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Abstract—With the development of airborne equipment and
integrated avionics technology, the unmanned aerial vehicle
(UAV) network replaces human beings in many fields. To improve
the durability of the UAV network, we propose a nondisruptive
wireless rechargeable UAV network (WRUN) model, in which
UAVs can be charged by wireless static chargers (WSCs) without
returning back to the charging platform. Under the nondisruptive
WRUN model, a baseline algorithm is proposed to solve the
nondisruptive charging time schedule problem (nCTSP), in which
chargers do not release energy all the time and can ensure
UAVs do not run out of energy. Then to improve the energy
utilization rate of WSCs, we propose an efficient charging time
scheduling algorithm (ECTSA), in which the flight time and paths
of UAVs are discretized and nCTSP is transformed into a linear
binary integer programming (LBIP) problem to calculate the
efficient charging time periods of WSCs. Finally, experiments
are conducted to verify that ECTSA can improve the energy
utilization of WSCs.

Index Terms—UAV networks, wireless charging, UAV charging,
nondisruptive charging, partial charging

I. INTRODUCTION

At present, unmanned aerial vehicle (UAV) has been widely
used in various fields to replace humans in completing some
urgent and dangerous tasks [8], such as forest fire fighting
and battlefield surveys. The survivability and capability of a
single UAV are limited [9]. Therefore, in many scenarios, the
ground base station (GS) coordinates multiple UAVs into a
UAV network [10] to complete missions. However, the energy
capacity of UAVs is limited and if one UAV runs out of energy,
the time for the UAV network to complete the mission will
increase a lot.

There have been some studies dedicated to extending the
lifetime of UAVs. According to the location of replenishing
energy, there are two main types: charging on the ground [12]
and in the air [14]–[16]. A battery replacement platform on
the ground is designed in [12] and a ground contact charging
platform is used to charge UAVs [13]. However, charging
on the ground requires UAVs to land first, which will incur
too much turnaround time. To solve this problem, some new
wireless charging methods are proposed to charge UAVs in the
air [14]–[16]. Although these methods can reduce the time of
landing and taking off, they still require UAVs to hover and
suspend the mission they are performing until the charging is
completed.

Motivations: 1) At present, UAVs need to hover and sus-
pend the mission being performed to replenish energy, which
leads to a longer time for the UAV network to complete tasks.
To improve the efficiency of task execution, we introduce
wireless power transmission technology (WPT) [2] to obtain
a nondisruptive wireless rechargeable UAV network (WRUN)
in which UAVs can be charged while flying. 2) By deploy-
ing wireless static chargers (WSCs) to charge UAVs during
mission execution, the UAV network can complete long-term
missions. However, WSCs continuously release energy, which
will cause a lot of energy waste. To reduce the energy waste,
under the premise that UAVs will not run out of energy and
can complete the task successfully, we schedule WSCs to turn
on and release energy only in certain time periods.

Challenges: To realize nondisruptive charging, we face the
following challenges. During the flight of UAVs, the topology
of WRUN changes dynamically, which leads to an infinite so-
lution space in time and space. From the space perspective, the
distance between the UAV and the WSC changes continuously
during the flight, so the number of positions that UAV can be
charged is infinite. Considering the time, there are countless
charging time periods for the charger to turn on and charge.

To transform the infinite solution space into finite, we
discretize the flight paths of UAVs in time and space simulta-
neously [29], [30], and formalize the nondisruptive charging
time scheduling problem (nCTSP) as an optimization problem.
Then two algorithms are proposed to solve nCTSP.

In summary, the main contributions of this paper are as
follows:

• As far as we know, we are the first to consider the
nondisruptive charging time schedule problem (nCTSP)
in WRUN. By scheduling WSCs to turn on and release
energy in appropriate charging time periods, the energy
utilization rate is improved.

• In order to solve nCTSP, we first propose a baseline
algorithm to get the charge time periods of WSCs, which
can ensure the energy of UAVs will not be used up during
the flight.

• To further improve the energy utilization rate of WSCs
and get the efficient charging time periods, we propose an
efficient charging time scheduling algorithm (ECTSA), in
which the flight time and paths of UAVs are discretizedISBN 978-3-903176-39-3©2021 IFIP



and nCTSP is transformed into a linear binary integer
programming (LBIP) problem.

