
Estimating Distributions of Large Graphs from

Incomplete Sampled Data

Shiju Li Xin Huang Chul-Ho Lee

Abstract—We study the problem of how to estimate the latent
in-degree distribution of large directed graphs from random
samples, when the samples only indicate the presence of partial
incoming edges into nodes and thus their sampled distribution is
far from the original one. While this problem can be cast as an
inverse problem, it often appears to be ill-posed and leads to poor
estimation performance. There have thus been few recent studies
to overcome this problem, which include a constrained, penalized
weighted least squares estimator and an asymptotic estimator.
The recent estimators, however, are computationally expensive
or only limited to estimating the tail distribution, and their
performance may not be satisfactory. In this paper, we formulate
the problem as a maximum-likelihood estimation problem. We
then employ the expectation-maximization algorithm to solve this
problem and derive a simple iterative estimator, which is easy
to implement and computationally fast. Finally, we empirically
demonstrate that our estimator is significantly more accurate
than the state-of-the-art estimators and it can also be further
improved with a proper choice of its parameter.

I. INTRODUCTION

Sampling and estimating structural and topological proper-

ties and characteristics has been at the heart of understanding

of large complex networks such as Web graphs and online

social networks, which is prohibitively expensive without

resorting to sampling due to their size and scale. In other

words, since networks are often too large to observe in their

entirety, the estimation and inference of their properties need

to be made from sampled networks. Thus, there have been a

plethora of research works in the literature [1] that develop and

analyze network/graph sampling techniques and estimators to

evaluate a wide range of target quantities, including degree

distribution, density, diameter, assortativity coefficient, and

clustering coefficient [2]–[8], as well as subgraph patterns,

e.g., triples, motifs and graphlets [9]–[11].

Most of the sampling problems can be tackled by developing

estimators in the form of sample averages or using sampled

distributions. There is, however, still a non-trivial problem that

is no longer solvable by the common framework and has not

been well studied in the literature. It is to infer or estimate the

latent in-degree distributions of directed graphs from random

samples, when the samples represent only a few ‘discovered’

incoming edges into nodes and their sampled distribution is

far from the original distribution. The latent nature of in-

degrees arises in practice, because outgoing edges or links

The authors are with Department of Computer Engineering and Sciences,
Florida Institute of Technology, Melbourne, FL 32901, USA. Email: {sli2015,
xhuang2016}@my.fit.edu; clee@fit.edu. This work was supported in part by
the National Science Foundation under grants IIS-1908375 and CNS-2007828.

are only visible to users when querying and sampling nodes

on a graph. The technical challenge is then how to recover

the true yet unknown distribution from a skewed, sampled

distribution. While this problem itself can find its importance

for social network analysis and recommendation systems, it

can also be generalized as recovering the distribution of set

sizes on a graph when samples are available only in the form of

some ‘elements’ of the sets, not the set sizes. Such a problem

recently arises in the literature, e.g., for correcting the bias in

classification tasks on a graph [12] and for inferring the entity

frequency from Twitter data sampling [13].

The above problem can be formulated as an inverse problem

and leads to a simple inversion estimator, as originally shown

in [14], [15]. However, the inverse problem often appears to

be ill-posed and thus results in poor estimation performance.

For example, the resulting estimated distribution can exhibit

oscillations to a great extent and even contain negative values.

To avoid this problem, Zhang et al. [16] propose a novel esti-

mator as the solution to a penalized, generalized least squares

problem with non-negative constraints. While this estimator

greatly improves the performance of the inversion estimator, it

turns out to be computationally expensive. It is a ‘numerical’

solution of a complicated optimization problem, which first

requires two key parameters to be determined by non-trivial

algorithmic operations and then is numerically solved by an

optimization toolbox. In addition, Antunes et al. [17] recently

propose a simple asymptotic estimator that aims to estimate the

tail distribution. Specifically, this estimator provides estimates

on the probabilities of a few large, distant degrees. Despite

its limited estimation capability, it is computationally much

cheaper than the one in [16] and practically usable due to its

simple design.

In this paper, we cast the problem as a constrained max-

imum likelihood estimation (MLE) problem under a random

graph model. We first show that the solution to the MLE prob-

lem becomes identical to that of the inverse problem, when the

non-negativity constraints of the MLE problem are ignored.

We then resort to the expectation-maximization algorithm to

solve the constrained MLE problem, which iteratively finds

the maximum likelihood estimate of the unknown in-degree

distribution. This leads to a simple iterative estimator in a

closed form, where a prior distribution needs to be chosen.

Here a uniform distribution can be simply used as the prior.

We can summarize the benefits of our iterative estimator over

the state-of-the-art estimators as follows.

• First, our estimator is easy to implement due to its closed-

form expression and computationally fast, unlike the penal-ISBN 978-3-903176-39-3© 2021 IFIP

ized weighted least squares estimator in [16]. The empirical

evaluation under real-world network datasets shows that the

runtime of our estimator is faster than the runtime of the

latter by two orders of magnitude.

• Second, it estimates the entire distribution, while the asymp-

totic estimator in [17] is only limited to estimating its tail

distribution.

• Third, our estimator is empirically shown to be substan-

tially more accurate than these estimators under real-world

network datasets. In particular, the reduction in the mean

squared error (MSE) of our estimator compared to the MSE

of the one in [16] can be up to over 90%.

• Finally, our estimator can also be further improved with a

proper choice of the prior distribution.

