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Abstract—Multipath TCP (MPTCP) is a promising protocol
that aggregates the bandwidth of mobile client’s multiple inter-
faces. However, currently it is still not widely adopted. A key
reason for this slow adoption is that the layer-4 load balancers
(LBs) used to scale TCP based services in data centers are not
MPTCP-aware and forward the multiple TCP subflows of the
same MPTCP connection independently to different backends
(BEs). In this paper, we present RomanRoads (RR), an MPTCP-
aware layer-4 LB which eliminates this hurdle to widespread
MPTCP adoption. Compared with prior proposals, RR is easily
deployable because it does not change the service provider’s
network configuration, makes no modification to ordinary TCP
protocol and only minimal modification to the MPTCP connec-
tion setup process, and supports the case of multiple LBs. We
implement RR in the form of a software LB and validate its
correctness and high performance through extensive experiments.
RR achieves 100% correctness at steady state, no connection
disruption during LB churns, and line-rate throughput for
packets from 5-tuple seen before. Moreover, we shed light on the
desired properties of an LB-friendly multipath layer-4 protocol
to provide guidance for future multipath protocol design.

Index Terms—MPTCP, load balancing.
I. INTRODUCTION

Today’s mobile devices commonly support both cellular
and WiFi interfaces and will evolve to support additional
mmWave and shared spectrum (e.g. 3.5GHz CBRS) interfaces
as 5G networks are deployed. Therefore, in order to support
the exponentially growing mobile data traffic, extreme multi-
connectivity where mobile devices concurrently use a combi-
nation of licensed, unlicensed and shared spectrum bands will
be a norm.

Given this, techniques that exploit such multi-connectivity
will be key to providing multi-Gbps throughput to future
mobile applications. Multipath TCP (MPTCP) is one such
promising technique. Although it is originally proposed in
the data center environment, it is very suitable to boost the
aggregated bandwidth of mobile devices with multiple radios
as well as to improve other performance metrics e.g. latency,
connection reliability. Previous work has shown that it can
aggregate the bandwidth of various interfaces operating in
different spectrum bands and provide a massive capacity to
applications on mobile clients, improve the latency of multiple
wireless interfaces by selecting primary flow wisely, and
preserve the energy of multiple wireless interfaces by carefully
scheduling the traffic between multipaths.
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In addition to its good performance, another reason that
makes MPTCP promising is that its design has the potential
of wide adoption. In the TCP/IP stack, MPTCP sits on top of
ordinary TCP and below the socket interface to the application
layer. Multipath related signaling is realized using a TCP
option field, and each subflow of an MPTCP connection is
just an ordinary TCP flow. When the middleboxes between the
client and the server do not support MPTCP, it can gracefully
fall back to ordinary TCP.

Despite this elegant and backward-compatible design, cur-
rently MPTCP is still not widely deployed. A key reason
for this slow adoption is that the layer-4 (L4) load balancers
(LBs) used to scale TCP based services in data centers
are not MPTCP-aware. The state-of-the-art (MPTCP-unaware)
LB designs treat each subflow in an MPTCP connection as
independent TCP flow, and based on the 5-tuple of the flows,
they forward multiple TCP subflows of the same MPTCP
connection to different backends (BEs), which eliminates the
benefits of MPTCP.

This problem was noticed previously and several proposals
have been submitted to address this problem. However, they
all seem to lack the ability of wide adoption. They either
require significant changes of the service provider’s network
configurations [1]–[4], or significant modifications of ordinary
TCP or MPTCP protocol [2], [3], [5], [6], or do not support
multiple LBs [2], [3], [6], [7]. Thus, a widely deployable
MPTCP-aware L4 LB is still an open problem.

RomanRoads(RR): In this paper, we present our design of
an MPTCP-aware L4 LB, RomanRoads (RR), whose name
comes from the idiom “All roads lead to Rome”. In addition
to correctly forwarding the multiple TCP subflows of the
same MPTCP connection to the same BE, we aim at high
performance in terms of throughput and ease of deployment.

We enhance the current state-of-the-art (MPTCP-unaware)
LBs in two ways to achieve correctness and high performance:
(1) We move the MPTCP key/token generation function to LB
and use two local connection tracking tables, one for ordinary
TCP and the other for MPTCP, to ensure LB can forward
multiple TCP subflows of the same MPTCP connection,
identified by the unique token, to the same BE. (2) When
there are multiple LBs, we divide the MPTCP token space
using consistent hashing to guarantee uniqueness and forward
packets between LBs to avoid tight global synchronization.
Compared with previous proposals, our design is widely
deployable because it does not change the service provider’sISBN 978-3-903176-39-3 © 2021 IFIP



network configuration, makes no modification to ordinary TCP
protocol and only minimal modification to MPTCP connection
setup process, and supports multiple LBs for better scalability.
Moreover, we discuss the desired properties of an LB-friendly
multipath L4 protocol based on our experience with RR, which
fills a critical gap of previous multipath L4 protocol designs
regarding their practical deployment issues.

To summarize, our main contribution is the followings:
• We propose an easily deployable MPTCP-aware L4 LB de-

sign with a high performance called RR. RR does not change
the service provider’s network configuration. Moreover, RR
makes no modification to ordinary TCP and only minimal
modification to the MPTCP connection setup process without
requiring new option fields. Last, RR supports the case of
multiple LBs for large scale deployment.