• Finally, experiments are conducted to verify the effec-
tiveness of ECTSA in terms of the energy utilization of
WSCs.

The rest of this paper is organized as follows: we in-
vestigate related work in Section II. Section III introduces
the network model, charging model, and problem statement.
Two algorithms we proposed in this paper are introduced in
Section IV and Section V respectively. Experimental results
and conclusions are provided in Section VI and Section VII.

II. RELATED WORK

In this paper, to extend the lifetime of UAVs, we deploy
wireless static chargers (WSCs) with wireless power trans-
mission technology (WPT) [2] to wirelessly charge UAVs.
At present, WPT is widely used in the wireless charging
of rechargeable devices, and there has been a lot of works
dedicated to the scheduling of wireless chargers. We introduce
these works from three aspects: the charging model, charging
way, and the angle of charging.

1) One-to-one and one-to-many charging: According to the
number of devices that can be charged simultaneously, there
are two charging models: one-to-one [5] and one-to-many [6].

In the one-to-one model, the wireless charger can only
charge one device at a time. Lin et al. consider the problem of
maximizing energy efficiency with a charger to charge nodes
one to one in [22]. The time that the one-to-one charging
model takes is long and to improve charging efficiency, one-
to-many charging is proposed, in which chargers can charge
multiple devices simultaneously [7]. To maximize energy
efficiency, [21] schedules chargers to charge multiple nodes
at the same time by optimizing the traveling path of chargers.

2) Partial and full charging: According to the amount of
energy charged each time, there are two charging ways: partial
charging and full charging.

In full charging, each time the charger charges the UAV to
its maximum energy capacity. To improve the energy utiliza-
tion, an approximate algorithm with a constant approximate
ratio is proposed in [23] and a global optimization scheduling
algorithm TSCA is developed in [22], in which the devices
are charged fully every time.

In partial charging, the UAVs don’t need to be charged to
their energy capacity, so the charging takes a shorter time.
But if all devices are partially charged with little energy, they
will request charging again in a short time and the charger
cannot respond to all requests in time, so, some devices that
can’t wait for charging will run out of energy. Therefore, Lin
considers which devices are partially charged by a charger
and how much energy is charged in [20]. To further improve
charging efficiency, a multi-node time-space partial charging
algorithm (MTSPC) is proposed in [21], which schedules
multiple chargers simultaneously.

3) Omnidirectional and directional charging: According to
the charging angle of wireless chargers, there are currently

two main types of charging: omnidirectional and directional
charging.

In directional charging, the wireless charger can rotate and
the charging range is a sector. Considering the mobility of the
device, the charging utility is maximized by rotating the angle
of chargers in [24]. Lin et al. consider the charging delay of
the mobile charger to reduce the energy waste in [25].

In omnidirectional charging, the charging area of chargers
is a circle. Liang and Zhang focus on the minimum number of
omnidirectional mobile charging vehicles that are required by
WRSNs [26], [27], and Zhang proposes the Pushwait algo-
rithm in [27]. However, neither of them combines temporal
and spatial requirements in their charging decision-making
process. Deng et al. do consider spatiotemporal constraints in
their Decouple Spatiotemporally Coupled Constraint (DSCC)
algorithm [28].

However, all these methods schedule chargers in a static
network. So these scheduling methods are not applicable in
WRUN. In this paper, considering the dynamic topology of
the UAV network, we use omnidirectional charging to charge
UAVs partially, which can improve the energy utilization of
chargers while the UAVs will not run out of energy during the
flight.

III. PRELIMINARIES

In this section, we introduce the network model, charging
model, and the formalization process of nCTSP. The related
symbols and definitions are shown in Table I.

TABLE I: Symbols and Definitions

Symbols Definitions
I Number of UAVs
J Number of WSCs
M The number of time periods after segment
T The work time of WRUN
Tm The m-th time period after segmentation
∆T The length of each time period Tm
initEi Initial energy of UAV ui
Ei

max Energy capacity of UAV ui
vif Flight speed of ui
vic Energy consumption Rate of ui
R Charging radius
Pr Received power
reti Remaining energy of ui at time t
ei Energy received by ui
Rj Energy utilization rate of charger cj
e Dispersion factor
ε Dispersion power error

trki,j The k-th rechargeable time period of ui

A. Network Model

As shown in Fig. 1, in WRUN, the ground base station (GS)
plans the flight paths of UAVs with path planning algorithms
[4], and WSCs are deployed in WRUN in advance [28]. GS
is responsible for receiving the monitoring data returned by
UAVs and scheduling WSCs to turn on and release energy
at appropriate time. Here we consider that WSCs are sparse
in the network, and a UAV can only receive the energy from
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Fig. 1: The network model

one WSC in one location [19]. If a WSC is releasing energy,
UAVs within the WSC’s charging range can receive the energy
without suspending the current missions.

