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Abstract—Data streaming has multiple applications on the
Internet including traffic measurement and intrusion detection.
The bedrock underlying these applications is a set of data
streaming algorithms that extract useful information from net-
work packet stream, estimate the needed statistics such as the
frequencies of TCP flows, and feed them to application software.
Among such algorithms, counting sketches are most prevalent,
which are very compact but do so at the cost of errors in
their estimations. The dominant error-control method that has
been widely accepted for more than a decade is to take the
min error from multiple independent estimations. This method
produces a positively-biased error and the error can grow large
under stringent performance and resource conditions, but no
existing work makes an intensive study of this error. This paper
investigates the property of the error, which is also known as
noise, and claims that it can be measured and removed so as
to make the estimations unbiased. We introduce two new ideas,
d-smallest noise and artificial data items for measuring the noise.
Based on these two ideas, we propose four noise measurement
methods. The mathematical analysis and experimental results
based on real network traces show that by removing the measured
noise, the error of estimations will be reduced to a much lower
level than what the state of the art can do.

I. INTRODUCTION

Data streaming algorithms process continuous streams of
data items in real time, often under resource constraints due
to performance, cost and other reasons. They have wide
applications on the Internet, including traffic measurement
[11, [2], [3], intrusion detection [4], heavy hitter detection [5],
[6], [7], iceberg identification [8], web services [9] and social
networking [10].

A key function of the streaming algorithms is to estimate the
frequency of occurrences that each data item appears in a given
stream. Numerous networking applications can take advantage
of this function after modelling their input as a data stream.
For instance, consider a packet stream that arrives at a router.
We model each packet as a data item, which can be arbitrarily
defined according to application need. As an example, it may
be the TCP flow identifier carried in packet headers, consisting
of source address, destination address, protocol ID, source port
and destination port. A stream of z, y, y, 2, T, x represents six
packets, three from TCP flow z, two from flow y and one from
flow z. The frequencies (i.e., packet counts) of flows x, y and 2
are 3, 2 and 1, respectively. Measuring the packet count of each
flow helps network operators understand traffic distributions
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and respond in real time for traffic balancing, traffic shaping
and quality of service. The problem of frequency measurement
becomes challenging if there are billions of packets that arrive at
a rate of many millions per second, in which case the streaming
algorithm may have to be implemented on a network processor
using on-chip cache memory where packet forwarding and
other networking functions are also implemented, which in
turn aggravates the contention of scarce on-chip resources.

For additional Internet application examples, consider a
search engine and model the sequence of search requests as
a stream where each data item is a search key. Knowing the
frequency of each key helps us determine which search results
should be cached for faster response and which keys should be
suggested to users as they type. Consider a social network and
model the sequence of posts visited by users as a stream where
each visited post is a data item. Knowing the frequency of each
post helps us identify the trend of user interest in real time.
Consider an e-commerce web site and model the sequence of
products browsed as a stream where each browsed product is
a data item. Knowing the frequency of each product helps us
recommend popular products to online consumers.

In order to achieve extraordinarily high throughput, the
algorithmic operations on streaming data should be kept
very simple, and high-speed memory such as SRAM is
sometimes preferred for speed, despite its small size. Such
design constraints often lead to conflict between the requirement
of simple processing and the desire for functionality and
accuracy, as well as conflict between limited memory and a very
large amount of data to be handled. One solution for the above
conflicts is to condense data into a much smaller summary using
compact data structures called counting sketches [11], [12],
[13], [7], [14]. The summary is able to provide approximate
frequency estimates. A great advantage of the counting sketches
is that they can work with a small memory that has a much
fewer number of counters than the number of different data
items, yet still able to provide an estimate for item frequencies.
However, as a tradeoff, their estimates carry errors.

The dominating error control mechanism in use is the min-
error method [11], [12], which together with its many variants
has been adopted widely in the data streaming literature [9], [6],
[2], [7], [15], [5], [1]. Its basic idea is to map each data item
x to multiple counters that are shared by others. While each
counter carries the frequency count of x plus noise from other
items, the smallest value of these counters carries the minimum



error. Due to its wide adoption, the excellence (or weakness)
of the min-error method has profound positive (or negative)
impact on a large body of data streaming work. Likewise, any
superior alternative design that replaces it will go beyond the
streaming algorithms themselves to improve the performance
of numerous applications that build on top of them.

This paper casts doubt on the min-error method because it
produces positively-biased noise (i.e., residual error) that grows
large under stringent resource and performance constraints.
There exists prior work [13], [7], [14] that abandons the min-
error method for non-biased estimations, but while being non-
biased, their actual errors are oftentimes much larger than the
min-error method, as our experimental results will demonstrate.

Our observation is that estimation accuracy will be improved
if we can further remove the positively-biased noise from the
min-error method. However, it is challenging to measure such
noise accurately and no prior art has studied how to. This paper
investigates the property of the noise and finds that it can be
effectively measured. We propose four noise measurement
methods that work online or offline, some using artificial data
items. We have implemented the noise measurement methods
in both software and hardware on CPU/GPU/FPGA platforms.
We use real-world network packet streams for a comprehensive
experimental study to evaluate the performance of the proposed
methods and compare them with existing work. The experiment
results show that by removing the measured noise, we produce
much more accurate frequency estimates than the streaming
algorithms based on the min-error method and other streaming
algorithms as well.