• We implement RR in the form of software LB, although
the design itself has the potential to support both soft-
ware and hardware implementations. Extensive experiments
demonstrate the correctness and high performance of RR. We
achieve 100% correctness at steady state, and no connection
disruption during LB join/leave/failure events. In addition,
although we compromise some throughput for different SYN
packets to make the LB MPTCP-aware, we still achieve line-
rate processing for packets from 5-tuple seen before.

• We shed light on the desired properties of an LB-friendly
multipath L4 protocol based on our experience with RR,
to provide guidelines for future multipath protocol design.
In order to be L4 LB-friendly, the multipath L4 protocol
should have the following two properties. First, the unique
connection identifier (CID) should be generated only at the
client side and server side CID should be avoided. Second,
the unique CID should be presented in every packet. MPTCP
does not have these two properties thus it makes RR design
relatively complex compared with MPTCP-unaware LBs.

II. BACKGROUND

A. L4 Load Balancing in Data Center

Client Edge Router
using ECMP

Load Balancers
with Connection
Tracking Tables

Backends

Incoming Flow

Returning Flow using DSR

VIP Route Announcement

<5-tuple, backend_id>

<5-tuple, backend_id>

Fig. 1: The typical scenario of L4 load balancing in today’s
data center.

Fig. 1 illustrates how a service provider uses L4 load
balancing to scale a service offered over TCP/IP that needs
to be scaled to millions of users. For each service supported
in a data center, one public IP address, called Virtual IP

(VIP) is advertised via DNS to end-users (clients). However,
to achieve high availability and scalability, a large group of
BEs serves the incoming flows simultaneously. Thus, LBs
are configured between the edge router1 and the BE pool.
Each LB announces a route to the VIP with the same cost
to the edge router so that incoming flows to this VIP are
evenly distributed across all LBs using Equal Cost Multi Path
(ECMP) routing (i.e. L3 load balancing). They then decide
which BE an incoming flow goes to and forward the packets
to the decided BE. For a new incoming flow, identified by the
5-tuple, an LB usually uses consistent hashing on the 5-tuple
to decide which BE the packets are forwarded to and adds
an entry to its connection tracking table. For all subsequent
packets of known flows, the packets are forwarded based
on the information in the connection tracking table. For the
returning traffic, state-of-the-art designs usually support direct
server return (DSR), i.e. the returning traffic directly goes to
the edge router without passing through LBs, which makes
serving a very large number of flows possible. In this case, the
LB does not split the L4 connections, which is different from
that of popular reverse proxies (L7 LBs) such as HAProxy [8],
which split TCP connections. Current implementations of LB
include software LB [9], [10], switching ASIC/programmable
hardware [11], and the hybrid [12].

Additionally, in a larger context where multi-level load
balancing is needed, the BEs in Fig. 1 can be L7 LBs, which
are the endpoints of L4 connections from clients.

B. MPTCP Connection Setup

Host A (Client) Host B (Server)

Address A1 Address A2 Address B
SYN + MP_CAPABLE (key-A)

SYN/ACK + MP_CAPABLE (key-B)

ACK + MP_CAPABLE (key-A, key-B)

SYN + MP_JOIN (token-B)

SYN/ACK + MP_JOIN (HMAC-B, R-B)

ACK + MP_JOIN (HMAC-A)

ACK
Fig. 2: MPTCP connection setup process.

MPTCP is an extension of the TCP protocol using the TCP
option standardized in RFC6824 [13]. An MPTCP connection
usually contains several subflows, each of which is an ordinary
TCP flow. Thus, MPTCP is an L4 protocol that sits on top of
TCP protocol and below the application layer.

Fig. 2 shows the process to successfully set up an
MPTCP connection with multiple TCP subflows. The primary
flow is established first via a 3-way handshake with an
MP CAPABLE option, during which 64-bit keys of both sides
are exchanged. Then, in order to add a secondary flow to
this MPTCP connection, the client sends a SYN MP JOIN
packet with token-B. Token-B is the most significant 32 bits
of SHA1 hash on key-B and it uniquely identifies this MPTCP

1With ICMP support of the edge router and the client’s path MTU discovery
mechanism, we do not consider IP fragmentation in LB design.



Proposals Change Net Config. Modify TCP Modify MPTCP Support Multi. LBs
Ideal No No No Yes
RR No No Yes, minor Yes

P1 (Proposal1 of [2], [1]) Yes No No1 Yes
P2 (Proposal1 of [3], [4]) Yes No No2 Yes

P3 ( [7]) No No No No
P4 (Proposal2 of [2], Proposal2 of [3], [6]) No Yes Yes, major No

P5 ( [5]) No No Yes, major Yes
1 It forces BE to announce its second port number after primary flow setup before secondary flow setup, which needs both client/server OS changes.
2 It forces BE to announce its second public IP after primary flow setup before secondary flow setup, which needs both client/server OS changes.

TABLE I: Comparison of the ideal solution, RR, and previous proposals.

connection on the server side. Three packets afterward finish
the authentication process to establish the secondary flow2.

In the context of a data center, from the mobile client’s point
of view, all TCP subflows of the same MPTCP connection
need to go to the same BE in order to fully take advantage of
MPTCP. However, it is apparent that this requirement cannot
be guaranteed in the LB design in § II-A. From the service
provider’s point of view, LBs being unaware of MPTCP may
generate a large number of unnecessary outgoing RST packets
because BEs receive unexpected TCP packets, which also hurts
the performance of the data center.