B. Charging Model
This paper uses the WISP-reader charging model [18]. The

power received by the UAV is calculated as below:

Pr(c, p) =
GsGrη

Lp

(
λ

4π (dist(c, p) + β)

)2

P0 (1)

where dist(c, p) is the Euclidean distance between the location
of charger c and location p, P0 is the source power of chargers,
Gs is the source antenna gain, Gr is the receive antenna gain,
Lp is polarization loss, λ is the wavelength, η is rectifier
efficiency, and β is a parameter to adjust the Frris’ free space
equation for short-distance transmission.

In one-to-many charging model [7] and the omnidirectional
charging [27], assuming the maximum charging radius of
chargers is R [17], the charging range of each WSC is a
circle with radius R. When there are multiple UAVs close to a
WSC within R, all these UAVs can be charged simultaneously.
Besides, in (1), except for the parameter dist(c, p), the rest are
all constants determined by the environment or device. We
merge all these constants into α and simplify the model to:

Pr(c, p) =


α

(β + dist(c, p))
2 , dist(c, p) ≤ R

0, dist(c, p) > R
(2)

C. Problem Formalization
In WRUN, there are J WSCs C = {c1, c2, · · · , cJ}, and I

UAVs U = {u1, u2, · · · , uI}. The flight time of UAV ui(1 ≤
i ≤ I) is denoted as flytimei and the working time T of the
entire UAV network is the time when UAVs complete their
missions T = max{flytime1, f lytime2, · · · , f lytimeI}.

The UAV ui continuously consumes energy during the flight
and when the remaining energy reti of ui at time t (0 ≤ t ≤
flytimei) is lower than 0, ui will drop and the mission will
fail. This paper aims to find charging time periods for WSCs
to turn on and charge UAVs wirelessly, so that the UAVs can
replenish energy in time while the energy utilization rate of
WSCs is maximized.

We formalize this nondisruptive charging time schedule
problem (nCTSP) as an optimization problem:

max

J∑
j=1

Rj (3)

subject to: {
reti > 0

reti < Eimax
(4)

where:

Rj =

∑I
i=1 ∆Eij
Ej

(5)

In (3), Rj is the energy utilization rate of WSC cj , which is
related to Ej and ∆Eij . Ej is the total energy that cj released,
and ∆Eij is the total energy that UAV ui received from cj .

The constraint condition in (4) is used to ensure the UAV
cannot run out of energy during flight, that is, the remaining
energy reti at any time is greater than 0 and less than its
maximum energy capacity Eimax.

IV. BASELINE ALGORITHM

In this section, we propose a baseline algorithm to calculate
the charging time periods to ensure UAVs do not run out of
energy. In the baseline algorithm, WSCs do not charge all the
time and only release energy when there are UAVs entering
their charging ranges.

Fig. 2: The example of rechargeable time periods

As shown in Fig. 2, UAV u1 flies to position a at time t1
and starts to enter the charging radius of charger c3. Then
u1 flies to position b at time t2 when it leaves the charging
radius of c3. When u1 flies to position c at time t3, it enters
the charging radius of c3 again and leaves c3 when it reaches
d at time t4. The flight time from a to b is regarded as the 1-th
rechargeable time period tr11,3 = [t1, t2] of u1 about charger
c3, and the flight time from c to d is the 2-th rechargeable
time period tr21,3 = [t3, t4] of u1 about c3. In the same way,
the rechargeable time period sets RTP 1 of u1 and RTP 2 of
u2 can be obtained as:

RTP 1 =
{
tr11,3, tr

2
1,3, tr

3
1,4

}
RTP 2 =

{
tr12,3, tr

2
2,4

}
After obtaining the rechargeable time period sets of all

UAVs, we can calculate the charging time period CTPj of
WSC cj . First, we select all the rechargeable time periods of
UAVs about WSC cj , and then the union of these rechargeable
time periods is regarded as the charging time period CTPj of
cj . Taking Fig. 2 as an example, the rechargeable time periods
of u1 and u2 about the charger c3 are: tr11,3, tr

2
1,3, tr

1
2,3, so the

charging time period of charger c3 is CTP3 = tr11,3 ∪ tr21,3 ∪
tr12,3, during which c3 releases energy and charges UAVs.