II. PRELIMINARIES

We explain the sampling problem of inferring or estimating

the latent distributions of large graphs, whose representative

example is to estimate the latent in-degree distributions of

directed graphs. While this is our focus in this paper and

its specific problem is described below in detail, it can be

a more general problem. Suppose that we have n sets with

their corresponding sizes S1, S2, . . . , Sn. The problem here is

how to recover the distribution of set sizes {Si} from a sample

that is some ‘elements’ of the sets, which only provide partial

information of the set sizes. If we are given samples directly

from {Si}, it would be straightforward to estimate the set-size

distribution.* The problem at hand, however, is fundamentally

different and becomes non-trivial, as shall be shown shortly.

A. Problem Setup

Consider a directed graph G = (N,E), which represents a

network of interest with nodes N={1, 2, . . . , nG} and edges

E. Here nG is assumed to be known a priori, as it has been the

case in the literature [14]–[17]. Let di denote the in-degree of

node i ∈ N , which is given by di= |{j : (j, i) ∈ E}|. Let w
be the maximum in-degree, so 0 ≤ di ≤ w for all i. Hereafter

we simply refer to ‘in-degree’ as ‘degree’ for brevity, unless

otherwise stated. Define nk, k = 0, 1, . . . , w, to be the number

of nodes of degree k in G, which is given by

nk :=

nG
∑

i=1

1{di = k}, (1)

and nG =
∑w

k=0 nk, where 1{A} denotes an indicator

function of an event A, having 1{A} = 1 if A occurs, and

1{A}=0 otherwise. The fraction of nodes having degree k,

denoted by fk, can also be written as

fk := nk/nG.

*Most of the previous studies in the ‘graph sampling’ literature [3]–[5], [7]–
[11] fall into this category. Their common task is to estimate an expectation
Eπ{f}=

∑
i∈N f(i)π(i) of a target function defined over the node set N ,

with a desired probability distribution π = [π(i), i ∈ N]. The estimators are
often in the form of the sample average of f(X1), f(X2), . . . , f(Xt), where
{Xk} are independently drawn from N according to π or form a Markov
chain on N whose stationary distribution equals π. The sample average over a
large number of samples becomes a good approximation of Eπ{f} due to the

ergodic theorem, i.e., µ̂t(f) :=
∑t

s=1
f(Xs)/t → Eπ{f} as t grows [18].

Let n := [n0, n1, . . . , nw]
T and f := [f0, f1, . . . , fw]

T . The

latter is the degree distribution of graph G or its probability

mass function, with
∑w

k=0 fk=1. The former is an ‘unnormal-

ized’ version of the degree distribution, or to indicate degree

counts. Then, if we let D denote the degree of a node chosen

uniformly at random in G, we have that the probability that it

has degree k is simply P{D = k} = fk.

We consider the Bernoulli sampling methods with sampling

rate p > 0, which are random node sampling and random

edge sampling [1], [14]–[17]. Note that the solutions to the

inference problem developed under these sampling methods

have also been effectively used with samples obtained under

other sampling methods such as random-walk sampling [16],

[17]. While we expect that our solution can also be applied

similarly, we here simply focus on the Bernoulli sampling

methods to tackle the inference problem itself, which is still

non-trivial. In the random node sampling, each node is selected

or sampled with probability p. Then, all the edges between

those selected nodes are included into the ‘sampled’ graph. For

random edge sampling, we select (or sample) each edge with

probability p and then include all the nodes that are incident

to at least one selected edge into the sampled graph.

Observe that both sampling methods can then be character-

ized as follows. For a node with degree k in G, after sampling,

it retains j neighbors (out of k) with probability

bjk :=P {its sampled degree is j | original degree is k} , (2)

where bjk = 0 for all j > k. Specifically, for random node

sampling, this probability becomes, for 0 ≤ j, k ≤ w,

bjk =

{

(

k
j

)

pj+1qk−j + q1{j=0} if j ≤ k for k = 0, . . . , w,

0 otherwise,
(3)

where q := 1 − p. Similarly, under random edge sampling, it

is given by

bjk =

{

(

k

j

)

pjqk−j if j ≤ k for k = 0, . . . , w,

0 otherwise.
(4)

Note that in addition to sampled nodes (or the ones with

sampled edges), we here also consider unsampled/unselected

nodes as nodes with zero sampled degree, since their counts

are still available. In other words, for each sampling method,

we can write its (w+1)×(w+1) ‘sampling’ matrix B := [bjk].
Note that the sampling methods under consideration are agnos-

tic to the underlying network structure [16], [17], so they are

mainly characterized by their corresponding sampling matrices

B. One can easily see that B is a column stochastic matrix,

i.e., bjk ≥ 0 and
∑w

j=0 bjk = 1. Note that the forms of B in

(3) and (4) are slightly different from the ones in [16], due

to the inclusion of unsampled/unselected nodes. Nonetheless,

the inference problem itself still remains the same.

Let G′ = (N ′, E′) denote the resulting sampled graph by

either random node sampling or edge sampling, where N ′ is a

(random) permutation of N and E′ ⊆ E is the set of sampled

edges. The nodes that are not sampled are included as zero-

degree nodes in N ′, so its size remains the same as nG. In

other words, we have a set of the sampled degrees of all nodes

as a sampling outcome. Let d′j be the sampled degree of node

j in G′. Then, if we let n′
j be the number of the nodes of

(sampled) degree j in G′, we have

n′
j :=

nG
∑

i=1

1{d′i = j}, j = 1, 2, . . . , w, (5)

and n′
0 := nG −

∑w

j=1 n
′
j . We can also obtain the fraction of

nodes having (sampled) degree j in G′, denoted by f ′
j , as

f ′
j := n′

j/nG, j = 0, 1, . . . , w. (6)

Let n′ := [n′
0, n

′
1, . . . , nw]

T and f ′ := [f ′
0, f

′
1, . . . , f

′
w]

T . The

latter indicates the sampled degree distribution of G′ with
∑w

j=0 f
′
j = 1, while the former is its unnormalized version.