C. Deficiencies of Previous Proposals

We describe previous proposals to solve this problem and
why there are unable to be widely adopted. Table I summarizes
their properties and compares with the ideal solution and RR.

P1 (Proposal1 of [2] and [1]): This method changes the
network configuration of the service provider so that every
BE has a different second port number. Thus, after primary
flow setup, the BE informs the client its second port number
and the client can use this as the destination port number
for secondary flow so that LBs can decide which BE this
traffic goes to. However, even if not considering the number
of BEs can be larger than possible available port numbers,
this proposal complicates the NAT and firewall configuration
of the service provider. In Ananta [10], every outbound packet
is NATed from internal IP to VIP. Suppose a BE supports two
services (VIPs), the second port number does not provide any
information which service the packet belongs to, thus it cannot
be NATed.

P2 (Proposal1 of [3] and [4]): This method similarly
changes the network configuration of the service provider, but
uses a different second public IP rather than a port number to
distinguish each BE. This is also undesirable because public
IP is a scarce/costly resource.

P3 ( [7]): This method parses the ACK MP CAPABLE
packet to get key-B generated at BE and thus is able to forward
secondary flow correctly. However, it does not consider the
scenario that the primary and secondary flow reach different
LBs for multiple LBs case and possible token collision when
serving a large number of clients. Furthermore, it actually
parses every ACK packet from 5-tuple seen before, so its
throughput performance is not satisfying.

2HMAC-A=HMAC(Key=key-A+key-B, Msg=R-A+R-B), HMAC-B=
HMAC(Key=key-B+key-A, Msg=R-B+R-A). R-A and R-B are random
nonces.

P4 (Proposal2 of [2], Proposal2 of [3], [6]): This method
generates token-B/key-B at the LB and embeds 14 bits of the
token into the TCP timestamp option of every packet so that
the LB can know the BE of secondary subflow. The timestamp
option is commonly used by current TCP implementations, so
it is a drastic change, especially at the client side. This method
also significantly modifies MPTCP because the LB needs to
inform the BE the selected key-B using a new IP option, which
requires IETF approval. Moreover, neither does it consider the
case that the primary and secondary flow reach different LBs.

P5 ( [5]): This method modifies the token generation process
so that each BE can only generate token within its own range,
thus the LBs can infer which BE the secondary flow goes to.
Nevertheless, it significantly modifies MPTCP such that the
connection setup process is drastically different from what we
described in § II-B. Tokens rather than keys are exchanged
in the first two packets, and (non-standardized) MPTCP SYN
cookies must be enabled.

For an ideal solution, it should not change network config-
urations of service providers, should make no modifications to
ordinary TCP and MPTCP, and support multiple LBs for good
scalability. However, none of the previous proposals satisfy
these requirements simultaneously. If it is impossible to meet
all the requirements, sacrificing MPTCP slightly is tolerable
compared with violating other requirements, given that it is
still not widely deployed.

III. RR DESIGN

In this section, we present the design of RR, a widely
deployable MPTCP-aware L4 LB. We start with our design
principles, assumptions, and constraints. Next, we consider the
simple case where we have only one LB, and then extend the
design to the case where we have multiple LBs. Finally, we
summarize the pros and cons of our design. Note that we
mainly focus on data plane design and it is compatible with
most modern control plane designs, e.g. logically centralized
but physically distributed controller in SDN [1], [9], [10].

A. Principles, Assumptions, & Constraints

Design principles: In our design, we aim at high packet
processing speed and ease of deployment, in addition to
always correctly forwarding multiple TCP subflows of the
same MPTCP connection to the same BE.
Design assumptions: We assume that the client has multiple
IP addresses/ports and the service provider has only one VIP
address and port number per service known to the client.



Constraints: Based on these design principles and assump-
tions, we have the following constraints on the design space:
(1) Our design cannot modify the traditional TCP protocol
and can only make minimal modification on the MPTCP
protocol without requiring new option fields that need IETF
standardization. (2) There is no constraint on the client’s
configuration, but only minimal modification on the service
provider’s network configurations (e.g. NAT and firewall)
is possible. Moreover, clients are agnostic to the service
provider’s network configurations. (3) We also need to support
DSR and multiple LBs to have good scalability. (4) Only a
small disruption is tolerable when a BE or an LB goes up
or down. (5) Our design should have no constraints on the
implementation method, and should be amenable to software,
switching ASIC, or hybrid implementations.

B. The Case of Single Load Balancer

We present our design by addressing the following three
questions. Without any loss of generality of our design, hereon
we only consider (MP)TCP traffic of one service.

Who generates the unique connection identifier key-B/token-
B? Because BE is the endpoint of the MPTCP connection, on
the first thought, without considering the LB, the BE generates
key-B/token-B. However, since the token is used to identify
an MPTCP connection, in the case when the number of BEs
is large, it is easier to guarantee its uniqueness if the LB
generates the token. Moreover, in DSR, the SYN/ACK packet
with key-B will not be routed via the LB if the BE generates
it. Therefore, if key-B/token-B are generated at BE, we need
to tightly synchronize this information between BE and LB.
Nevertheless, experience from previous work [9], [10] has
shown that global synchronization should be avoided due to
its high cost. Thus, we move the key/token generation function
to the LB.

