actions. In a dVPN, logging is sometimes required to offer,
for example, protection against IP banning: in VPN Gate [30],
each VPN node keeps connection logs (and shares them with a
central repository) to inform other VPN servers of a potential
censorship authority attempting to discover (and block) the
current dVPN footprint.
Traffic Accounting: The founding idea of a dVPN is that
users share their resources in exchange of some form of
payment; so there must be a system to account for such traffic
and grant payments accordingly. Crypto dVPNs [39], [42]
tackle this issue by leveraging the blockchain to keep track of
proof of traffic. This can be challenging depending on which
network logging level is allowed/required.
Traffic Blame: From a networking perspective, VPN nodes
are the entity originating the traffic they carry. This means that

serious offenses (e.g., child pornography, hate speech, drug
smuggling), when investigated, will point the authorities to
the entity running the VPN node. At this point, the above
no-logs policy comes into play where the VPN might (or not)
offer extra information about who was indeed originating such
traffic. In a dVPN context, there is no legal entity the authority
can reach to. Instead, they would reach the owner of the dVPN
node whose network was used to carry such traffic. It is thus
paramount that a dVPN implements a mechanism to avoid this
kind of situation. At the same time, this should be achieved in
a privacy preserving way, thus respecting the above no logging
requirement.
Quality of Experience (QoE): Offering high QoE is a
hard task for dVPNs. This is because of client churn and
heterogeneous network conditions; this problem is not specific
to dVPNs but an overall generic issue in distributed systems.
A VPN footprint, i.e., how many unique locations a VPN can
offer, is another important QoE metric. VPN providers con-
stantly battle to offer more vantage points, either by deploying
new physical nodes or by introducing “virtual locations” based
on the information available from geo-IP databases about the
physical locations of their vantage points. A limitation of
all centralized VPNs is the lack of residential IP addresses,
since they mostly rely on data-centers to deploy their nodes.
Contrary to that, by definition, dVPNs consist of a large
network footprint of residential IP addresses.
Open Source: A dVPN client/server code is a very critical
piece of software since it can potentially gain access to
very sensitive data. Despite popular VPN tunneling protocols
(OpenVPN, PPTP, and WireGuard) are inherently secure, it
is important to note that misconfigurations and/or malicious
code are still potential threats [21].

III. VPN-ZERO: SYSTEM OVERVIEW

This section presents the design of VPN-Zero, a privacy
preserving dVPN based on zero knowledge. A zero knowledge
proof is a cryptographic tool that allows a prover to prove to
a verifier that a certain statement is true, without disclosing
any information except the fact that the statement validates.
In our case, a dVPN user wants to prove to a dVPN node that
its current traffic is contained within the node’s allowlist, i.e.,
a set of domains the node is willing to carry traffic for.

Several challenges are involved to realize the above state-
ment in a decentralized system. First, how to distribute such
allowlists in a privacy preserving manner. Second, how to build
a zero knowledge proof around traffic, and implicitly which
traffic is suitable for such proof. Last but not least, how to
perform the above operations without disrupting the user QoE.

In the remainder of this section, we first set the stage for
the traffic type VPN-Zero can operate on to guarantee strong
privacy requirements. Next, we introduce the cryptographic
primitives at the foundation of VPN-Zero. We then describe its
distributed architecture along with the protocol orchestrating
VPN-Zero’s operations. Finally, we finish the section with a
description of how we construct the zero knowledge proof.



A. Foundations

Traffic Confidentiality: VPN-Zero’s ambitious privacy goal
translates into strict privacy requirements for the traffic being
carried. To this end, VPN-Zero must be coupled with TLS
v1.3 [36] and DoH (DNS over HTTPS) [20], whose popularity
is rapidly growing. However, even TLS v1.3 does not imply
mandatory encryption of the Server Name Indication (SNI)
field in the ClientHello. This would allow a dVPN node to
learn which domains a user is visiting, defeating our privacy-
preserving goal. To prevent such privacy leak, the TLS En-
crypted Client Hello RFC draft [38] (ECH) – formerly known
as Encrypted Server Name Indication (ESNI) [37] – proposes
a method to encrypt such information using a hybrid public
key encryption scheme (HPKE) that involves the public key
of the connecting server. ECH’s precursor (ESNI) is already
supported by all Cloudflare domains using their authoritative
name servers [12]. We assume ECH is available which implies
a dVPN node only has visibility on the destination IP address,
since VPN-Zero introduces a mechanism to protect the source
IP address, as detailed below.
Cryptographic Primitives: VPN-Zero requires each of the
nodes to own a public-private key-pair (pk, sk). We denote the
signature on message m with private key sk by Sign(m, sk).
Verify(s, pk) verifies a signature s with public key pk. If
the signature is valid, it outputs >. Finally, we denote the
encryption of message m and decryption of ciphertext C with
Enc(m, pk), Dec(C, sk), respectively.