From a given f ′ (or n′), which is considered collectively as

‘a sample’ throughout the rest of the paper, our problem is

to recover the original degree distribution f (or n). Note that

this should be distinguished from the problem of estimating

the exact degree of each node from samples [19]. Also, since

it is to estimate the ‘marginal’ distribution of degrees, it

does not require the estimation of any possible degree-degree

correlation in the original graph.

B. Inversion Estimator and Its Drawbacks

For a randomly chosen node in G, if we let D′ be its

sampled degree in G′, we can write

gj := P{D′ = j} =

w
∑

k=0

bjkfk, j = 0, 1, . . . , w, (7)

which can also be written in a matrix form as

g = Bf , (8)

where g := [g0, g1, . . . , gw]
T . In addition, from (5) and (6),

we have

E[f ′
j] =

E [
∑nG

i=1 1{d
′
i = j}]

nG

=

∑nG

i=1 E[1{d
′
i = j}]

nG

=

∑nG

i=1 P{D
′ = j}

nG

=
nGgj
nG

= gj , (9)

where the third equality follows since d′i has the same distri-

bution as D′ for all i. Thus, from (8) and (9), we have

E[f ′] = Bf . (10)

One can then naturally construct the following inversion

estimator for a given sample f ′ [14]–[16]:

f̂inv = B
−1f ′. (11)

It is straightforward to see that this estimator f̂inv is unbiased,

since E[f̂inv] = B
−1

Bf = f . By leveraging the singular value

decomposition of the sampling matrix B, we can also rewrite

(11) as

f̂inv = VD
−1

U
Tf ′ =

w
∑

k=0

[

1

µk

uT
k f

′

]

vk, (12)

from B=UDV
T , where D=diag(µ0, µ1, . . . , µw) is a diag-

onal matrix of singular values µi, and U= [u0,u1, . . . ,uw],

Fig. 1. Estimating the in-degree distribution of a directed Erdős-Rényi graph

of 100 nodes by the estimator f̂inv from a sample f ′, which is drawn with
p = 0.6.

V= [v0,v1, . . . ,vw] are the orthogonal matrices of the left-

and right-singular vectors, respectively [20].

Despite its simple form, this inversion estimator f̂inv has two

drawbacks [16]. First, the matrix B may not be invertible in

practice. Second, some elements of f̂inv may be negative, even

when B is invertible. In other words, this estimator suffers

from an ill-posed inversion problem. Specifically, the stability

of the estimator can be characterized by the condition number

of B, which is the ratio of the maximum singular value to the

minimum singular value. The larger the condition number is,

the more unstable the estimator would be. Note that a non-

invertible matrix has condition number equal to infinity. When

the estimator is unstable, i.e., B is ill-conditioned, its estimated

degree distribution can exhibit oscillations to a great extent.

See Figure 1 for an example. Here the in-degree distribution

of a directed Erdős-Rényi random graph with 100 nodes is

estimated from a sample f ′, which is drawn by the random

edge sampling with the sampling rate p=0.6.†

III. STATE-OF-THE-ART METHODS

We provide an overview of two recently proposed estimators

for the problem of recovering the latent in-degree distribution

of a directed graph from a sample f ′, or n′, while overcoming

the poor estimation performance of the inversion estimator.

A. Improved Inversion Estimator

We first explain an ‘improved’ inversion estimator proposed

in [16]. It is based on a regularization method to solve the

above inversion problem, especially when the matrix B is

ill-conditioned. Specifically, the proposed estimator is a pe-

nalized, generalized least squares estimator with non-negative

constraints, which is to estimate the degree counts n and is the

solution n̂ := [n̂0, n̂1, . . . , n̂w] to the following optimization

problem for a given sample n′:

argmin
n

(Bn− n′)
T
C

−1 (Bn− n′) + λ · ‖Dn‖22 (13)

subject to nk ≥ 0, k = 0, 1, . . . , w,

w
∑

i=0

nk = nG,

where C :=Cov(n′) is the covariance matrix of n′ and λ is

a tuning parameter, to be determined separately. Note that the

resulting ‘estimated’ degree distribution f̂ = [f̂0, f̂1, . . . , f̂w]

†A directed ER graph of 100 nodes is generated by placing a directed edge
for each pair of nodes (in each direction) with probability pgen=0.05.

is given by f̂i= n̂i/nG for all i. The remaining second term

in (13) is the regularization term and is a squared l2-norm

penalty function of n, where D is a (w−1)×(w+1) matrix

representing the second-order differencing operator defined by

D =















1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1















. (14)

We can then rewrite the objective function in (13) so that

the above problem is transformed to the following quadratic

programing problem:

argmin
n

1

2
nT

Hn+ ηTn (15)

subject to n � 0, 1
Tn = nG,

where

H := 2
[

B
T
C

−1
B+ λDT

D

]

, and η := −2
[

n′T
C

−1
B

]T

.

Here � denotes the componentwise inequality and 0 is the

w-dimensional column vector whose elements are all zeros.

Similarly for 1 with all-one elements. Since this problem

is a well-defined quadratic programing problem, we use the

MATLAB optimization toolbox to solve this problem for

numerical simulations of the improved inversion estimator in

Section V.