II. PROBLEM STATEMENT

A data stream is a sequence of data items that continuously
arrive in real time, where any item may appear in the steam
for an arbitrary number of times. A data streaming algorithm
makes a single parse over a data stream to measure information
from its items. A key measurement is called item frequency,
which is the number of occurrences that each item appears in
a stream during a measurement epoch. Divided by the total
count of all items, it becomes a frequency statistic. However,
for convenience, we will refer to the frequency of data item x
simply for the count of x in the stream, denoted as f,.

Efficient streaming algorithms have been proposed to esti-
mate item frequencies using compact sketches that trade less
accuracy for better processing/memory efficiency [1], [15], [5],
[71, [6], [9], [2]. The most dominating error control mechanism
adopted by these algorithms is the min-error method [11], [12].
However, this long-time method leaves positively-biased noise
which can be very large under tight resource conditions. The
problem is how to measure such noise so that it can be removed,
which is not previously studied in the literature. The new noise
measurement methods have the potential of improving a large
number of streaming algorithms by upgrading them from the
min-error method to new ones with noise removal.

III. MOTIVATION

We first review the existing error control methods and then
present two new ideas for noise measurement.

A. Min-Error Method

Many existing streaming algorithms [1], [15], [5], [7], [6],
[9], [2] are designed with data structures similar to or extended
from Count-Min [11], denoted as CM, which uses d counter
arrays, C;, 0 < i < d, each of length [. We denote the jth
counter of the ith array as C;[j], 0 < j < [. Initially, all
counters are set to zero. The two operations of CM are (1)
recording each item occurrence from a data stream and (2)
querying the frequency (i.e., count) of any given data item.

To record an occurrence of item x, we apply d independent
hash functions, H;, 0 < i < d, which map z to d counters,
C;[H;(z)], one in each array, and increase them by one.

To query for the frequency of item x, we still hash z to
its d counters, C;[H;(x)], 0 < i < d, and take their smallest
value as an estimate for f,, which is denoted as fx

fo = min{Ci[Hi()] | 0 <i < d} (1)

We can record far more items than the total number of
counters in C. Multiple items may be hashed to the same
counter; the counter value is the total frequency of these items.
Therefore, C;[H;(x)] is the sum of f, (information) and the
frequencies of other items also hashed to this counter (noise)
— the latter causes error in the estimate. The min-error method
(1) takes the smallest error among the d counters. Note that
all counters of = are at least f, because they all record the f,
occurrences of z, plus noise. Hence, fy — fo > 0. The estimate
fm from the min-error method is positively biased.

As we record items, we can think of each item depositing
error for others. The average counter value in C' roughly
characterizes the average error level. The effectiveness of the
min-error method can be further improved by lowering the
average error level. When recording an occurrence of item z,
Min-Counter Update [12], denoted as CU, only increases the
smallest among the d counters of z. For example, suppose
d = 4, and Cy[Hp(z)] = 5, C1[H1(x)] = 6, Ca[Ha(2)] =7,
C3[Hs(xz)] = 5. When receiving the next occurrence of x,
CU only increases Co[Hp(x)] and C3[Hs(x)] by one. Our
experiments will show that error of CU is much less than that
of CM, but CU incurs more processing overhead, which means
smaller throughput, particularly on hardware or GPU platform.

B. Min Error Can Be Large

We observe through experiments that the min error, fx — [
can still be large in situations where the number of counters
is much fewer than the number of data items, resulting in
serious hash collisions. For example, consider a packet stream
received by a high-speed router at multi-terabits per second.
To achieve such an extremely high packet rate, modern routers
perform routing-table lookups and other essential functions
on the data plane at the network interfaces, bypassing the



control panel of main memory and CPU almost entirely. On-
chip cache memory is used for packet processing. It has a
limited size and has to be shared among packet routing, traffic
engineering and measurement functions. Moreover, there can
be multiple independent measurement functions for different
types of statistics. Consider one measurement function, where
we abstract each packet to a flow identifier (which is the data
item identifier in our model). For each flow z, we want to
measure its frequency (i.e., flow size). Suppose that 107 bits of
on-chip memory is allocated for this function, which translates
into about 3.1 x 10° counters, with each counter 32 bits. If
there are 10 millions of concurrent flows and each of them
is hashed to d = 4 counters, then each counter will have to
record 128 flows on average. With such a high noise level, the
min error for any flow is likely to be very high.

C. Non-biased Error Control Methods

There are other error control methods. But they are mostly
geared toward addressing a different problem: The min error
method produces a biased estimate fw, which is true for CM
[11] and CU [12] and also true for the numerous streaming
algorithms based on them [9], [6], [2], [7], [15], [S], [1].