VPN-Zero relies on ephemeral key-pairs, used each time
clients lookup a dVPN node. We use ElGamal key-pair [15],
which results in a small overhead for the user (one exponentia-
tion over a finite field for each new key calculation once public
parameters are computed for the whole network). We use
ephemeral keys so that connection requests cannot be linked
to a particular user. We use ElGamal to denote the operations
performed with the ElGamal key-pair (pkEG, skEG).

The Encrypted Client Hello RFC draft [38] makes use
of Hybrid Public Key Encryption (HPKE). We refer to en-
cryption and decryption of HPKE as HPK.Enc(m, pk) and
HPK.Dec(C, sk) respectively. Hybrid encryption depends on
a Key Encapsulation Mechanism (KEM), which in simple
terms, consists in “encapsulating” a symmetric key, such that
only the receiver can “open” and use this symmetric key. The
construction presented in this work has been verified to work
with the RSA-KEM, defined in standards track RFC [5] (for
which we have run our experiments).

B. Network Architecture
VPN-Zero is built on top of a Distributed Hash Table

(DHT) [25], [47]. The DHT is used to privately identify a
set of dVPN nodes willing to act as VPN endpoints for some
specific traffic. To this end, dVPN nodes store in the DHT
each entry of their allowlists using the hash of the domain
name as a key, and as a value the domain’s public key along
with the current node’s public IP address.

Figure 1 shows an example, where node A announces that
it accepts traffic towards a destination D1 (magenta dashed
line). The hashing uniform distribution property enforces that

Fig. 1. Flow of a connection using VPN-Zero. First, nodes announce their
allowlists. Then, when a user wants to connect to a domain, it first uses a
temporary VPN, and then performs a lookup to find the node to create an
authorized VPN with.

a allowlist is effectively scattered among multiple peers. This
is important since allowlists contain privacy sensitive infor-
mation. Nodes frequently re-publish their allowlist to account
for fresh information and to update reachability information,
as commonly done in any DHT [25], [47]. A TTL approach
is used to handle deletion of entries from the DHT.

When a user S starts a VPN session, it first opens a
temporary VPN tunnel to some node X (green dashed line);
this can be, for instance, a recently used node. Next, S
naturally originates some TLS (v1.3) traffic, e.g., a visit to a
secure domain D1. This temporarily unauthorized traffic flows
through X for a duration T . Within T , X will be able to locate
a dVPN node for which this traffic is authorized, if this exists.
Meanwhile, S performs a DHT lookup using the hash of D1

(h1). We assume an iterative lookup where each step routes
the request to a node whose DHT identifier is closer (bitwise)
to h1 (Figure 1, blue dashed line). Differently from a regular
DHT lookup, S does not include its IP address to the request
but rather X’s IP so that the DHT network does not learn
which domain S wants to visit. Note that X cannot perform
the DHT lookup directly since this would imply knowing D1.
S also appends its ephemeral public key pkEG

S to the lookup.
The lookup converges to a node R which returns to X

the IP address of a dVPN node (A) accepting traffic to D1

— selection strategies can and should be investigated as a
future work. Additionally, node R includes in the message
to X an encryption of the domain’s public key, CpkD =
ElGamal.Enc(pkD, pkEG

S ), together with a signature of the
latter, sR = Sign(CpkD , skR) and its own public key pkR.
Finally R connects with A to send pkR, which allows A
to verify that the accessed domain is among its accepted
domains, without learning the domain. Next, X shares A’s
IP, together with CpkD , sR and pkR with S. Meanwhile, X
opens a temporary VPN tunnel to A, the node selected to carry
authorized traffic to D1. When the tunnel is ready, X creates
simple iptables rules to connect the two VPN tunnels,
effectively realizing a VPN chain (S → X → A).