While the improved inversion estimator in [16] is a solution

to the problem in (15), or the original one in (13), there are two

non-trivial algorithmic operations to determine the covariance

matrix C and the penalty parameter λ before the problem is

solved. First, since the matrix C needs to be estimated based

only on the given sample n′, by ignoring non-zero off-diagonal

terms, they approximate the matrix C with a diagonal matrix

of the following form:

Ĉ = diag(n′) + δI, (16)

where I is the (w + 1) × (w + 1) identity matrix and δ
is a constant. Each diagonal element of C, i.e., Var[n′

i], is

here approximated based on the Poisson approximation, which

implies that Var[n′
i] = E[n′

i], and by replacing E[n′
i] with a

sample value n′
i for all i. Since the errors between n′ and E[n′]

can be substantial, they employ a kernel-smoothing method to

smooth out n′ and obtain its smoothed version, say n′
smooth,

which is then used to compute Ĉ. In addition, the value of δ is

chosen to adjust Ĉ so that the resulting optimization problem

remains stable [16].

Second, the parameter λ needs to be determined judiciously,

since it controls the amount of the regularization or penalty

term in (13), which can in turn significantly affect the accuracy

of the resulting estimator. For a given n′, the value of λ is

chosen so as to minimize the ‘estimate’ of the weighted mean

square error (WMSE), which is in the form of the first term in

(13). To this end, they employ the so-called Stein’s unbiased

risk estimation (SURE) method [21] to obtain an estimate

of the WMSE with a value of λ. Then, for a given n′, by

minimizing the estimated WMSE with respect to λ, they find

the optimal value of λ that minimizes the estimated WMSE.

Note that this entire process of choosing the value of λ is

computationally expensive, since it needs to search through

a grid of λ values, for which their corresponding estimated

WMSEs are computed, and then to find the optimal value of

λ. We refer to [16] for more details.

B. Asymptotic Estimator

We next present an asymptotic estimator proposed in [17]

to mainly estimate the ‘tail’ distribution of in-degrees from

a sample n′. Recall that D is the original degree of a node

chosen uniformly at random in G and D′ is its sampled degree

after sampling. Then observe that

D′ =

D
∑

k=1

Zk,

where Zk is an i.i.d. Bernoulli random variable with p. The

following approximation can be made under mild assump-

tions [17], [22].

P{D′ > i} ≈ P {E[Z1]D > i} = P{pD > i} (17)

for sufficiently large values of i. Since P{D′ = i} = P{D′ >
i − 1} − P{D′ > i}, (17) can be written as P{D′ = i} ≈
(1/p) · P{D = i/p}, which leads to

P{D = i} ≈ p · P{D′ = pi} (18)

for sufficiently large values of i. Thus, from (18), they develop

the following asymptotic estimator to estimate the degree

counts n, which forms an ‘unnormalized’ version of the degree

distribution f , from a given sample n′:

n̂i =

{

p · n′
pi − 1, i ∈ [1/(pε2), τ/p],

n′
pi, i ∈ (τ/p, w′/p],

(19)

where ε is some predetermined small value, τ is a threshold

value given by τ := argmini{n
′
i : n′

i > 0}, and w′ is the

largest sampled degree. Note that w′/p is an estimate of the

maximum degree w. While the asymptotic estimator n̂i in (19)

mainly originates from (18), it also reflects their observation

that the number of large-degree nodes near the maximum

degree is one (more or less) for each large degree [17]. We

choose the value of ε as in [17], and use f̂i = n̂i/nG to

estimate the degree distribution f for numerical simulations

of the asymptotic estimator in Section V.

It is worth noting that the asymptotic estimator n̂i produces

valid estimates only for a few distant values of i due to the

discrete nature of the degree distribution. In other words, the

nearest integer value of pi can remain the same for a wide

range of (contiguous) values of i and so is n′
pi. Nonetheless,

this estimator is practically usable thanks to its simple design,

and it is computationally much cheaper than the improved

inversion estimator.

IV. AN ITERATIVE EM ESTIMATOR

In this section, we propose a new estimator based on the

expectation-maximization (EM) algorithm. We first formulate

the problem of estimating the latent in-degree estimation as a

constrained maximum likelihood estimation (MLE) problem

under a random graph model. We show that the solution

to its unconstrained MLE problem becomes identical to the

inversion estimator in (11). We then resort to the EM algorithm

to solve the original constrained MLE problem, which leads to

a simple iterative estimator that is computationally inexpensive

and readily usable in practice. It is also substantially more

accurate than the state-of-the-art estimators, as shall be shown

based on real-world network datasets in Section V.

Consider a random graph model in which the in-degree of

each node in G is independently drawn from an arbitrary (yet

unknown) distribution f . Fix a sample n′ = [n′
0, n

′
1, . . . , n

′
w]

that is obtained from G, where n′
j is the number of nodes

having the sampled degree j in the sampled graph G′. Then,

observe from (7) that the sampled degree d′i of each node i in

G′ follows

P{d′i = j} = gj =
w
∑

k=0

bjkfk, j = 0, 1, . . . , w.

That is, each node i in G′ contributes to one of the sampled-

degree counts n′
0, n

′
1, . . . , n

′
w according to the probabilities gj .

Thus, we can write the following likelihood function, which

is the probability that the sample n′ is observed when the

degree distribution is f , and is in the form of a multinomial

distribution:

p(n′;f) =

(

nG

n′
0, n

′
1, . . . , n

′
w

) w
∏

j=0

(w
∑

k=0

bjkfk

)n′

j

. (20)

Taking the log function on both sides of (20) and ignoring the

constant terms, we can write the following MLE problem that

is to find the distribution f that maximizes the log-likelihood

function from a given sample n′.

argmax
f

L(f ;n′) :=
w
∑

j=0

n′
j log

(w
∑

k=0

bjkfk

)

(21)

subject to f � 0, 1
Tf = 1.