CountSketch (CS) [13] adopts an error canceling method. It
hashes each item = to d counters. For each of the d counters,
a bit from the corresponding hash value, 0 or 1, will determine
whether the counter is increased or decreased by one when
recording an occurrence of x. Consider other flows (noise) that
are also hashed to this counter. Some of them will increase
the counter while others will decrease it; they will thus be
statistically cancelled out. The mean error in each counter is 0;
the counter value is thus a statistically non-biased estimate of f,.
We take the medium value of the d counters as the estimate fm
Although this estimate is non-biased, it still carries significant
error under tight memory due to large variance. NitroSketch [7]
extends CS with geometric sampling. It improves significantly
on throughput but its error is considerably larger.

Count Mean Min (CMM) [14] adopts an error reduction
method. Its recording operation is the same as CM. To answer
a query on item x, from each of the d counters, CMM
subtracts away the average value of other counters in the same
array. Then it takes the medium value of the d counters after
subtraction. It can be proved that this estimate is non-biased,
but its error is again significant, consistently much higher than
CM or CU in our experiments.

D. First Idea: Mean of d-Smallest Noise

To improve measurement accuracy, we expect that the error
can be fully discerned and subtracted from the estimate. The
min-error method picks the smallest noise among d counters,
which is referred to as d-smallest noise. The noise now is
reduced to the d-smallest noise, which is an improvement but
the min-error method is not a thorough error control method
as the frequency estimate is the actual frequency plus the d-
smallest noise. Worse, the d-smallest noise can still be very
large, as we have explained in Section III-B. This paper tries
to close the gap between the estimate and the actual item

frequency caused by the d-smallest noise. Our key insight is
that we can measure the statistical mean of d-smallest noise
and subtract the mean from the frequency estimates of all data
items. By doing so, not only do we reduce noise but also
produce non-biased estimates. The key is how to measure d-
smallest noise without incurring significant additional overhead.
Let’s imagine a data item of frequency zero, which is a data
item that does not belong to the data stream. A simple method
for generating data items that will not appear in the data stream
is given here. Suppose a real data item x is represented by ¢
bits. We extend it to ¢ + 1 bits by adding a bit with the value
of 0 in the front of the original bits. Then when we want to
generate data items that will not appear in the data stream,
we randomly generate data items with ¢ bits and add a bit
with the value of 1 in front of them. Those data items will
never appear in the real data stream. For each data item of
frequency zero, we hash it to d counters. These d counters
are pseudo-randomly chosen from the arrays. Its frequency
estimation, i.e., the min of the d counters, is purely noise and
therefore represents a random sample from the d-smallest noise
distribution. Taking a sufficient number of such samples, we
average them as a measurement of the mean, which is then
subtracted from all frequency estimates.

E. Second Ildea: Artificial Data Items

The above idea, however, cannot be applied to CU, which
only increments the smallest counter(s) when recording each
data item. We find that the d-smallest noise under CU varies for
different data items x, depending on their frequencies f,. This
can be demonstrated through experimental results in Table I
(under the parameter settings and using the data streams that
will be explained in Section VII-B). We can see that small-
frequency data items have higher d-smallest noise in their
estimates, whereas high-frequency data items have lower d-
smallest noise. To measure such frequency-dependent noise, we
introduce artificial data items whose frequencies are pre-set in
different ranges. We can measure the average d-smallest noise
among the artificial items in each range. When querying for
the frequency of a (real) item, we reduce its estimate from CU
by the average d-smallest noise of a range, which is selected
such that the result after subtraction will fall in this range.

1-1 151.8 2-2 150.6
3-4 149.7 5-8 147.7
9-16 143.4 17-32 137.1
33-64 122.1 65-128 95.85
129-256 55.92 257-512 28.99

TABLE I: Measured error |f, — f,| under CU with respect to
item frequency f,. The error decreases as f, increases. This
is not true for CM, where error stays similar.

IV. D-SMALLEST MEAN NOISE MEASUREMENT

Based on the idea of d-smallest noise, we design a method
that measures the mean of d-smallest noise. By removing the
measured noise, we produce non-biased estimates. We use CM
as the baseline sketch to present the method. We first consider
offline measurements and then online measurements.



A. Design

We randomly generate m fake data items X|[t], 0 <t < m,
that are not in the data stream. Their actual frequencies are
zeros. For each of them, when we take the smallest value of its
d counters, that value is entirely noise, which is thus a sample
from the d-smallest noise distribution, denoted as follows:

nx = min{Ci[H,(X[))] | 0 < i < d}. 2)

We use the average value of all the d-smallest noise samples as
an estimate for its mean, denoted as N: N = Z;’;l nxpg/m.
The above method is called d-smallest mean noise measure-
ment method, which is also abbreviated as MN. Given a user
query on data item zx, the noise can be removed as follow:

3)

For this approach to work, it must be true that the noise
mean is independent of the actual frequencies of the data items,
which we will prove in Section VI for MN.

fe = min{C;[H;(z)] | 0<i<d} — N

B. Fast Online Noise Measurement

A serious disadvantage of basic MN is the low online
throughput. Considering an arbitrary item z, if we want to
measure its noise online, we have to query m fake data items.
Therefore, we have to query dm counters. By comparison, the
querying operation of CM only needs to query d counters.
To conquer this disadvantage, we adopt the idea of online
noise updating and present the d-smallest mean noise online
measurement method (MN-O) as follows.