How to inform the BE of the selected key-B? We take
advantage of existing fields in MPTCP suboptions, which is
a nonintrusive way to inform this information. Recall that the
third packet in the 3-way handshake to set up the primary flow
is an ACK MP CAPABLE packet with both key-A and key-B.
We, therefore, decide to piggyback the key-B selected by the
LB into the MP CAPABLE option field similar to the ACK
MP CAPABLE packet. Note that this method requires a small
modification to the MPTCP server side code to extract key-B
and the LB needs to recompute the TCP header checksum and
the IP header checksum. However, it does not require a new
TCP option, MPTCP suboption, or IP option.

How to ensure packets of secondary subflows are sent to the
same BE, i.e., the correctness of flow forwarding in this case?
We maintain two connection tracking tables, one for ordinary
TCP connections and the other for MPTCP connections. The
ordinary TCP connection tracking table is defined as <5-tuple,
(BE id, token-B)> and the MPTCP connection tracking table
is defined as <token-B, (BE id, key-B)>. When the primary
flow arrives, we allocate a unique key/token and decide which
BE it goes to using consistent hashing on the 5-tuple of the
primary flow. We add one entry to each table to record the

necessary information. Then, when the secondary flow arrives,
we look up the MPTCP connection tracking table using the
token-B in the SYN MP JOIN packet to find the BE it goes
to, and add an entry to the ordinary TCP connection tracking
table to record this decision. Fig. 3(a) and Fig. 3(b) illustrate
the process (ignore the second LB for now). For all subsequent
packets of primary or secondary flow, we look up the ordinary
TCP connection tracking table to get the BE id and the token-
B, then look up the MPTCP connection tracking table using
the token only for the purpose of updating the last used time
of this entry. In this way, RR guarantees the correctness for
the single LB case. Note that we also include key-B in the
MPTCP table because it is possible to receive duplicate SYN
MP CAPABLE packets from the same client. In this case, we
should not allocate a new key/token. Instead, we should use
the same CID allocated previously. Therefore, including this
field makes RR more robust to SYN MP CAPABLE flood.

C. The Case of Multiple Load Balancers

In the following, we extend the design of RR for the
single LB to support multiple LBs and achieve scalability, and
similarly present our design by addressing four questions.

Does an LB need to know the key/token generated by others?
If the allocated key/token information is available to all LBs,
the process of generating a unique new key/token is very
simple. One can simply randomly generate the key and check
whether its corresponding token is in the MPTCP connection
tracking table. However, making allocated key/token informa-
tion available to all LB needs costly global synchronization.
Thus, an RR LB does not know which key/tokens are allocated
by others in our design.

How to ensure the generated key/token is unique among
multiple LBs? Without knowing the allocated key/tokens of
others, we can still guarantee the uniqueness by dividing the
token space into non-overlapping subspaces and each LB can
only generate a key whose corresponding token falls into its
own subspace. In order to have minimal disruption when an
LB goes up or down, we still apply the idea of consistent
hashing to divide the token space. For example, we can use
a hash function on the LBs’ MAC addresses to map them
onto the token space and require each one can only generate
token falling into its right-hand side. Fig. 4 illustrates this idea.
Squares represent different LBs and circles represent different
allocated tokens. Each LB can only generate a key whose
corresponding token falls into its own subspace, indicated by
the same color. Note that the LBs need to regenerate the key if
the key does not meet the requirement, and the average number
of tries to generate a valid key is roughly equal to the number
of LBs because SHA1 is one-way function and its uniformity
can guarantee the size of each subspace is roughly the same. If
a valid token/key cannot be generated in a predefined number
of trials since the system is overwhelmed, the LB drops the
packet to force the client to fall back to ordinary TCP. In
addition to key/token uniqueness, dividing token space using
consistent hashing also ensures that each LB is aware of every
other LB’s subspace.
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Fig. 3: MPTCP connection setup process through RR LBs. Only the initial 2-packet exchange is shown.
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Fig. 4: Token space division using consistent hashing.

How to ensure subflows reaching different LBs go to the
same BE, i.e., the correctness of flow forwarding in this case?
Suppose the primary flow is established as shown in Fig. 3(a).
Then, LB1 knows which BE this MPTCP connection goes to
and token-B is within LB1’s token subspace. If the secondary
subflow goes to LB2 as shown in Fig. 3(c), LB2 does not
know which BE this MPTCP connection goes to based on this
token-B, but it knows that LB1 is responsible for this token-B.
Thus, LB2 forwards this flow to LB1, and LB1 can forward
it to the right BE. LB2 also adds an entry <5-tuple-2, (LB1,
null)> to its ordinary TCP connection tracking table to record
this decision. Note that “null” represents an invalid token and
LBs can be considered as a special group of BEs. In this way,
RR guarantees the correctness when there are multiple LBs.
Although redirection is not very desirable in terms of some
performance metrics, e.g. latency, it is unavoidable given no
global information. Redirection is also involved in Maglev [9]
to handle IP fragments and Beamer [1] to handle BE changes.

How to support events of LB join/leave/failure? To add
minimal complexity compared with ordinary LBs, these events
are not handled differently except for LBs being informed
that new token space division should be computed. Note that
the control plane is involved during these events, e.g. route
announcement/retrieval and health check request/response.
However, with the help of SDN, which offers more QoS to
control plane traffic compared with data plane traffic, we do
not consider complicated control plane issues, e.g. lost/slow
health check response, because they are not MPTCP specific
problems and should be solved by control plane itself.