Note that the problem here is to estimate the (unknown) degree

distribution f from a sample n′, but without knowing which

nodes have how many (incoming) edges. In other words, it is

not to estimate the exact degree of each node but to estimate

the distribution f .

We see that since the log function is concave and L is a

linear combination of them, L has a unique stationary point

f∗ with 1
Tf∗ = 1, which is the solution to an unconstrained

problem of (21). Then we have the following.

Lemma 1: When the non-negativity constraints, i.e., f �
0, are ignored, the solution to (21) becomes identical to the

inversion estimator in (11), provided that B is invertible.

Proof: See our technical report [23].

From Lemma 1, we can see that the stationary point f∗

may not fall within the feasible region of the problem in (21),

since some elements of f∗ may be negative, as seen from the

inversion estimator in (11). In such a case, the solution to (21)

lies on the boundary of the feasible region, which may be hard

to solve analytically.

We employ the EM algorithm [24]–[26] to solve the MLE

problem in (21), which leads to a simple iterative estimator.

The main idea behind the EM algorithm is to find the

maximum likelihood estimate of the (unknown) distribution

f by maximizing the expectation of the likelihood function

that involves ‘unobserved’ latent variables in addition to the

observed sample n′. The EM algorithm iteratively alternates

between an expectation step and a maximization step to update

the estimate of f , as described below in detail. Let f (t) be

the estimate of f at iteration t.

1) Initialization: Pick a reasonable prior distribution f (0).

We use a uniform distribution as the prior, unless otherwise

specified.

2) Expectation: We introduce unobserved latent variables,

denoted by xjk , 0 ≤ j ≤ k ≤ w, to represent the number

of nodes whose degrees are k in the original graph G and

become j in the sampled graph G′. Note that n′
j =

∑w

k=j xjk .

Let x := {xjk | 0 ≤ j ≤ k ≤ w}.
From (2), we can see that the probability that the ‘sampled’

degree of a node becomes j from its original degree k is bjkfk.

In a manner similar to (21), we can write the following joint

probability of having the latent variables x and the observed

sample n′ when the degree distribution is f :

p(x,n′;f) =
nG!

∏w

j=0

∏w

k=j xjk!

w
∏

j=0

w
∏

k=j

(

bjkfk
)xjk . (22)

We thus define the complete log-likelihood function of f as

Lc(f ;x,n
′) :=

w
∑

j=0

w
∑

k=j

xjk log(bjkfk). (23)

Also, we can obtain the conditional probability of x given n′

as

p(x|n′;f) =

w
∏

j=0

(

n′
j

xjj , . . . , xjw

) w
∏

k=j

(

bjkfk
∑w

i=j bjifi

)xjk

.

(24)

Letting

pjk :=
bjkfk

∑w

i=j bjifi
, 0 ≤ j ≤ k ≤ w, (25)

we see that its marginal probability becomes, for 0 ≤ j ≤ k ≤
w,

p(xjk|n
′;f) =

(

n′
j

xjk

)

p
xjk

jk

(

1− pjk
)n′

j−xjk , (26)

and E[xjk |n
′;f] = n′

jpjk. We refer to our technical re-

port [23] for more details.

Having the estimate f (t) at iteration t, we define the

‘expectation’ of the complete log-likelihood function as

Q(f |f (t)) := Ex∼p(x|n′;f (t)) [Lc(f ;x,n
′)] ,

where the expectation is with respect to x drawn according to

p(x|n′;f (t)), which is given by (24) with f replaced by f (t).

From (23) and (26), we have

Q(f |f (t)) =

w
∑

j=0

w
∑

k=j

E[xjk |n
′;f (t)] log(bjkfk)

=
w
∑

j=0

w
∑

k=j

n′
jp

(t)
jk log(bjkfk), (27)

where p
(t)
jk is defined as in (25) with f replaced by f (t). That

is, the expectation step at iteration t is to compute Q(f |f (t))
in (27) based on the current estimate f (t) and the given sample

n′. This expectation step, in fact, turns out to be unnecessary

in finding the (maximum likelihood) estimate of f , as will be

shown below.

3) Maximization: Update the estimate f (t+1) as the solution

to the problem of maximizing Q(f |f (t)), i.e.,

f (t+1) := argmax
f

Q(f |f (t)). (28)

Unlike the original MLE problem in (21), we can ignore the

non-negativity constraints f � 0, due to the structure of

Q(f |f (t)) in (27), where fk should be positive for all k. Thus,

as was done in the proof of Lemma 1, we can simply use the

Lagrange multiplier method to solve the problem in (28) with

the equality constraint, i.e., 1Tf (t+1) = 1. Then, we obtain

that f (t+1) needs to be in the following form:

f
(t+1)
k =

1

C

w
∑

j=0

n′
jp

(t)
jk , k = 0, 1, . . . , w, (29)

for some constant C, and 1
Tf (t+1) = 1. In addition, from

(25), we observe that
∑w

k=0 p
(t)
jk =

∑w

k=j p
(t)
jk = 1, where

bjk=0 for all k < j, as can be seen from (2). Thus, we have

w
∑

k=0

f
(t+1)
k =

1

C

w
∑

k=0

w
∑

j=0

p
(t)
jk n

′
j=

1

C

w
∑

j=0

n′
j

w
∑

k=0

p
(t)
jk =

1

C

w
∑

j=0

n′
j ,

which leads to C = nG, since 1
Tf (t+1)=1. Therefore, from

(29), we finally have, for k = 0, 1, . . . , w,

f
(t+1)
k =

w
∑

j=0

p
(t)
jk f

′
j =

w
∑

j=0

bjkf
(t)
k

∑w

i=0 bjif
(t)
i

f ′
j, (30)

where f ′
j = n′

j/nG for all j. That is, the maximization step

at iteration t is to update f (t+1) in (30) based on the current

estimate f (t) and the given sample n′. Note that this step

does not require the computation of Q(f |f (t)) in (27) at the

expectation step.