We randomly generate a number m of fake data items
X|[t],0 <t < m, that are supposed not in the data stream. Their
actual frequencies are always zero through the process of online
recording. We create another counter array 7[t],0 < t < m,
where the tth counter is used to store the noise for fake item
X |[t]. Besides, we keep another counter S which stores the
sum of all ¢ counters in 7'. Every time after we recording «
real data items, we pick a fake data item X[t] in order, query
its noise and update T'[t], S.

This kind of updating will reduce the online recording
throughput by approximately v = H—% When a > 9, we
have v < 10%, which is acceptable. The memory requirement
will also be increased. In additional to dl counters in C, we
need 2m + 1 extra counters which are used to store X [t], T'[t],
and S. Therefore, the memory requirement will increase by
2”{;?1. This value is usually very small.

By online noise updating, we can do fast online noise
measurement. We measure d-smallest noise as S/m, which
may cause error. Fortunately, with suitable settings of m, a,
this error can be less than 1, which is negligible according to
Corollary 2. With the new design, we only need to query 1
counter to calculate noise of an item x online.

V. D-SMALLEST MEAN NOISE MEASUREMENT WITH
ARTIFICIAL DATA ITEMS

A. Design

Recall that MN measures the d-smallest mean noise, which
is identically distributed for all data items for CM [11] and

similar algorithms. However, we discover through experiments
that this is not true for other algorithms such as CU [16],
[12], where the d-smallest noise for data item z is dependent
on f,; see discussion in Section III-E. Therefore, we should
measure such a noise mean independently for each frequency
range — measurement for each individual frequency value is
however too costly and practically unnecessary. With this idea,
we propose a new method called the d-smallest mean noise
measurement with artificial data items (MN-AI).

Suppose we have m artificial data items of frequency f
and we record them evenly when we record the true data
items in the data stream. At the end of a measurement epoch,
we use the average d-smallest noise of those m data items
as the estimate of d-smallest mean noise for data items with
frequency of f. In order to reduce the number of artificial
data items, we can pre-define a set of frequency ranges and
pre-generate a certain number of artificial data items within the
preset frequency ranges. The method of selecting frequency is
also an important point. In practice, we can set k frequencies
0< fa, < fa, <...fa,_,- These k frequencies directly divide
the frequencies into k ranges:

0, (fa, + fa,)/2),

[fAi_1+fAi fa;+fa; )

2 b
Tap_otfay_,
[

The setting of f4,,0 < i < k should be related to the size
of the data stream, e.g. sum of frequencies of all items in
the data stream. For a large data stream, we need to set
larger frequencies. Here we propose one way to set suitable
frequencies which are positively related to the size of the data
stream. We can preset k percentage 0 < pp < p1 < ..prp—1
and let f4, = F - p;, where F' is size of the data stream. It is
easy to create and record artificial items under this definition.
For an artificial item z, we record one occurrence of it every
time after recording a number b; = L of real data items from
the data stream. After a measurement epoch (recording all F'
items), the frequency of the artificial data item z we recorded
is obviously fa, = F - p;. For each range, we generate m
different artificial data items A;[],0 <i < k,0 < j < m. We
calculate the average d-smallest noise of those m artificial data
items as the estimate of d-smallest mean noise within R;. We
denote the d-smallest mean noises as n4,,0 <17 < k.

We describe how to remove the noise of a data item below.
Let fgc be the frequency of x obtained before noise removal.
We first find a range that fx belongs to in (4) and determine if
fx —n 4, is still in the range. If fy —ny, falls to a lower range
j, we then subtract the noise of I2; from fw, that is fl —na,.
If it is in R;, then the estimated frequency of f is fw —na;.
Otherwise, we repeat the process above until we successfully
find the range. Besides, if fx is larger than the largest range
Ry_1, we simply assume its noise as 0.

MN-AI increases computational overheads because of online
recording of artificial data items but since the percentage we
use is usually very small, it has little influence on throughput
as the experiments will show.

i=0
, 0<i<k—1

Ri= ;
)fAk—l—i_%)?i:k_ 1

“4)



B. Fast Online Noise Measurement

Similar to MN, MN-AI cannot support fast online noise
measurement because we have to query dkm counters when
querying noise online. The throughput is rather low. To solve
this problem, we take a similar approach to what we describe in
Section IV-B. We keep k counter arrays of length m, 77,0 <
k < 0. The jth counter in ¢th array store the measured noise
for artificial item A;[j]. Besides, we keep a counter array S’
of length k, where S'[i] = Z;n:_ol T![4]. Every time after we
record « real items, we pick one artificial item from each
range, query their noise and update the related counter in 7"
and S’. This method is called d-smallest mean noise online
measurement with artificial data items (MN-O-AI).

MN-O-AI reduces the online recording throughput by
approximately v = ,H_La =71 +a In practice, if we keep 7+ > 9,
then v < 10%, which is deﬁmtely acceptable. Besides, from
Theorem 3, a smaller o can promise a better estimate of noise.
Therefore, we may set a smaller « to get better estimation while
losing some throughput. This is a tradeoff between accuracy
and throughput. There is another tradeoff here. In order to
update the noise, we need k(m + 1) additional counters which
increase the memory requirement by (mﬂ) comparing with
original CU. Larger m can give us more accurate estimate
of noise but it will increase the memory requirement in the
meanwhile. The expectation of errors in noise estimates for
every range are also less than 1 with suitable setting, which is
negligible according to Corollary 3.