V. ECTSA

Although in the baseline algorithm, WSCs do not charge
all the time and only release energy when there are UAVs
entering their charging ranges, once the number of UAVs
that enter the charge range of a WSC increases, the charging
time duration of the WSC will be extended greatly. Therefore,
considering the energy utilization rate of WSCs, the solution
of the baselin algorithm is not efficient. In this section, we
introduce an efficient charging time scheduling algorithm
(ECTSA), in which we transform nCTSP into a linear binary
integer programming (LBIP) problem to calculate the efficient
charging time periods of WSCs.

ECTSA mainly includes the following three steps:
Step 1: First, we divide the working time [0, T ] of WRUN

into M time periods {T1, T2, · · · , TM} to determine whether
WSCs release energy in each time period Tm(1 ≤ m ≤M).

Step 2: Then, in order to calculate the power received by
UAVs in each time period Tm, we discretize the continuous
flight paths of UAVs into discrete locations to calculate the
power received at each discrete location.

Step 3: Thirdly, based on the M time periods obtained by
the first step and the result of path discretization in the second
step, we transform nCTSP into a LBIP problem to get the
efficient charge time period of WSCs.

A. Time Period Segmentation

To transform nCTSP into a LBIP problem, we first divide
the work time interval [0, T ] of the WRUN into M time
periods T1, T2, · · · , TM , where Tm = [ (m−1)T

M , mTM ], (1 ≤
m ≤ M) and T is the end time for completing the task of
WRUN. The length of each time period Tm is denoted as
∆T = T

M . Then we define a flag xjm to denote the status
of each WSC cj in each time period Tm. xjm = 1 indicates
that cj releases energy during the time period Tm, otherwise
cj will not release energy in Tm. Therefore, the problem of
calculating the charging time periods of WSCs is transformed
into a LBIP problem of calculating the value of xjm.

B. Path Discretization

After time period segmentation, we need to calculate the
energy received by UAVs in each time period Tm.

From (2), during the flight of UAVs, the position of UAVs
changes continuously, so the charging power received by the
UAVs from each WSC changes continuously. In order to
calculate the received power of UAVs during the flight and
realize nondisruptive charging, we discretize the continuous
flight paths into discrete locations and calculate the charging
power of UAVs at each discrete location.

With the discretization method introduced in [17], the partial
flight paths of UAVs within the maximum charging radius R
can be discretized according to the received power of UAVs.

As shown in Fig. 3, regarding the charging circle of charger
cj as a Smallest Enclosing Space (SES) [17], and then we
divide the SES into D concentric circles. The d-th circle of
WSC cj is Cdj with radius Rdj (1 ≤ d ≤ D). So, the charging
circle of cj is divided into D rings: ring1j , ring

2
j , ..., ring

D
j .

Fig. 3: Flight path discretization

The d-th ring is denoted as ringdj , whose inner radius and
outer radius are Rdj and Rd+1

j respectively. The number of
rings D is related to the charging radius R, which can be
calculated as:

D =


2 ln

(
1 + R

β

)
ln(1 + ε)

 (6)

With (2), the power received from cj at all points on the
circle Cdj is:

Pr(cj , C
d
j ) =

α

(β +Rdj )
2

We restrict the ratio of power received at points on adjacent
circles Cdj and Cd+1

j with the power error threshold ε(0 <
ε < 1) [17], which means the division of SES must satisfy the
following condition:

Pr(cj , C
d+1
j ) =

Pr(cj , C
d
j )

1 + ε
(7)

Therefore, the ratio of the power received at any two
locations p1 and p2 in d-th ring ringdj meets the following
condition:

(1 + ε)−1 ≤ Pr(cj , p1)

Pr(cj , p2)
≤ 1 + ε (8)

To deal with the continuous charging power received by
UAVs, we approximate the power received at any location in
ring ringdj as Pr(cj , Cd+1

j ), so that the received power of
UAVs in each ring is a constant. Then the flight path in a ring
can be approximated as a discrete location, and the energy
received in each ring is approximately the power received at
this discrete location times the flight time in the ring. In this
way, we can calculate the power received by UAVs in each
ring that is bounded by power error ε.