To sum up, the EM algorithm leads to an iterative estimator

in a closed form, which is simply to keep on updating the

estimate f (t+1) in (30) for a given sample n′, or f ′. The

iteration continues until the difference between two consecu-

tive estimates becomes insignificant, i.e., ‖f (t+1)−f (t)‖2 < ǫ
for a given value ǫ, where ‖ · ‖2 indicates the l2 norm. This

iterative estimator is summarized in Algorithm 1, where the

prior distribution is a uniform prior. Note that Algorithm 1

takes the maximum in-degree w as an input, but it also works

with a rough estimate ŵ, as will be shown in Section V. Note

also that ǫ is a tunable parameter, whose value can be chosen

based on the graph size and the choice of the prior distribution.

In addition, we can characterize the time complexity of

our EM estimator at each iteration. From lines 4 to 10 of

Algorithm 1, we see that the time complexity at each iteration

Algorithm 1: Iterative EM estimator

Input: w, B, f ′

1 Define c as a w-dimensional vector

2 f (0) ← 1
w
1; S ← {j : f ′

j > 0}
3 for t = 0, 1, 2, . . . do

4 c← 0

5 for j ∈ S do

6 for i = 0, 1, . . . , w do

7 cj ← cj + bjif
(t)
i

8 for k = 0, 1, . . . , w do

9 for j ∈ S do

10 f
(t+1)
k ← f

(t+1)
k +

bjkf
(t)
k

cj
f ′
j

11 if ‖f (t+1)−f (t)‖2 < ǫ then

12 break

13 return f (t+1)

is O(w|S|), where S denotes the set of nodes with non-

zero sampled degrees. In addition, the number of required

iterations until the stopping criterion is met (i.e., the speed of

convergence) turns out to be insignificant, as shall be shown

in the next section, e.g., Table III. We shall also empirically

demonstrate that the overall runtime of our estimator is fast

enough for various graphs.

V. SIMULATION RESULTS

We present simulation results to demonstrate the efficacy of

our EM estimator compared to the improved inversion esti-

mator and the asymptotic estimator explained in Section III,

which are referred to as ‘IINV’ and ‘ASYM’, respectively. We

evaluate not only the accuracy of each estimator but also its

runtime (time efficiency). All estimators are implemented and

evaluated in MATLAB on a machine with 3.6-GHz Intel i7

CPU and 8-GB RAM. We consider four real-world directed

network datasets from SNAP [27] and KONECT [28]. We

preprocess each graph to remove self-loops and duplicate

edges. Note that nodes that only have self-loops are removed,

and the graphs may not be strongly connected. The statistics

of the graphs after preprocessing are summarized in Table I.

TABLE I
GRAPH STATISTICS

HEP-PH Facebook Digg US-patents

Nodes 34,546 45,813 30,360 3,774,768

Edges 421,578 264,004 85,247 16,518,947

For numerical simulations, we focus on the random edge

sampling with varying sampling rate p for estimating or

inferring the in-degree distributions from samples. Specifically,

for a given graph G, and for a sample f ′, which is a set of

the ‘sampled’ in-degrees of n nodes (as a sampling outcome

with a given value of p), each estimator provides an estimate

for the in-degree distribution. While the estimated in-degree

distributions are in the form of probability mass function

(PMF), f̂d = P̂{D = d}, we also report the results in the

(a) HEP-PH, PMF (b) HEP-PH, CCDF (c) Facebook, PMF (d) Facebook, CCDF

(e) Digg, PMF (f) Digg, CCDF (g) US-patents, PMF (h) US-patents, CCDF

Fig. 2. Simulation results on a log-log scale for the degree-distribution estimation with p=0.1.

(a) HEP-PH, PMF (b) HEP-PH, CCDF (c) Facebook, PMF (d) Facebook, CCDF

(e) Digg, PMF (f) Digg, CCDF (g) US-patents, PMF (h) US-patents, CCDF

Fig. 3. Simulation results on a log-log scale for inferring the degree distributions from samples with p=0.2.

complementary cumulative distribution function (CCDF), say

P̂{D > d}. Each estimated distribution shall be ‘visually’

compared to its ground-truth distribution. We also use the

empirical mean squared error (MSE) to evaluate the accuracy

of each estimator. It is to measure the average squared dif-

ference between an estimated probability and its original one,

i.e., MSE = E[f̂d − fd]
2, for each degree d. We here only

report the average of the MSEs over all d, each of which is

obtained based on 10 different samples while they remain the

same for all estimators.

We note that the value of the maximum degree w needs

to be set for each estimator. We use the ‘actual’ value of w
for the IINV estimator, as used in [16], since it requires the

exact value of w to be known a priori. We employ an estimate

ŵ=w′/p for the ASYM estimator, as used in [17], where w′

is the observed largest sampled degree and p is the sampling

rate. For our EM estimator, it does not need the exact w, but it

works with just a rough estimate ŵ. We empirically observed

that our estimator is robust for a wide range of values of ŵ, as

long as ŵ is not severely underestimated. For example, there

was not much difference between the cases of ŵ=w′/p and

ŵ = 2w′/p for the performance of our estimator. Thus, we

simply choose the latter as a bit more conservative estimate in

this paper. In addition, we set the ‘termination’ threshold ǫ=
10−3 for the EM estimator for all graphs except US-patents,

and use ǫ=10−4 for US-patents due to its sheer size.