By online noise measurement, MN can support fast online
query. This main point is using S’[{]/m as the estimate of n4;.
Besides, fa, and R; should be recalculated according to the
number of items recorded before the query.

VI. ANALYTICAL RESULTS

A. Analytical Results for MN and MN-O

For MN to work, we have assumed that the mean of d-
smallest noise is the same for all data items z, regardless of
their frequency values f,. That is the reason why we only
use MN to measure this mean once and then subtract the
estimates of all data items by this mean noise. Below, we first
present Theorem 1 to support our assumption and then give
the error bounds for the frequency estimates after the mean
noise measured by MN and MN-O is removed.

Theorem 1: Consider an arbitrary item z in the data set X
with frequency estimate f;. Let n; ;,0 < ¢ < d be the noises
in the d counters of x. Assuming f, < F, where F' is the
sum of the frequencies of all data items, the expectation and
variance of n; , are give as follows:

Var(n) = (1)1~ /)Y 2 )
Proof 6.1: In CM, we have C;[H;(z)] = f. +

D H,(x)=Hi(a"),usa Jo» Where Ci[H;(x)] is the counter for

z in ith array. Then n;o = 3 g, ()=, (07)0par for 1S the
noise in this counter. According to Sectlon III-A, we have
fo = fo+min{n; .0 <i<d—1} (6)

Let I; , ,» be an indicator variable, which is 1 when z’ #
z,H;j(x) = H;(z') and 0 otherwise. Using the indicator
variable, we have

N x :Zm’;éz Ii,r,z’fm/
E(TLZI):Z . E(Izza:) w’—l/l(F_fz>7
ijx;cfx Z 4,2,T fzz))

x| #x THFT
E(Z 'ttt Izlelzmzzfx fz2)
Ty 2
|tz .o A E(Ii,x,r/lli,z,xé)fw’l f:r’2+
Iz,a:,m’lli,m,z’z)fm’lfz/z

1 2
Ty fuy + 7 Z far

)

> .
Z.Ll;ﬁl )=z}
1
z 2

x| #x whFx,xl Fxl

= (P 2Rt - (- )Y

12 vl I 12 Lafza '
Since f, < F, we have

E(n;,) ~ 9

Applying (7) and (8) to Var(n;, x) = E(ni 2)? — E(n,),

En;,)~(+ 12 Z fx] (10)

zheX

o~

(®)

F/i

Var(n, ;) = E(m,w)2 —

We can see that the expectation and variance of n; ;s are
independent from f,. Since n, = min{n; |0 <i <d— 1},
we know F(n,) is also independent from f,.

Corollary 1: Consider any item z in the data set X with
frequency f,. The expectation of the d-smallest noise (denoted
as n;) in CM is independent from f,, assuming f, < F,
where F' is the sum of the frequencies of all data items.

Proof 6.2: From the definition of n,, we know

ngy = min{n,; 4|0 <i <d—1}. (11)

From Theorem 1, when f, <« F, the expectation and
variance of n; , are independent from f,. Besides, from the
recording method of MN, we know that n; ,,0 < i < d are
all independent from each other. Therefore, E(n,) should also
be independent from f,.

Theorem 2: Consider an arbitrary item = with frequency f.
We denote the value of expectation of d-smallest noise (n,) as
E(n,), which is measured through MN. By removing it, we
calculate frequency estimate of item z (denoted as fw), and
the bias of ﬂE can be bounded as

eF

1
Prob(|fz fol = — —E(ng)) < ] (12)

where F' is the sum of frequen01es of all data items, d,[ are
parameters in CM and e is Euler’s number.



Proof 6.3: The left part of (12) can be rewritten as

Prob(|fu — fo| > eF/l — E(n,))
=Prob(ny — E(ng) < —(eF/l — E(ng)))+
Prob(n, — E(ng) > eF/l — E(ny))
=Prob(n, <—(eF/l—2E(ny)))+Prob(n, > eF/l).

From (11) and (7), we know

13)

E(ny) < BE(nig) = (F — f)/1 < F/i (14)

Therefore,
eF/l—2E(n;) >eF/l—2F/l > 0. 15)
Prob(ny < —(eF/l —2E(ny))) < Prob(ng, < 0) =0.
The last equation holds since n,, > 0. Substituting (15) to (13),
Prob(|f. — fo| > eF/l = E(n,))
=Prob(n, <—(eF/l —2E(n,)))+Prob(n, > eF/l) (16)
=Prob(n, > eF/l)

Since n; ;, are all independent, from (11), we know

. F F
Prob(|fs — fo| = S — E(ny)) = Prob(n, > =)
el l el : an
=Prob(Vn; 4 > T|O <i<d)=(Prob(n;,; > T))d
According to Markov’s inequality,
Prob(n;y > eF/l) < E(n;z)l/eF (18)
Applying (7) to (18),
eF Eni)l  (F—fz) _1
s Ty < A <= 19
Prob(n; ; > ;i ) < oF P =3 (19)
Substituting (19) to (17)
Prob(|fu—f.| > eF/l—E(ny)) 0)

=(Prob(n; ,>eF/1))*<1/e?
With the same data structure, the error bound for CM [11] is

Prob(|fs — fo| > eF/1) <1/ (21)

Comparing (21) with (12), we know that by removing the
noise measured by MN, the error bound of estimation is at
least same, if not tighter, than that of CM.