The above VPN chain has an important effect on the
existing TLS connection (S → D). From D’s perspective,



Fig. 2. Overview of VPN-Zero’s prototype

the endpoint was a socket at X (IPX : PORT ). Now, a
new socket (IPA : PORT ) is introduced. This is similar
to TCP hijacking [19] and will be detected by the server,
e.g., wrong sequence number, causing a TCP reset connection
request (RST). This will travel back to S forcing a new TCP
and TLS handshake. The latter detail is very important since it
implies that A will observe a new TLS handshake. S uses the
Encrypted Client Hello (ECH) of this handshake to prove that
the key used in ECH is the one encrypted by R in CpkD . If the
ZKP verification fails, the tunnel is interrupted. Otherwise, this
traffic is authorized without A learning the domain’s SNI or
its public key. A potential avenue of attack here is a collusion
between S and R. This translates into a sybil attack, a popular
attack on the DHT for which many countermeasures exist [9].

C. Zero Knowledge Proof
During the forced re-negotiation of the TLS handshake,

S leverages the Encrypted Client Hello mechanism as de-
fined in [38]. The Client Hello (CH) is encrypted using
a HPKE algorithm under the domain’s public key CCH =
HPK.Enc(CH, pkD). This, together with the information re-
ceived from X : CpkD , sR and pkR are the key components
of the ZKP used in VPN-Zero.

In a nutshell, the user proves that the key used to encrypt
CH is the same as the one encrypted in CpkD , and that
Verify(CpkD , pkR) validates. We adopt the Camenisch-Stadler
notation [8] to denote such proofs and write:

Π = SPK{(pkD, CH, skEG
S ) :

CCH = HPK.Enc(CH, pkD) ∧ Verify(sR, pkR) = > ∧
ElGamal.Dec(CpkD , skEG

S ) = pkD}

to denote the non-interactive signature proof of knowledge that
the prover knows the public key pkD used to encrypt CH in
CCH , and encrypted in CpkD , where the latter is signed by
pkR. The values between the parenthesis, (pkD, CH, skEG

S ),
are kept private while the other values used in Π are public.

Such proof is not straightforward. We firstly prove that a
ciphertext, CCH , is the result of an encryption without disclos-
ing neither public key nor plaintext. We use the construction
presented in [7] for this purpose. Then we link the public
key encrypted in clause two, with the one used in clause one.
For this we use a proof that two commitments hide the same
secret [4]. Finally the third clause can be openly computed by

Fig. 3. CDF of lookup duration; ProtonVPN and Mainline DHT.

A given that it received the public key from R. Using this, S
can convince A that the tunnel created is to a domain that the
latter considers valid, without disclosing which one.

IV. PRELIMINARY EVALUATION

This section preliminary evaluates VPN-Zero. Apart from
the zero knowledge calculation, VPN-Zero consists of well
known components for which large scale production systems
already exist. Instead of building a small scale testbed or some
form of emulator/simulator, we have integrated VPN-Zero—
to the extent that is possible without third party cooperation
— with Mainline [44] (Bittorent’s DHT based on Kademlia
with tens of millions of users), and ProtonVPN [35], a popular
VPN provider. We further use OpenVPN [31] to run the first
VPN path on a Rasberry Pi we control.

Figure 2 shows a graphical representation of our setup.
Please note that we kept the node labeling from Figure 1
as a direct reference. The figure is further enhanced with
wireshark data from the ongoing traffic captured at S. A
headless browser [17] runs on a laptop (node A) and it is
instrumented to visit a TLSv1.3-enabled website. For this test
we used facebook.com (31.13.71.36 in the figure).

The laptop connection is tunneled through a Raspberry Pi
(node X) located in the same LAN as S; note that this is
a worst case scenario for VPN-Zero since the extra network
latency would further hide our traffic verification process.
Whenever a new visit is started, node X performs a DHT query
in Mainline. Note that in VPN-Zero design this operation is
accomplished by A while spoofing X’s IP address. Since this
would require a modification of transmission [43], the
BitTorrent Linux client we instrumented for our tests, we opted
for a simplification which does not impact the performance
evaluation. As input for the DHT lookups, we use the top 100
magnet links (DHT hashes) as indicated by ThePirateBay [1].
As soon as the DHT response is received, our script opens a
new tunnel to a random ProtonVPN server (node A) from the
list provided with a basic subscription. Meanwhile, the ZKP
is calculated at S to be then sent to A for tunnel validation.
This latter step was not implemented since it would require
collaboration with ProtonVPN.

Figure 3 shows the Cumulative Distribution Function (CDF)
of DHT lookup duration in the Mainline DHT for its top 100
hashes. Overall, we observe a uniform distribution between
1 and 20 seconds. Contributions to this delay are: diverse
network paths taken by DHT lookups, failures along the
path, lookup replication factor, etc. It is worth noting that a



Fig. 4. CDF of time spent on URL ; 1M browser sessions.

similar result was measured for Mainline in [44], and [41]
for KAD, the DHT used by eMule [16]. Further, lookup
optimizations are possible to speedup these operations, e.g.,
Steiner et al. [41] show how KAD latency can be halved with
no extra load on the DHT.