Figures 2–4 present the original in-degree distributions and

their estimated distributions by the ASYM, IINV, and EM

estimators. For each graph and for each sampling rate p, we

use the same sample f ′ to obtain the estimated in-degree dis-

tributions. Note that for the ASYM estimator, the PMF results

are only presented, since it is designed to provide an estimate

f̂d for only a few large degrees d that are also not contiguous,

as explained in Section III. As can be seen from Figures 2–

4, we make the following observations. First, the estimation

of our EM estimator is most accurate for almost entire range

of the values of d in both CCDF and PMF. Second, while

the IINV estimator greatly improves the ‘vanilla’ inversion

estimator in (11), it still exhibits non-negligible oscillations in

its estimated degree distribution, which are mostly noticeable

(a) HEP-PH, PMF (b) HEP-PH, CCDF (c) Facebook, PMF (d) Facebook, CCDF

(e) Digg, PMF (f) Digg, CCDF (g) US-patents, PMF (h) US-patents, CCDF

Fig. 4. Simulation results on a log-log scale for estimating the degree distributions from samples with p=0.5.

(a) HEP-PH (b) Facebook (c) Digg (d) US-patents

Fig. 5. MSEs of the IINV and EM estimators when estimating the degree distribution.

TABLE II
RUNTIMES OF THE IINV AND EM ESTIMATORS (IN SECONDS)

Graph HEP-PH Facebook Digg US-patents

p 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

IINV 49.4270 48.1393 46.7614 1.8836 1.8556 1.8225 2.3836 2.3564 2.3119 41.8413 40.0046 38.8662

EM 0.0750 0.0829 0.1226 0.0187 0.0189 0.0399 0.0275 0.0308 0.0343 0.1790 0.4471 0.6022

for the PMFs and for small values of p, i.e., p = 0.1, 0.2.

We also observe that this oscillating behavior of the IINV

estimator is affected by the choice of its penalty parameter λ.

We refer to our technical report [23] for more details. Third,

the IINV estimator is accurate in capturing the ‘head’ of the in-

degree distribution, while the accuracy of the ASYM estimator

is reasonable for the ‘tail’ of the distribution, as intended by

its design.

We show the (averaged) MSEs of the IINV and EM estima-

tors in Figure 5. The results again confirm the superiority of

our EM estimator over the IINV estimator. The improvement

from the EM estimator compared to the IINV estimator

turns out to be significant for most cases, regardless of the

underlying graph and the sampling rate p. The reduction

in MSE can be even more than 90% for several cases. In

addition, while the comparison is here limited between the

IINV and EM estimators due to the aforementioned issue with

ASYM, we have also observed that the EM estimator generally

outperforms the ASYM estimator, even when computing the

MSEs for the values of d for which ASYM’s estimates are

available. We omit the results for brevity.

We next turn our attention to the time efficiency of our

EM estimator. We measure the runtimes of the IINV and EM

estimators and report them in Table II. Our EM estimator

turns out to be faster than the IINV estimator by two or-

ders of magnitude. This is in fact well expected from their

algorithmic operations, which clearly exhibit the advantage

of our estimator over the IINV estimator. In other words, as

explained in Section III-A, the IINV estimator involves non-

trivial operations and solving an optimization problem, while

our estimator is just a simple iterative method, as seen from

Algorithm 1. Note that we here do not report the runtime of the

ASYM estimator, since it merely estimates the tail distribution,

not the entire distribution. Nonetheless, we observed that the

runtime of our estimator is still comparable to that of the

ASYM estimator.

We finally show that the performance of our EM estimator

can be further improved with a proper choice of the prior

distribution. To this end, we newly consider an exponential

distribution as the prior distribution. Note that all the results

so far are obtained based on the uniform prior distribution.

The parameter of the exponential distribution is set to be a

reciprocal of the ‘estimated’ averaged degree, which is the

average ‘sampled’ degree divided by p. We then report the

TABLE III
IMPACT OF THE PRIOR ON THE EM ESTIMATOR

Graph HEP-PH Facebook Digg US-patents

p 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

Iter.
Unif. 19 13 8 17 10 19 35 23 10 108 162 83

Exp. 7 6 6 7 8 17 31 20 9 94 154 80

MSE

(×10−6)

Unif. 0.61 0.14 0.04 29.32 26.81 2.14 10.91 2.39 0.24 12.92 6.17 0.11

Exp. 0.33 0.13 0.03 28.99 26.32 2.02 10.90 2.39 0.24 12.88 6.14 0.11

results for the convergence speed in terms of the number of

iterations and the MSE in Table III. They all indicate that

the exponential prior can reduce the convergence speed, while

having the estimation accuracy to be comparable to or even

better than that of the uniform prior. We have also observed

that there is not much difference in the shapes of their resulting

distributions, which are omitted for brevity.

In summary, our EM estimator turns out to be substantially

better than the IINV and ASYM estimators, which are the

state-of-the-art estimators. The IINV estimator still exhibits os-

cillations in the estimated distributions, especially in the tails,

as seen from the inversion estimator. It is also sensitive to the

choice of its parameter λ, not to mention the high complexity

of its algorithmic operation. In addition, the ASYM estimator

can only estimate the distributions for a few large degrees that

are far between.