For LB join, one obvious negative effect of this simple
solution is the broken secondary flows, which are routed to the
new LB by the edge router. In addition, there are two issues
that need analysis, i.e., possible connection disruptions and
the negative effects of possible token collisions. For possible
connection disruption, the necessary and sufficient condition
of making connection disruption impossible is that there is
no BE change since serving the oldest connection still in the

system, because consistent hashing on primary flow’s 5-tuple
can find the right BE. This necessary and sufficient condition
of making connection disruption impossible is the same as
MPTCP-unaware LB’s join event. If this condition is not met,
the possibility of connection disruption is in fact slightly better
than MPTCP-unaware LB under the same BE changes because
the new LB can route the secondary flow to the right BE with
a tiny probability. However, it is actually worse than the case
that multiple paths experience independent failures. For the
negative effects of possible token collisions, let the collided
MPTCP connections are 1) Co, established via LBo and goes
to BEo, and 2) Cn, trying to set up via new LBn to BEn. If
BEn 6= BEo, Cn will set up successfully, and the secondary
flow of Cn can be added smoothly even if it is routed to
LBo by the edge router because LBo is not responsible for
this token now. 3 If BEn = BEo, which can happen with a
tiny possibility, Cn will fall back to ordinary TCP at the BE
because this token is already in use. Another corner case is
Co has a new secondary flow. It will be forwarded to BEn by
LBn but the authentication process in Fig. 2 will fail. Thus,
although it cannot be added to Co successfully, it does not
affect Cn.

Overall, the join procedure of RR is the same as that of
MPTCP-unaware LB except for computation of the new token
space division, and the possibility of connection disruption is
negligibly better. The downsides are (i) a portion of established
secondary flows are aborted harshly because they are routed
to the new LB by the edge router, (ii) a portion of established
MPTCP connections cannot be added with new secondary
flows because the new LB is responsible for but unaware of
their tokens, and (iii) a new MPTCP connection can be forced
to fall back to ordinary TCP with a tiny possibility due to
token collision.

We directly give the conclusions of LB leave (soft failure)
as the following and omit the analysis similar to LB join.
Overall, the leave procedure of RR is the same as that of
MPTCP-unaware LB except for computation of new token
space division, and the possibility of connection disruption is
negligibly better. The downsides are (i) a portion of established
secondary flows are aborted harshly because they either were
routed from other LBs to the left LB or were routed from the
edge router to the left LB but are now routed from the edge
router to an LB which was not the final hop, (ii) a portion
of established MPTCP connections cannot be added with new
secondary flows because their information is gone with the

3However, Co’s established subflows are still being served by LBo.



left LB, and (iii) a new MPTCP connection can be forced to
fall back to ordinary TCP with a tiny possibility due to token
collision.

For hard failure, it is equivalent to soft failure conceptually.
The difference in practice is that it needs some time for the
edge router and other LBs to notice the failure, usually on
the scale of several seconds (default health check response
timeout) to a few minutes (default BGP hold time).
D. Pros and Cons

We summarize the pros and cons of our design within the
constrained design space as follows.

Pros: Our design can achieve high packet processing speed,
as it does not require any state information to be tightly
synchronized among all LBs or BEs. In addition, since we
use consistent hashing to divide the token space into non-
overlapping subspaces, there can be only O(1/n) (n is number
of LBs) of token space changes when an LB join/leave/failure.
Moreover, because we use consistent hashing on the primary
flow’s 5-tuple to decide which BE an MPTCP connection goes
to, the LBs can still find the right BE with high probability
for the primary flow when there is an LB churn or even worse
a major traffic shuffle due to bad ECMP implementation. In
other words, almost no MPTCP connection is disrupted.

Cons: Our design is stateful and needs two connection
tracking tables. Thus, we have to reserve more memory for
these tables on the LBs. Furthermore, when there are multiple
LBs, one may need to try several times (on the order of
O(n)) in order to get a valid new key/token, which adds
a computation overhead. Additionally, when there is an LB
churn, a significant portion of secondary flows cannot find the
right BE with high probability. Lastly, since we are redirecting
the secondary flow to one more LB if it reaches a different
LB from the primary flow, we add marginally more latency to
the secondary flow packets, and it may cost double bandwidth,
CPU cores, etc.

IV. IMPLEMENTATION

The design of RR supports both software and hardware
implementation. However, in this section, we only present
the details of software implementation. The reasons that
we choose to implement RR in software first rather than
hardware are the following. First, software LB offers higher
flexibility and can be implemented as well as deployed on
ordinary service machines in a data center. On the contrary,
hardware implementation requires specific switching ASICs.
Second, state-of-the-art switching ASICs have only 100MB
SRAM [11], limiting the size of the connection tracking
tables. Nevertheless, the design of RR requires two connection
tracking tables, which demands more SRAM than MPTCP-
unaware LBs. Lastly, RR is designed to mainly support mobile
clients and to promote the deployment of MPTCP protocol in
mobile clients as well as service providers. Thus, given the
still growing number of MPTCP-enabled mobile clients, it is
tolerable to not support full bisection traffic and have latency
on the order of 1ms or less.
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Fig. 5: The software implementation of RR.