As shown in Fig. 3, when UAV ui flies to the position
p in ring ringdj , whose inner radius and outer radius is Rdj
and Rd+1

j , the received power of ui are approximated as
Pr(cj , p) ≈ Pr(cj , C

d+1
j ). Then the energy received by ui

in ringdj is ∆E ≈ ∆t · Pr(cj , p), where ∆t is the flight time
in ringdj .



C. Transform nCTSP into a linear programming problem

In this section, we transform nCTSP into a LBIP problem
to determine whether WSC cj releases energy in each time
period Tm, that is, xjm = 0 or 1.

After time period segmentation and path dicretization,
nCTSP can be reformulated as:

max f(X) =

J∑
j=1

M∑
m=1

Rjm (9)

subject to: {
ereim > 0

ereim < Eimax

(10)

where:

Rjm =

∑I
i=1 ∆Em,ji

P0 ·∆T
(11)

∆Em,ji = xmj ·
Ki∑
k=1

Dk
i,j∑

d=1

(Prk,di,j ·∆t
k,d
i,j ) (12)

xmj ∈ {0, 1} (13)

Prk,di,j = Pr(cj , C
d
j ) (14)

ereim = sreim +

J∑
j=1

∆Em,ji −∆T · vic (15)

sreim =

{
initEi,m = 1

ereim−1,m > 1
(16)

As shown in (9), the energy utilization rate Rj of each
WSC cj(1 ≤ j ≤ J) in (3) is reformulated as the sum of
the utilization rate Rmj of cj in each time period Tm(1 ≤
m ≤M). Besides, to ensure UAVs do not run out energy, the
constraint in (4) is denoted as (10). As long as the residual
energy ereim of UAV ui at the end time of each time period
Tm(1 ≤ m ≤M) is more than 0, ui will not run out of energy
during the flight.

In (11), ∆Em,ji is the energy that ui received from cj in
Tm. After path deiscretizetion in Section V-B, ∆Em,ji can be
calculated as (12), in which we use Prk,di,j to denote the energy
that ui received from cj in the d-th discretized location in the
k-th rechargeable time period of ui and ∆tk,di,j is the time
duration when ui flies in the ring ringdj .

From (15), the residual energy ereim of ui at the end time
of Tm is equal to the residual energy of ui at the start time
sreim plus the energy that ui received from all WSCs in Tm
minus the energy ui consumed. If m = 1, the residual energy
of ui at the start time sreim is the initial energy initEi of ui,
otherwise, sreim is equal to the residual energy ereim−1 at the
end time of previous time period Tm−1.

In order to calculate the optimal charging time periods
WSCs, that is, to determine xjm = 0 or 1, we deduce (9) and
(10), and transform nCTSP into a binary linear programming
(LBIP) problem as below.

First, combined (16) and (15), the constraint of ui in each
time periods are transformed into a linear constraint:

ereim = sreim +

J∑
j=1

∆Em,ji −∆T · vic

= ereim−1 +

J∑
j=1

∆Em,ji −∆T · vic

= · · ·

= srei1 +

m∑
m′=1

J∑
j=1

∆Em
′,j

i −m ·∆T · vic

(17)

Eimax > srei1 +

m∑
m′=1

J∑
j=1

∆Em
′,j

i −m ·∆T · vic > 0 (18)

Learned from (12), we use wm,ji to represent all the energy
that ui can receive in time period Tm when the WSC cj is
releasing energy.

wm,ji =

Ki∑
k=1

Dk
i,j∑

d=1

Prk,di,j ·∆t
k,d
i,j (19)

Thus, we have:

∆Em,ji = xjm · w
m,j
i (20)

After getting wm,ji , we define the matrix W to represent the
energy that each UAV received from each WSC in each time
period.

W =
[
W1 W2 · · · WI

]T
(21)

where:

Wi =


W 1
i 0 · · · 0

W 1
i W 2

i · · · 0
...