The next operation post DHT lookup is the setup of the
second leg of the VPN chain. Figure 3 also shows the CDF of
such VPN setup time computed for 72 VPN nodes — 96 nodes
were tested but 24 failed, i.e., negotiation did not succeed
within 30 seconds. This high failure rate is potentially due to
a ProtonVPN protection for too frequent switches. The figure
shows a median reconnect time of 4 seconds and worst case
durations of up to 10 seconds.

When putting all together, we estimate that VPN-Zero
requires a median setup time of 10 seconds, and a worst
time of 25-30 seconds. We benchmarked our ZKP calculation
using a Python prototype implementation and measured an
average of 10 seconds. This indicates that the ZKP calculation
can potentially be VPN-Zero bottleneck, especially since both
DHT lookup and VPN tunnel setup can be optimized, if
needed. It is thus clear that our main future work consists
in optimizing how the ZKP calculation should be carried
to minimize its duration. Our current directions are both an
improvement of the protocol such as using Elliptic Curve
based (and thus more efficient) KEM [3], and a switch to
better performing languages (Rust, C++).

Note that the above latency is currently hidden to the user
thanks to VPN-Zero design. However, the longer our procedure
takes the higher the chance for the user to generate unautho-
rized traffic. To comment on the latter, we have analyzed one
million browsing session from Ciao [10], a Chrome plugin
which helps discovering and using free HTTP(S) proxies on
the Internet. We define a session as the time spent at a specific
URL, either manually entered in the browser or opened by
clicking on a link. This consists of the page load time plus
the actual time the user spends interacting with a page. Note
that Ciao only collects page load time, time on site, and bytes
transferred. Any other private information like IP address or
URL requested are not collected.

Figure 4 shows the CDF of the time spent on a URL for
the above browsing sessions. We differentiate between “fast”
and “slow” where fast does not account for the PLT which is
slower than usual in our dataset since free proxies are used.
We further enhance the figure with a vertical line showing
VPN-Zero median verification time (10 seconds). The figure

TABLE I
COMPARISON OF VPN-Zero VERSUS THE EXISTING APPROACHES WITH

RESPECT TO THE REQUIREMENTS DESCRIBED IN SECTION II

Requirements Research Hola VPN Mysterium/ VPN-Zero
Gate Sentinel

Open Source X X X X X
IP Blacklisting X X X X X
QoS Guarantees X X X X -
No Logging X X X X X
Traffic Account X X X X X
Traffic Blame X X X X X

shows that 20% of the sessions would change before traffic
verification. Note that this is a worst case analysis since our
session definition potentially implies users remaining at a
given domain, e.g., by opening a new article on a news site.

V. RELATED WORK

Zero Knowledge Proofs: In [18], authors introduced a ZKP
proof to verify RSA signatures, which could be easily extended
to verify RSA encryptions under a certain key. However, for
this construction, the knowledge of the public key (modulus
and exponent) is necessary. To hide such information, we
implemented Camenisch’s ZKP of modular exponentiation
presented in [7]. However, the range proof included in this
paper is not up to date with current state of the art range
proofs. Peng and Bao’s [33] scheme improves on previous
work, which is the construction we have used for VPN-Zero.
Distributed Virtual Private Networks: The idea of a dVPN
is far from novel, with many designs dating now more than
10 years back, i.e., when P2P research was at its peak. To
the best of our knowledge, ELA [2] was one of the first
approach to decentralize a VPN. Several other variations then
appear, such as SocialVPN [24] a system which drives the
peer selection strategy based on social relationships among
nodes, or N2N [13] where users share a common encryption
key obtained when they join. None of this approach provides
strong privacy guarantees as VPN-Zero. However, we start
noticing a trend towards protecting user identity and traffic,
e.g., only routing it through friends and providing strong online
identities.

With the recent rise of blockchain, a new form of dVPNs
has surfaced. In such, the rationale is to share a user’s
upload bandwidth in exchange for some crypto tokens such as
Filecoin [34]. Another popular example is Mysterium [42], an
open source dVPN completely built upon a P2P architecture.