Fig. 5 gives an overview of the software implementation of
RR. We use an open-source kernel bypass platform called Data
Plane Development Kit (DPDK) offered by Intel [14]. Com-
pared with kernel resident solutions, it has a better throughput
performance on the data plane. In order to reach the highest
performance, we leverage the Receive Side Scaling (RSS)
function of NIC hardware so that we can receive packets from
multiple RX queues (RXQs) in parallel. RR mainly contains
two types of packet processing pipelines, which are Demux
pipelines and MPTCPLB pipelines. Each pipeline is realized
in a separate thread and mapped to a different CPU core.
The purpose of the Demux pipelines is to demultiplex the
traffic based on its requested service. The MPTCPLB pipelines
realize MPTCP-awareness described in § III. If the chosen BE
of a packet is not another MPTCPLB pipeline, the pipeline
sends the packets to its corresponding TX queue (TXQ) of the
NIC. We also use a kernel NIC interface to forward the control
plane traffic to the LB, e.g. health check request/response,
BGP traffic. In addition, previous layer-4 LB implementations
usually leverage least recently used (LRU) hash table [11] to
realize lookup tables. We, however, use extendable hash table,
which reserves a relatively small amount of memory that can
be used when a bucket of the hash table is full. We also add
a timestamp field to each entry so that if the time difference
between when the entry is looked up and when the entry is
created is larger than a threshold, it is considered as outdated.
The reason of these two modifications is that we require entries
to expire in a timely manner such that the LB can record more
valid routes for secondary flows than LBs using LRU tables.

For the service BE implementation, we modify the MPTCP
Linux Kernel implementation [15] so that the server can
extract key-B from SYN MP CAPABLE packet and calculate
the corresponding token-B if it contains both key-A and key-
B. If the token-B is still available at this BE, the BE uses
this token-B to identify this MPTCP connection. If it is not,
which can happen when the BE serves multiple MPTCP based
services or during LB changes, the server simply considers
this packet as an ordinary SYN packet. The patch based on
the above logic is only 30 lines of C code, and the application
of it to all server machines in a data center is much easier
compared to the client side kernel upgrade, which is required
by P1/P2/P4/P5.

V. EVALUATION AND RESULTS

We evaluate RR through extensive experiments and focus
on RR’s correctness (§ V-A) and its performance (§ V-B),



i.e. throughput. We compare RR with an MPTCP-unaware LB
similar to the design of Google Maglev [9] but implemented
in DPDK (denoted as TCPLB hereafter), as well as P1 to
P3. P4 and P5 are excluded from quantitative comparison due
to their significant modifications to (MP)TCP protocols (i.e.
OS kernel). Moreover, we do not evaluate complicated corner
cases due to control plane issues because it is beyond the
scope of this paper. We also omit the evaluation of RR’s load
balancing evenness since the evenness of Maglev hashing has
been shown [9] and we use the same algorithm. The results
of latency performance is omitted due to space limit, but
experiments show that we introduce sub-millisecond latency
in the worst case, which is tolerable for mobile clients.

All experiments in the following are conducted in Cloud-
Lab [16] using machines that have two 14-core 2.00 GHz
Intel CPUs, 256GB RAM, and dual-port Intel 10GbE NIC
with ixgbe driver in the same intranet. Moreover, if controlled
traffic is needed, its packets are generated using Scapy [17],
a python supportive packet manipulation tool. Mobile clients
with WiFi and cellular access are not used for experiments
due to the uncontrollability of link quality, latency, etc.
A. Correctness

1) Single Load Balancer Case: Light Load Setting. In
this setting, we first send a SYN MP CAPABLE packet from
a client using a specific IP address and port number to the LB,
and the LB assigns a BE to serve this request. Then, we send
100 SYN MP JOIN packets with the corresponding token-B
from the same IP address but 100 random port numbers to
the LB. We vary the number of BEs from 1 to 4 and record
the percent of correctly forwarded SYN MP JOIN packets
(secondary flows). Note that for the LB, the lookup hash table
has enough number of entries so that no entry will be added
unsuccessfully due to hash collision and lack of space, i.e. the
LB is lightly loaded. Fig. 6(a) shows the result. We can see that
RR achieves 100% correctness as the number of BEs increases.
On the contrary, the correctness of TCPLB decays as 1/n (n
is the number of BEs), which complies with the theoretical
analysis. Moreover, P1 and P2 have the same performance
with TCPLB because in our setting there is no second port
number/public IP for each BE.

Heavy Load Setting. When the number of active flows
and the number of entries of the lookup hash table are on the
same order, failures to insert an entry into the table happen
frequently due to hash collision and lack of space, and the
subsequent packets of secondary flows cannot find the correct
BE with high probability in this case. Thus, in heavy load
setting, we change the number of SYN MP JOIN packets
from the same IP address and random port numbers in the
previous setting to the number of entries of the lookup hash
table (without counting the extra space for extendable hash
table) and see how many percents of entry insertion failures
we encounter. We choose the LRU hash table as the baseline
and vary the extra space of RR’s extendable hash table from
1/8 of the number of lookup hash table’s entries to 3/8 of
it. Note that the default number of entries per bucket in the
hash table is 4 in our implementation (same for extra space

of extendable hash table). Fig. 6(b) shows that for the LRU
hash table, it encounters 20% entry insertion failures due to
hash collision and lack of space when the hash table is large
enough. By reserving extra space, RR decreases the percent of
entry insertion failures significantly and reaches 0.5% when
we reserve 3/8 of the number of lookup hash table’s entries.

2) Multiple Load Balancers Case: Steady State. We mod-
ify the light load setting by using two LBs and sending the
SYN MP CAPABLE packet and SYN MP JOIN packets to
different LBs. We compare RR with P3 and the result is the
same as Fig. 6(a) with P3 equivalent to TCPLB/P1/P2, which
complies with our analysis in § II-C.