VI. CONCLUSION

We have studied the problem of inferring or estimating the

latent in-degree distributions of directed graphs from random

samples. The technical challenge behind this problem is that it

often becomes an ill-posed inverse problem. In this work, we

have formulated the problem as an MLE problem and resorted

to the EM algorithm to solve the problem, which iteratively

finds the maximum likelihood estimate of the unknown in-

degree distribution f from an observed sample f ′. The re-

sulting iterative estimator has shown to be significantly more

accurate than the state-of-the-art estimators, while being easy

to implement, computationally fast, and amenable to further

improvement with a proper choice of the prior. Finally, we

expect that our iterative estimator can also be readily adopted

and used for other problems, e.g., classification tasks on a

graph and inferring the entity frequency from Twitter, which

involve recovering the distribution of set sizes when a sample

is available only in the form of some elements of the sets.

REFERENCES

[1] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Trans. Knowl. Discov. Data, vol. 8,
no. 2, Jun. 2013.

[2] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Pro-

ceedings of ACM SIGKDD, 2006, pp. 631–636.

[3] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
Facebook: A case study of unbiased sampling of OSNs,” in Proceedings

of IEEE INFOCOM, Mar. 2010, pp. 1–9.

[4] B. Ribeiro and D. Towsley, “Estimating and sampling graphs with
multidimensional random walks,” in Proceedings of ACM SIGCOMM

Conference on Internet Measurement, 2010, pp. 390–403.

[5] C.-H. Lee, X. Xu, and D. Y. Eun, “Beyond random walk and Metropolis-
Hastings samplers: Why you should not backtrack for unbiased graph
sampling,” in Proc. ACM SIGMETRICS, Jun. 2012, pp. 319–330.

[6] L. Katzir and S. J. Hardiman, “Estimating clustering coefficients and
size of social networks via random walk,” ACM Trans. Web, vol. 9,
no. 4, Sep. 2015.

[7] Z. Zhou, N. Zhang, and G. Das, “Leveraging history for faster sampling
of online social networks,” Proceedings of the VLDB Endowment, vol. 8,
no. 10, pp. 1034–1045, Jun. 2015.

[8] C.-H. Lee, X. Xu, and D. Y. Eun, “On the Rao-Blackwellization and
its application for graph sampling via neighborhood exploration,” in
Proceedings of IEEE INFOCOM, May 2017, pp. 1–9.

[9] M. Rahman and M. A. Hasan, “Sampling triples from restricted net-
works using MCMC strategy,” in Proceedings of ACM CIKM, 2014, p.
1519–1528.

[10] P. Wang, J. Zhao, J. C. S. Lui, D. Towsley, and X. Guan, “Unbiased
characterization of node pairs over large graphs,” ACM Trans. Knowl.

Discov. Data, vol. 9, no. 3, Apr. 2015.
[11] X. Chen, Y. Li, P. Wang, and J. C. S. Lui, “A general framework

for estimating graphlet statistics via random walk,” Proceedings of the

VLDB Endowment, vol. 10, no. 3, pp. 253–264, Nov. 2016.
[12] G. Berry, A. Sirianni, N. High, A. Kellum, I. Weber, and M. Macy,

“Estimating group properties in online social networks with a classifier,”
in Social Informatics, S. Staab, O. Koltsova, and D. I. Ignatov, Eds.
Springer International Publishing, 2018, pp. 67–85.

[13] S. Wu, M.-A. Rizoiu, and L. Xie, “Variation across scales: Measurement
fidelity under twitter data sampling,” Proceedings of the International

AAAI Conference on Web and Social Media, pp. 715–725, May 2020.
[14] O. Frank, “Estimation of the number of vertices of different degrees in

a graph,” Journal of Statistical Planning and Inference, vol. 4, no. 1,
pp. 45–50, 1980.

[15] ——, “A survey of statistical methods for graph analysis,” Sociological

Methodology, vol. 12, pp. 110–155, 1981.
[16] Y. Zhang, E. D. Kolaczyk, and B. D. Spencer, “Estimating network

degree distributions under sampling: An inverse problem, with applica-
tions to monitoring social media networks,” Annals of Applied Statistics,
vol. 9, no. 1, pp. 166–199, 2015.

[17] N. Antunes, S. Bhamidi, T. Guo, V. Pipiras, and B. Wang, “Sampling-
based estimation of in-degree distribution with applications to directed
complex networks,” arXiv preprint arXiv:1810.01300, 2018.

[18] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and

Queues. Springer-Verlag, 1999.
[19] A. Ganguly and E. D. Kolaczyk, “Estimation of vertex degrees in a

sampled network,” in Procceedings of the 51st Asilomar Conference on

Signals, Systems, and Computers, 2017, pp. 967–974.
[20] G. H. Golub and C. Reinsch, “Singular value decomposition and least

squares solutions,” in Linear Algebra. Springer, 1971, pp. 134–151.
[21] Y. C. Eldar, “Generalized sure for exponential families: Applications to

regularization,” IEEE Transactions on Signal Processing, vol. 57, no. 2,
pp. 471–481, 2009.

[22] C. Y. Robert and J. Segers, “Tails of random sums of a heavy-tailed
number of light-tailed terms,” Insurance: Mathematics and Economics,
vol. 43, no. 1, pp. 85–92, 2008.

[23] S. Li, X. Huang, and C.-H. Lee, “Estimating Distributions of Large
Graphs from Incomplete Sampled Data,” Technical Report, May 2021.

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal

Statistical Society: Series B, vol. 39, no. 1, pp. 1–22, 1977.
[25] C. F. J. Wu, “On the convergence properties of the EM algorithm,”

Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.
[26] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[27] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, Jun. 2014.
[28] J. Kunegis, “KONECT – The Koblenz Network Collection,” in Pro-

ceedings of International Conference on World Wide Web, 2013, pp.
1343–1350.