...
. . .

...
W 1
i W 2

i · · · WM
i

 (22)

Wm
i =

[
wm,1i wm,2i · · · wm,Ji

]
(23)

From (18), we have:

m∑
m′=1

J∑
j=1

xj
m′ · wm′,j

i > m · ∆T · vic − initEi

m∑
m′=1

J∑
j=1

xj
m′ · wm′,j

i < Ei
max +m · ∆T · vic − initEi

(24)

We define the matrices U and L to represent the upper and
lower bounds of the remaining energy of UAVs, which satisfy
the constraint (10).

L =
[
L1 L2 · · · LI

]T
(25)

U =
[
U1 U2 · · · UI

]T
(26)

where:
Li =

[
L1
i L2

i · · · LMi
]T

(27)



Lmi = vic ·m ·∆T − initEi (28)

Ui =
[
U1
i U2

i · · · UMi
]T

(29)

Umi = vic ·m ·∆T − initEi + Eimax (30)

We define the independent variable matrix X , where Xj

represents the status of each WSC cj in M time periods, that
is, xjm = 0 or 1.

X =
[
X1 · · · XM

]T
(31)

Xm =
[
x1m x2m · · · xJm

]T
(32)

So far, the constraints of nCTSP in (10) can be transformed
into a set of linear binary constraints:

L < W ×X < U (33)

Combined (12) and (19), the objective function (9) can be
denoted as:

f(X) =

J∑
j=1

M∑
m=1

∑I
i=1

(
xjm · w

m,j
i

)
P0 ·∆T

(34)

We define a matrix O to denote the energy that each UAV
ui(1 ≤ i ≤ I) received from each WSC during all time
periods.

O =
[
O1 O2 · · · OM

]
(35)

where:

Om =


wm,11 wm,21 · · · wm,J1

wm,12 wm,22 · · · wm,J2
...

...
. . .

...
wm,1I wm,2I · · · wm,JI

 (36)

Therefore, combined with the auxiliary matrices P and Q,
the objective function f(X) is transformed into a (J×M)×1
dimension linear objective function:

f(X) = P ×O ×Q×X (37)

where:
P =

[
1 · · · 1

]
1×I (38)

Q =


Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · QM

 (39)

Qm =
1

P0 ·∆T


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


J×J

(40)

In this way, nCTSP is transformed into a LBIP problem.
Considering the computational complexity, the heuristic algo-
rithm based on Lagrangean relaxation [3] is used to solve this
problem.

GS UAV WSC Flight path

(a)
GS UAV WSC Flight path

(b)
GS UAV WSC Flight path

(c)

Fig. 4: Different WRUNs

(a) The impact of M on ECTSA (b) The impact of M on ECTSA and
baseline algorithm

Fig. 5

VI. EXPERIMENT SIMULATION

In this section, we evaluate ECTSA by analyzing the
influence of different parameters on the energy utilization rate
of WSCs, including the dispersion factor e, the charging radius
R, the number of UAVs I , the number of WSCs J , and the
number of time periods M .

A. Simulation Setup

The algorithms are implemented on MATLAB, and the
linear binary integer programming (LBIP) problem is solved
by the heuristic algorithm based on Lagrangean relaxation [3].
As shown in Fig. 4(a), we deploy 5 UAVs and 10 WSCs
in advance and the parameters in WRUN are set according
to [4]. To compare the discrete granularity of different R
more intuitively, we define the discrete factor e = R

D , which
represents the distance between adjacent discrete locations
obtained in Section V-B.

B. Experimental results

1) The influence of e: To evaluate the influence of the
dispersion factor e on energy utilization, e is set from 0.1 to
10. We take simulation experiments under different WRUNs
in Fig.4. The simulation results are shown in Fig. 8 - Fig. 10.

Our simulation results show that ECTSA outperforms the
baseline algorithm in terms of energy utilization by up to
125%. As Fig. 8(f) shows, when e increases, the energy
utilization rate of the baseline algorithm remains unchanged
basically. However, with the increase of e, the energy utiliza-
tion rate of ECTSA fluctuates more violently but is still larger
than the baseline algorithm.



(a) The impact of I (b) The impact of J

Fig. 6

2) The influence of R: To evaluate the influence of the
charging radius R on energy utilization rate, R is set to 140,
150, 160, 170, 180, and 190 respectively. The result is shown
in Fig. 8.