Hard Failure. In the previous settings, there is no LB or
BE failure. In this setting, we focus on LB failure. We serve
100K continuous MPTCP connections from the clients with
multiple LBs and 100 BEs. Each connection has one primary
flow and one secondary flow using random port numbers. After
primary and secondary flows are established, we make a hard
failure to one LB. Moreover, there is no BE change during
this test. Fig. 6(c) shows the percent of broken connections,
broken secondary flows, and affected connections, i.e. they
cannot accept new secondary flows after the hard failure. From
Fig. 6(c) we notice that O(2(n − 1)/n2) secondary flows
(where n is the number of LBs) are broken due to the LB
hard failure, including O(1/n2) each from n − 1 other LBs
and O(1/n) from the edge router minus O(1/n2) ones which
are now directly routed to the original second hop LB. In
addition, roughly O(1/n) connections are affected. However,
because we use consistent hashing on primary flow’s 5-tuple
to decide the BE, no MPTCP connection is broken after the
hard failure regardless of the number of LBs. Even if there is
a concurrent BE change, the possibility of a broken MPTCP
connection is minimized. This shows RR’s robustness to LB
failures.

Dynamic LB Join/Leave. Similar to the previous setting,
we serve 100K connections with multiple LBs and 100 BEs.
The duration of each connection follows a normal distribution
with mean 60s and standard deviation 10s, and each connec-
tion restarts using new random ports after its current duration
is finished. At time=0s, we have 5 LBs. One LB leaves the
system at time=120s, and rejoins the system at time=240s.
Another LB leaves the system at time=360s, and rejoins the
system at time=480s. In addition, 25 more BEs are added to
the system at time=320s. Fig. 6(d) shows the percent of broken
connection, broken secondary flows, and affected connections,
i.e. the connections cannot be added with new secondary flows
or fall back to ordinary TCP, as functions of time. For LB join,
O(1/n) secondary flows are broken and O(1/n) connections
are affected. For LB leave, O(2(n − 1)/n2) secondary flows
are broken and O(1/n) connections are affected. Nevertheless,
no connection is broken during the first LB join/leave because
the necessary and sufficient condition of making connection
disruption impossible is satisfied. For the second LB leave,
this condition is not satisfied but only 1.55% connections are
broken. It is 0.02% smaller than TCPLB in the same setting,
which shows the robustness provided by multipath is not
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Fig. 6: Correctness of RR LB in various settings.

obvious for LB churns. Moreover, it takes roughly one average
connection duration for the system to becomes stable, which
is tolerable. Overall, RR is robust to dynamic LB join/leave.

B. Performance
We evaluate the throughput of RR and compare with TCPLB

and P3. Results of P1 and P2 are omitted due to their poor
correctness in our setting. We first consider the throughput of
a single RR LB and then multiple LBs, for a single service.

Throughput comparison with TCPLB/P3. Since TCPLB
only differentiates two kinds of packets, i.e. ordinary SYN (ord
syn) and packets from 5-tuple seen before (5 tup), we show the
throughput for these two kinds of packets as a function of the
number of forwarding threads in Fig. 7(a). For ordinary SYN
packets, we can see that the throughput of TCPLB reaches
line-rate when the number of forwarding threads is no less than
3. However, RR can only support roughly 1/3 of the throughput
of TCPLB. The reason for this throughput decrement is that
we need to parse the TCP option field and check whether
a SYN packet contains MPTCP options, i.e. MP CAPABLE
or MP JOIN, even if it does not. For packets from 5-tuple
seen before, we observe no difference between the throughput
of RR and TCPLB and between ordinary TCP packets going
through TCP table only (5 tup 1) and MPTCP packets going
through both TCP and MPTCP tables (5 tup 2) in RR. Line-
rate is also reached when the number of forwarding threads
is no less than 3 for packets from 5-tuple seen before. For
P3, multi-threading is equivalent to multiple LBs, which it
does not support, so we only give its throughput of one thread
without including it in Fig. 7(a). Its throughput for packets
from 5-tuple seen before is only 2.5MPPS, 1/2 of other LBs,
because it needs to parse every ACK to see if it is an ACK
MP CAPABLE. Moreover, its throughput for ordinary SYN
packets is 2MPPS, which is the same as RR.

Throughput for different SYN. Fig. 7(b) shows
the throughput of RR for different SYN packets, in-
cluding ordinary SYN, SYN MP CAPABLE, and SYN
MP JOIN. We have two versions of implementation for SYN
MP CAPABLE. (1) In a reactive implementation (mp capa-
ble(r)), key/token are allocated in a lazy manner. The MPTC-
PLB pipeline only starts computing for a valid key/token
when a new MPTCP connection request arrives. (2) In a
proactive implementation (mp capable(p)), we have a separate
thread that does key/token generation for each MPTCPLB
pipeline only, so that the MPTCPLB pipeline can always pull
a valid key/token from it. We additionally differentiate SYN
MP JOIN into three cases, i.e. going to the same forwarding
thread within an LB by forwarding between different threads

(mp join(1)), going to all forwarding threads inside an LB
without forwarding between threads (mp join(2)), going to
a different LB (mp join(3)). Ordinary SYN and the case 2
& 3 of SYN MP JOIN have the highest throughput because
only TCP table entry adding is needed. The case 1 of SYN
MP JOIN has relatively stable throughput regardless of the
number forwarding threads because packets are forwarded
to one particular thread eventually. The throughput for SYN
MP CAPABLE in reactive implementation is the lowest and
stays at 1MPPS without increasing much when using multiple
forwarding threads. The reason is that by using multiple
forwarding threads, the number of trials to generate a valid
key/token also significantly increases. However, in proactive
implementation, SYN MP CAPABLE has similar throughput
compared with ordinary SYN and the case 2 & 3 of MP JOIN.
In addition, the throughput of P3 (with one forwarding thread)
for SYN MP CAPABLE is the same as its throughput for
ordinary SYN because it does not differentiate these two. For
SYN MP JOIN, P3’s throughput is 1.9MPPS, which is the
same as the case 1 & 2 of SYN MP JOIN in RR.