Theorem 3: Let n be the d-smallest noise we estimate using
MN, and n’ be the d-smallest noise that we measured using
MN-O. If we update the noise every time after recording «
real items, the expectation of the bias is bounded by

E(ln—

, where [ is length of each counter array.

Proof 6.4: In MN-O, the noise for the fake items are not
always update-to-date. The noise for each item will be updated
every time after we record ma real items. Considering a fake
item X t], suppose its noise are measured §, items before, e.g.,

') < a(l+m)/2 (22)

it misses J; items. Since all the items are recorded randomly
in one counter array, we have

E(ni,X[t] -

where 1, x|y is noise for X[t] in ith array now and n; X[ is
the value before recording /3, items. Therefore,

n; xp) = Be/1,0 < i< d (23)

E(nxp) — nixp)
=E(min{n; x;),0 < i <d} — min{nax[t],O <i<d})
<E(n; xp — né,xm) = /1 24)
Substituting (24) to
5 o 5 1 m—1 1 m—1
(In—n']) = E(n —n/) E X =, nX[t]
t=0 t=0
1 m—1
t=0
, we have
Eln-nl)<—=5""5 (26)
(n—nl) < — 3" "5,

We update the noise for m fake items every time after we
record « real items in order. Therefore, in the worst case, the
noises are measured before recording «, 2a....na real items.

m—1 m m(m+ 1)«
Doy S =g @D
Applying (27) to (26),
1 m(m+1a al+m)
E(ln—n']) < pooy 57 = 57 (28)

Corollary 2: Let n be the d-smallest noise we estimate using
in MN, and n’ be the d-smallest noise that we measured using
MN-O. If we update the noise every time after recording «
real items, E(|n — n/|) <1 when

a(l+m) <2 (29)

Proof 6.5: According to Theorem 3, when we set a(14+m) <
21, we have E(ln —n'|) < 1.

B. Analytical Results for MN-AI and MN-O-Al

Although as we discuss in Section III-E, of d-smallest noise
of x is dependent on f,, we can still have similar analytical
result for MN-AI/MN-O-AI under some strong assumptions.

Theorem 4: Consider an arbitrary item x with a certain
frequency f. Assume we know the actual value of expectation
of d-smallest noise for items with frequency f (ny), i.e. E(ny),
which can be measured by MN-AI. We remove it to get
frequency estimate of item z (denoted as fz) in CU. The
bias of fw can be bounded as

Prob(|fu — f| > eF/l — E(ny)) <1/é?,

where F' is the sum of frequencies of all data items, d,! are
parameters in CU and e is Euler’s number.
Proof 6.6: Similar to Proof 6.3, we can prove it.
Corollary 3: Let n; be the d-smallest noise for R; we
estimate using MN-AI during the online measurement, and 7

(30)



be the d-smallest noise for R; that we measure using MN-O-AL
If we update the noise every time after recording « real items,
E(|n; —nf|) <1 when
a(l+m) <2l (31)
Proof 6.7: In MN-O-ALI, the noise is no more than MN-O.
Therefore, with a similar proof as Proof 6.5, we have

E(n; —nj) < a(l+m)/2 (32)

when we set (1 4+ m) < 21, we have E(|n; —n}|) < 1.

VII. EVALUATION

We evaluate the performance, in terms of accuracy and
throughput, of the proposed work on CPU, GPU and FPGA. We
measure noise using MN, MN-O, MN-AI and MN-O-AI, and
then remove the measured noise from the frequency estimates
by CM/CU to produce the final results. For convenience, in our
evaluation, we use the abbreviation of a noise measurement
method (e.g., MN) to also denote the algorithm of using the
method to measure noise and then subtract the noise from
the estimates produced by CM (or CU). We compare them
with the prior art, including the min-error method (using CM
[11] and CU [12] as benchmarks), the error canceling method
(using CS [13] as benchmark), and the error reduction method
(using CMM [14] as benchmark). There are numerous other
algorithms that are based on them [17], [18], [19], [20], [21],
[13], [1], [15] but do not provide better performance in our
context of comparison focused on fundamentals.

A. Implementation

We implement CM, MN , MN-O, CU, MN-AI, MN-O-AI,
CMM and CS on CPU, GPU and FPGA. (1) CPU Imple-
mentation: The algorithms are implemented on a computer
with Intel Core 17-8700 3.2GHz CPU and 16GB memory;
(2) GPU Implementation: We use the CUDA toolkit [22] to
implement the proposed algorithms so that they can run on
GPU. Experiments are done on an NVDIA GeForce GTX 1070
GPU with 8GB GDDRS5 memory and 1920 CUDA cores at
a clock rate of 1506-1683 MHz; (3) FPGA Implementation:
We implement the algorithms on a XILINX Nexys A7-100T
development board, with 15850 logic slices, 4860Kbits Block
RAM, and a clock rate of 100MHz.