VI. DISCUSSION

In its current design, VPN-Zero suffers from a lim-
itation when operating on traffic towards a CDN. The
ClientHello (and thus the SNI) is encrypted using the
CDN’s public key, so that the CDN can decrypt, and decide
where to send the connection – for which it needs to ex-
tract the SNI. In presence of a CDN, the current design of
ClientHello/SNI encryption limits VPN-Zero visibility to
which CDN serves some traffic rather than which websites,
which reduces the granularity of the allowlists. We plan to
address this in future work exploring solutions like DECO [46],
where using an interactive protocol, a prover can convince a



verifier of the origin (the website) of some data. In our case,
the requirement of interactiveness is implicit in the protocol,
and hence, using such a solution would require no added
rounds of communication.

The above issue disappears in the context of IPFS and
libP2P [22], a new generation of overlay network which may
allow to remove CDNs. Libp2p allows to create an application
endpoint over different transports and uses a peer identifier to
advertise the service in the network. Any connected computer
can host a website together with x509 certificate, thus enabling
our proving scheme. To scale, libp2p allows to replicate
services among trusted peers, which hold a copy of the original
x509 certificate, thus allowing VPN-Zero to properly work.

REFERENCES

[1] Anonymous. The pirate bay. https://www.thepiratebay.org, 2019.
[2] S. Aoyagi, M. Takizawa, M. Saito, H. Aida, and H. Tokuda. Ela: a

fully distributed vpn system over peer-to-peer network. In The 2005
Symposium on Applications and the Internet, Feb 2005.

[3] Richard Barnes, Karthikeyan Bhargavan, and Christopher A. Wood.
Hybrid Public Key Encryption. Internet-Draft draft-irtf-cfrg-hpke-04,
Internet Engineering Task Force, May 2020. Work in Progress.

[4] Fabrice Boudot. Efficient proofs that a committed number lies in an
interval. In Advances in Cryptology — EUROCRYPT 2000, pages 431–
444, Berlin, Heidelberg, 2000. Springer.

[5] John Brainard, Burt Kaliski, Sean Turner, and James Randall. Use of
the RSA-KEM Key Transport Algorithm in the Cryptographic Message
Syntax (CMS). RFC 5990, September 2010.

[6] Martin Brinkmann. Beware: Hola vpn turns your pc into an exit node and
sells your traffic. https://www.ghacks.net/2015/05/28/\\beware-hola-
vpn-turns-your-pc-into-an-exit-node-and-sells-your-traffic/, 2015.

[7] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a
number is the product of two safe primes. In EUROCRYPT ’99, pages
107–122, Berlin, Heidelberg, 1999. Springer.

[8] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Proceedings of the 17th
Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’97, pages 410–424, 1997.

[9] Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Evaluation
of sybil attacks protection schemes in kad. In IFIP International
Conference on Autonomous Infrastructure, Management and Security,
pages 70–82. Springer, 2009.

[10] CIAO Team. Automated free proxies discovery/usage.
https://chrome.google.com/webstore/detail/automated-free-proxies-
di/ojjklffhhhfpeaelghfocilljceokage?hl=en.

[11] Catalin Cimpanu. Hacking vpn servers to plant backdoors in companies.
https://www.zdnet.com/article/iranian-hackers-have-been-hacking-vpn-
servers-to-plant-backdoors-in-companies-around-the-world/, 2020.

[12] Cloudlfare. Browsing experience security check. https://
www.cloudflare.com/ssl/encrypted-sni/, 03/2021.

[13] Luca Deri and Richard Andrews. N2n: A layer two peer-to-peer
vpn. In IFIP International Conference on Autonomous Infrastructure,
Management and Security, pages 53–64. Springer, 2008.

[14] Martin Dittus, Joss Wright, and Mark Graham. Platform criminalism:
The ’last-mile’ geography of the darknet market supply chain. In
Proceedings of the 2018 World Wide Web Conference, WWW ’18,
pages 277–286, Republic and Canton of Geneva, Switzerland, 2018.
International World Wide Web Conferences Steering Committee.

[15] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Proceedings of CRYPTO 84 on
Advances in Cryptology, pages 10–18, 1985.

[16] Merkur et al. Emule. https://www.emule-project.net/home/perl/
general.cgi?l=1, 2019.

[17] Google. Puppeteer. https://github.com/GoogleChrome/puppeteer, 2019.
[18] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-

knowledge protocol fitted to security microprocessor minimizing both
transmission and memory. In EUROCRYPT’88, 1988.

[19] Brendon Harris and Ray Hunt. Tcp/ip security threats and attack
methods. Computer communications, 22(10):885–897, 1999.