Throughput using different hash tables. Fig. 7(c) shows
the throughput using three different hash tables, i.e. LRU hash
table (lru), extendable hash table without timely entry timeout
support (ext), and extendable hash table with timely entry
timeout support (time). From Fig. 7(c) we observe that there
is no significant difference in throughput for ordinary SYN
packets and packets from 5-tuple seen before. The throughput
of extendable hash table with timely entry timeout support for
ordinary SYN is slightly lower than the other two because we
remove the outdated entries in the same bucket first before
adding a new entry into the bucket.

Throughput of multiple LBs. The throughput for other
packets can be easily generalized to the case of multiple
LBs except for SYN MP CAPABLE. Fig. 7(d) compares the
throughput of multiple LBs all using a single forwarding
thread and the throughput of multiple forwarding threads in
a single LB for both reactive and proactive implementation.
We notice from Fig. 7(d) that for both reactive and proactive
implementation, the throughput for SYN MP CAPABLE us-
ing multiple LBs is slightly higher than that using multiple
forwarding threads. The reason is that even if the multiple
forwarding threads are mapped to different cores of CPUs,
they still contend for other resources, e.g. memory of packet
queues. Thus, if there are machines available, having multi-
ple LBs is more desirable than having multiple forwarding
threads. Moreover, the throughput for SYN MP CAPABLE
in proactive implementation has better scalability than that
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in reactive implementation. This shows, with careful im-
plementation, the throughput of SYN MP CAPABLE can
meet the needs of different types of services. In our real
deployment, we use 3 forwarding threads/machine because
line-rate processing of packets from 5-tuple seen before is
achieved and we believe 4MPPS/(machine·service) throughput
for SYN MP CAPABLE is enough given the maximal number
of concurrent MPTCP clients in our setting is 232 ≈ 4295M
(32 bits token space).

VI. LESSONS LEARNED

We now take a step back and discuss the lessons learned
about the desired properties of an LB-friendly multipath L4
protocol based on our experience with RR. These lessons
fill a critical gap of previous multipath L4 protocol designs
regarding their practical deployment issues.

The unique connection identifier (CID) should be generated
only at the client side and server side CID should be avoided.
One difficulty of RR design is how to handle MPTCP server
side key-B/token-B, i.e., server side CID. If BE generates
the CID, we need a synchronization mechanism between LB
and BE. If LB generates the CID, we need a way to inform
BE of the selected CID. If it is an inband method, i.e. by
manipulating the multipath L4 protocol packet itself like what
we do in RR, it compromises throughput as shown in § V-B.
If the protocol is further authenticated or encrypted, inband
methods are barely possible. If it is an outband method,
a synchronization mechanism is still needed. This dilemma
can be avoided by generating CID purely at the client side.
Unlike MPTCP’s small token space (32 bits), if the size of
CID is large enough (at least 64 bits), the probability of
collision is negligible for the number of users on a million
scale. Encryption/authentication offered by L4 protocol itself
or higher layer protocol can be leveraged to further handle the
case of CID collision. Moreover, the distinction of MPTCP
key and token further complicates CID generation in multiple
LBs case because SHA1 is one-way.

The unique CID should be presented in every packet.
Another challenge that makes MPTCP not LB-friendly is that
it only contains its CID in its incoming SYN MP CAPABLE,
ACK MP CAPABLE, and SYN MP JOIN packets. Thus, if
an LB receives a SYN MP JOIN packet with an unknown
token or a non-SYN packet of a secondary subflow from an
unknown 5-tuple due to route changes, it cannot even make a
good guess based on the 5-tuple that is better than a random
guess. As a result, this leads to the design decision of token
space division and packet redirection, and requires the LB to

reserve a large amount of memory to remember the next hops
for all secondary subflows. Nevertheless, all these problems
can be easily solved by incorporating CID into every packet, so
that we can use CID rather than 5-tuple to do load balancing4,
which can avoid redirection and save memory. In addition, the
unique CID is better to be of fixed length at a fixed location.
This ensures LB can get the CID directly rather than parsing
the packet one field after another like how we parse (MP)TCP
options, which also decreases throughput.

VII. CONCLUSION

In this paper, we have presented our MPTCP-aware LB
RR, which offers high performance and ease of deployment.
We believe it removes a key hurdle in the rapid adoption of
MPTCP as a critical technology to exploit multipath connec-
tivity for mobile clients. Although its performance in very
large scale deployment still needs to be examined, we foresee
that RR will be an integral part of ultra-broadband, ultra-
reliable, ultra-low delay 5G mobile and fixed access. We also
envision the lessons we learned are applicable in designing
future multipath protocols and support load balancing of other
multipath protocols, e.g., multipath QUIC.
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