B. Experimental Setting

1) Data Stream: The data streams we use in this paper
are network traffic traces from CAIDA [23], each of which
contains around 20M packets. In all the experiments, we treat
the packets with same source and destination IP addresses as
same data item. In each traffic trace, there are around 450K
different data items. The largest frequency is over 130K and
the smallest frequency is 1.

2) Parameter Setting: The total memory we use for accuracy
comparison is 1024Kb. The number of counter arrays in data
structures of all algorithms is 4 and each counter is 20 bits long.
We also change memory size to 256Kb, 512Kb, 1024Kb and
2048Kb to see how these algorithms perform under different
memory limitations. For MN-O, we set « = 9 and m = é,
which makes Corollary 2 stand. For MN-AI/MN-O-AI, we set
k=10 and p;,0 <i < k—1as g5, 555, 317, 315, ---» 537. In
addition, for MN-O-AI, we set « = 90 and m = é which also
makes Corollary 3 stand for each range.

3) Performance Metrics: We compare all algorithms over
estimation accuracy and throughput. Estimation accuracy
includes relative errors and absolute errors. Throughput includes
online recording throughput and online querying throughput
where the first one is average number of data items recorded
per second and the second one is average number of queries
that can be answered per second online. The unit of throughput
is Mdps, which means million data items per second.

C. Accuracy Comparison
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(a) Absolute error (b) Relative error
Fig. 1: Estimation accuracy w.r.t actual frequency when
memory used is 1024Kb. In plot (a), for the bins of
(32768,65536]/(8192,16384]/(1024,2048], the average ab-
solute errors of MN is 34.2%/42.1%/42.8% of CM,
8.6%/13.5%/12.2% of CMM or 31.7%/44.8%/47.8% of CS.

1) Comparison among CM, CMM, MN and MN-O :
Fig. 1 (a) shows that the average absolute errors of MN
and MN-O are much lower than CM and CMM. For the
bin of (32768,65536]/(8192,16384]/(1024,2048], the aver-
age absolute error of MN is 34.2%/42.1%/42.8% of CM,
8.6%/13.5%/12.2% of CMM or 31.7%/44.8%/47.8% of CS;
the average absolute error of MN-O is 50.1%/40.1%/41.7%
of CM, 12.7%/12.8%/11.9% of CMM or 46.4%/42.7%/46.5%
of CS. The average relative errors of all algorithms reduce
rapidly when actual frequency increases. MN and MN-O have
similar absolute error and relative error, which is consistent with
what we state in Corollary 2. Fig. 2 compares their estimation
accuracy under different memory allocations. As expected, the
result shows that the estimation errors of these four algorithms
decrease when memory grows because smaller memory in-
creases the number of data items that share a typical counter.
MN/MN-O are always much more accurate than the other three
algorithms. Taking the bin of (8192,16384] as an example, the
average absolute error of MN is 35.3%/38.1%/45.4% of CM,
27.7%/16.3%/8.9% of CMM or 60.6%/47.4%/37.7% of CS,
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Fig. 2: Average absolute error w.r.t memory used. For the bins of (32768,65536]/(8192,16384]/(1024,2048], the average absolute
errors of MN is 35.3%/38.1%/45.4% of CM, 27.7%/16.3%/8.9% of CMM or 60.6%/47.4%/37.7% of CS, when memory used is

256/512/2048Kb.
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Fig. 3: Average absolute error w.r.t memory used. Compared

to CU, MN-AI reduces average absolute error by 52%-73%.

Platform| CM/MN| MN-O | CU MN- MN- | CMM | CS
Al 0O-Al

FPGA 100 90.0 250 | 24.8 22.5 100.0 | 100.0

GPU 2717.1 249.3 NA NA NA 277.1 | 230.2

CPU 11.85 10.66 12.25| 11.95 10.75 | 11.85 | 9.83

TABLE II: Recording throughput comparison.
when memory used is 256/512/2048Kb; the average absolute er-
ror of MN-O is 34.8%/40.6%/44.7% of CM, 27.4%/17.4%/8.8%
of CMM or 59.8%/50.4%/37.2% of CS, when memory used
is 256/512/2048Kb.

2) Comparison among CU, MN-AI and MN-O-AI: Fig. 3
compares CU, CS, MN-AI and MN-O-AI on average absolute
error under different memory. Increasing memory can reduce
average absolute errors for all algorithms. Compared to CU,
MN-AI reduces average absolute error by 52%-73%. MN-O-AI
is slightly worse than MN-AI which reduces average absolute
error by 30%-50% for different memory allocations compared
to CU. Moreover, the improvement will be much more
significant under small memory allocations. This means MN-
AI/MN-O-AI can largely improve the accuracy performance
of CU under different memory limitations.