Our simulation results show that on average, ECTSA outper-
forms the baseline algorithm in terms of energy utilization by
up to 157%. When R keeps increasing, the energy utilization
rate keeps the same trend with the change of the dispersion
factor e. Only when R is 150 and 160, the energy utilization
rate drops rapidly when e is very large. This is mainly because
when the value of R is very small and the distance of different
discrete locations e is large, there are too few locations that
UAVs can be charged within R, so the UAVs cannot receive
enough energy and the energy utilization rate decreases.

3) The influence of I: To evaluate the influence of the
number of UAVs I on energy utilization, I increases from
5 to 10, and the number of WSCs is 10. We perform multiple
experiments and the average energy utilization rate is shown
in Fig. 6(a).

Our simulation results show that on average, ECTSA outper-
forms the baseline algorithm in terms of energy utilization by
up to 92.16%. When I increases, the gap between ECTSA and
baseline algorithm in energy utilization rate becomes larger,
and ECTSA has more obvious advantages in improving energy
utilization rate. This is because when I increases, it means that
the number of UAVs that can receive energy from a WSC in-
creases. For the baseline algorithm, it is necessary to consider
the rechargeable time periods of more UAVs to merge, and the
charging time of the WSC will be extended accordingly. But
for ECTSA, as long as M remains unchanged, the charging
time of the WSC will not be prolonged.

4) The influence of J: To evaluate the influence of the
number of WSCs on energy utilization, we increase the
number of WSCs from 10 to 20 and the number of UAVs
is 6. The average energy utilization rate is shown in Fig. 6(b).

Our simulation results show that on average, ECTSA outper-
forms the baseline algorithm in terms of energy utilization by
up to 90.5%. When J increases, the gap between ECTSA and
baseline algorithm in energy utilization rate becomes larger,
and ECTSA has more obvious advantages in improving energy
utilization rate. This is because the increase of J means that
UAVs have more rechargeable time periods. For the baseline

algorithm, a UAV will pass more WSCs, and the charging
time of a WSC is unchanged, but the energy that all WSCs
released is increased. For ECTSA, the objective function takes
into account the energy utilization rate of each WSC. When
J increases, it means that a UAV can be charged from more
WSCs, so the energy that a WSC released decreases, and the
energy utilization rate increases.

5) The influence of M : To compare with the baseline
algorithm under the different number of time periods M , we
set M =2,4,6,7,9. The time periods and charging status of
WSCs under different M are shown in Fig. 7. Fig. 7(a)-(e)
show the rechargeable time periods in Section IV. st and et
are the start and end time when the UAV closes to a WSC, that
is, [st, et] is a rechargeable time period. Fig. 7(f)-(j) show the
impact of M on the status of each WSC obtained by ECTSA.
The red rectangles represent that the WSC is charging and
xjm = 1. As M increases, the number of time periods that the
WSC is idle increases, so the energy waste is reduced.

To study the impact of M on computational overhead, M is
set from 1 to 15 and the computational overhead of ECTSA is
represented by the running time. Fig. 5(a) shows the impact of
M on the computational overhead and the energy utilization
rate of WSCs in ECTSA. Besides, we compare the impact
of M in ECTSA and the baseline algorithm, the results are
shown in Fig. 5(b).

From Fig. 5(a), we can find that the running time of the
ECTSA, that is, the computational overhead is constantly
increasing with the increase of M . And as shown in Fig. 5(b),
no matter what value M takes, ECTSA performs much better
than the baseline algorithm in most cases.

VII. CONCLUSION

This paper proposes the nondisruptive charging time sched-
ule problem (nCTSP) in WRUN. By scheduling WSCs to turn
on or off in appropriate time periods, the energy utilization
rate is maximized. First, a baseline algorithm is proposed
to solve nCTSP which can ensure UAVs do not run out
of energy. To further improve the energy utilization rate of
WSCs, ECTSA is proposed, in which we discretized the flight
paths and flight time of UAVs and transformed nCTSP into
a linear binary integer programming (LBIP) problem to be
solved. Finally, the results of simulation experiments show
that ECTSA outperforms the baseline algorithm in terms of
energy utilization rate by 90.5%-157%.
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