[20] P. Hoffman. Dns queries over https (doh). https://tools.ietf.org/html/
rfc8484, 2018.

[21] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,
Mohamed Ali Kaafar, and Vern Paxson. An analysis of the privacy
and security risks of android vpn permission-enabled apps. In Proc.
ACM IMC, pages 349–364. ACM, 2016.

[22] IPFS Team. Inter-Planetary File System. https://ipfs.io/.
[23] Mark Jackson. Ipact - controversial new uk isp internet snooping

bill becoming law. https://www.ispreview.co.uk/index.php/2016/11/
controversial-new-uk-internet-snooping-bill-approved-mps.html, 2016.

[24] Pierre St Juste, David Wolinsky, P Oscar Boykin, Michael J Covington,
and Renato J Figueiredo. Socialvpn: Enabling wide-area collaboration
with integrated social and overlay networks. Computer Networks, 2010.

[25] M Frans Kaashoek and David R Karger. Koorde: A simple degree-
optimal distributed hash table. In International Workshop on Peer-to-
Peer Systems, pages 98–107. Springer, 2003.

[26] Jacob Kastrenakes. Congress just cleared the way for internet providers
to sell your web browsing history. https://www.cnbc.com/2017/03/28/
congress-clears-way-for-isps-to-sell-browsing-history.html, 2017.

[27] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M Voelker, Alex C
Snoeren, Chris Kanich, and Narseo Vallina-Rodriguez. An empirical
analysis of the commercial vpn ecosystem. In Proc. ACM IMC, 2018.

[28] Jeremy Kirk. Nordvpn says server compromised due to mis-
configuration. https://www.bankinfosecurity.com/nordvpn-says-server-
compromised-due-to-misconfiguration-a-13278, 2019.

[29] Alexander J Martin. Do you use hola vpn? you could be part of a
ddos, content theft - or worse. https://www.theregister.co.uk/2015/06/
10/hola\ gets\ holes\ poked\ in\ client\ lulzsec/, 2015.

[30] Daiyuu Nobori and Yasushi Shinjo. VPN gate: A volunteer-organized
public VPN relay system with blocking resistance for bypassing gov-
ernment censorship firewalls. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 229–241, Seattle, WA, 2014. USENIX.

[31] OpenVPN. Open vpn. https://openvpn.net/, 2019.
[32] ownVPN.io. Create your own vpn. https://proprivacy.com/guides/create-

your-own-vpn-server, 2019.
[33] Kun Peng and Feng Bao. An efficient range proof scheme. In

Proceedings of the 2010 IEEE Second International Conference on
Social Computing, SOCIALCOM ’10, pages 826–833, Washington, DC,
USA, 2010. IEEE Computer Society.

[34] Protocol Labs. Filecoin, a decentralized storage system. https://
filecoin.io/, 2021.

[35] ProtonVPN. Proton vpn. https://protonvpn.com/, 2019.
[36] E. Rescorla. Tls 1.3 rfc. https://tools.ietf.org/html/rfc8446, 2018.
[37] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood.

Encrypted Server Name Indication for TLS 1.3. Internet-Draft draft-ietf-
tls-esni-03, Internet Engineering Task Force, 3 2019. Work in Progress.

[38] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood.
TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-07, Inter-
net Engineering Task Force, June 2020. Work in Progress.

[39] Sentinel.co. Sentinel: Interoperable network layer for distributed re-
sources. https://sentinel.co/.

[40] Craig Silverman. Popular vpn and ad-blocking apps are secretly harvest-
ing user data. https://www.buzzfeednews.com/article/craigsilverman/
vpn-and-ad-blocking-apps-sensor-tower, 2020.

[41] Moritz Steiner, Damiano Carra, and Ernst W Biersack. Evaluating
and improving the content access in kad. Peer-to-peer networking and
applications, 2010.

[42] The Mysterium Network. Mysterium network: Decentralised vpn built
on blockchain. https://mysterium.network/.

[43] TransmissionBT. Transmission. https://transmissionbt.com/, 2019.
[44] Matteo Varvello and Moritz Steiner. Traffic localization for dht-

based bittorrent networks. In International Conference on Research in
Networking, pages 40–53. Springer, 2011.

[45] Ofer Vilenski and Derry Shribman. Hola free vpn - unblock any website.
https://hola.org/, 2020.

[46] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and
Ari Juels. DECO: liberating web data using decentralized oracles for
TLS. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1919–1938. ACM, 2020.

[47] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D
Joseph, and John D Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on selected areas in
communications, 22(1):41–53, 2004.