D. Throughput Comparison on Different Implementations

1) Online Recording Throughput Comparison: We first
compare the online recording throughputs of all algorithms on
GPU and FPGA implementations. From Table II, we know that
CM and MN have the highest throughputs which means they are
suitable for hardware implementation. In the meanwhile, MN-
O is slightly slower than MN due to online noise measurement
operations but is still suitable for hardware implementation. In
contrast, CU/MN-AI/MN-O-AI are not suitable for hardware
implementation. The reason is that when we record a data item
through CU/MN-AI/MN-O-AI, we need to find the current
minimum value in all d counters. Thus, it can not be fully
pipelined for FPGA implementation. As a result, CU/MN-
AI/MN-O-AI averagely need 4 clock cycles to process one

Platform| CM MN-O | CU MN-O-AI | CMM | CS
FPGA 25.0 25.0 25.0 25.0 25.0 25.0
GPU 270.3 265.2 NA NA 263.5 | 230.2
CPU 11.62 11.58 11.62 | 11.03 11.30 | 10.02

TABLE III: Online querying throughput comparison.

data item while the other solutions only need 1 clock cycle
per data item. The problem is even more severe for GPU
implementation. Since in GPU implementation, we process
thousands of packets simultaneously, we cannot get the true
minimum value for each data item. The value may be influenced
by the recording of other data items due to memory access
collisions. CUDA does not have such complex atomic functions
to avoid this kind of collisions which makes it impossible for
us to realize CU/MN-AI/MN-O-AI algorithms.

We also compare the online recording throughputs of all
algorithms on CPU implementations. Since MN adds no extra
processing overhead while recording data items, it will not
affect the recording throughput of original algorithm which is
consistent with our experimental results. In the experimental
results shown in Table II, CM/MN have a throughput around
11.85 Mpps. Besides, the extra processing overhead of MN-AI
is very small because the sampling percentages p;,0 < ¢ < k—1
are all very small. From Table II we can see that MN-AI has
a throughput of 11.95 Mdps, which is close to CU’s 12.25
Mdps. CS has the lowest throughput of 9.83Mdps.

2) Online Querying Throughput Comparison: We compare
the online querying throughput of all algorithms on different
implementations. According to Table III, all algorithms exclud-
ing MN and MN-AI have a throughput around 25Mdps on
FPGA Impelmentation. For GPU implementation, CM, MN-O
and CMM have a similar throughput about 270Mdps which is
higher than CS’s 230Mdps. As we discussed before, the online
querying throughputs of MN/MN-AI are very low and they
are not designed for supporting online queries. Therefore we
do not include them in the comparison. As Table III shows,
for online querying on CPU implementations, CM/MN-O/CU
are the fastest ones. The throughputs of them are all around
11.6Mdps. The online querying throughputs of MN-O-AI and
CMM are 11.03Mdps and 11.30Mdps, respectively. CS has a
slightly slower throughput of 10.02Mdps.

Generally speaking, MN-O is less accurate than MN and
MN-O-AI is less accurate than MN-AI. However, MN-O/MN-
O-AI can support fast online querying while MN/MN-AI
cannot. Besides, MN and MN-O are suitable for hardware



implementation while the other two are not. All four algorithms
have their pros and cons.

VIII. RELATED WORK

Much prior art [1], [15], [5], [7], [6], [9], [2] uses CM [11]
and CU [12] as the building blocks for their algorithms and
applications. Below we briefly describe a number of them.
OpenSketch [1] and cSketches [15] replace the counters in CM
with other data structures such as bitmaps [24] for flow spread
estimation in network monitoring. CMH [5] originates with
a similar idea and an additional min-heap for super-spreader
identification, which has important applications in detecting
worms [25] and DDos attacks [4]. Elastic Sketch [6] uses
CM or CU for the so-called light part in its system for heavy
hitter identification and heavy changer detection. Univmon
[2] provides a general framework of measuring data stream
statistics, with CS, CM or CU as its core. Using CM for key-
value storage in cache, Netcache [9] provides high aggregate
throughput and low latency under highly-skewed and rapidly-
changing workloads. NitroSketch [7] adds a sampling module
to CM, trading higher throughput for lower accuracy.

There are other designs for item frequency estimation that
are different from CM (or CU). Random Counter Sharing
[18], Counter Tree [19], and Virtual Active Counters (VAC)
[21] use different structures to ensure that only one counter
update is needed for all (or most) data items, but their estimate
accuracies are significantly worse than CM and CU. CMM
[14] and CS [13] use different method control methods which
we have introduced in Section III-C. Unfortunately, the average
errors of estimates from them have been shown to be even
higher than that of Count-Min according to [6].

IX. CONCLUSION

This paper addresses the long-standing problem of noise
measurement that always ignored in min-error method such
as Count-Min and its variants and proposes new techniques
to solve it including d-smallest noise and artificial data items.
Based on the techniques, we have designed noise measurement
methods, called the d-smallest mean noise measurement, the
d-smallest mean noise online measurement, the d-smallest
mean noise measurement with artificial items, and the d-
smallest mean noise online measurement with artificial items,
respectively. We use them measure the noise in the estimates
produced by min-error methods, and we can subtract it from
the original estimates for better accuracy. We have implemented
the proposed work on CPU/GPU/FPGA. Experiments based on
real-world network packet streams show that MN/MN-O and
MN-AI/MN-O-AI outperform Count-Min and Min-Counter
Update, respectively, in terms of estimation accuracy.
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