Service Function Chain Graph Transformation
for Enhanced Resource Efficiency in NFV

Angelos Pentelas and Panagiotis Papadimitriou

Department of Applied Informatics, University of Macedonia, Greece

{apentelas, papadimitriou} @uom.edu.gr

Abstract—Service Function Chain (SFC) embedding optimiza-
tion is crucial for the resource efficiency of Network Function Vir-
tualization infrastructures (NFVI). Nevertheless, high utilization
and/or fragmentation levels of a NFVI can significantly restrict
the feasible solution space of any SFC embedding method, leading
to inefficient SFC placements, or even inhibit SFC embedding.

To rectify this problem, we stress on the need for SFC graph
transformation (SFC-GT), i.e., explore the potential of SFC graph
expansion prior to its embedding. SFC-GT aims at decomposing
virtualized network functions (VNFs) into multiple instances with
lower resource demands, facilitating their placement onto the
NFVL. In this respect, we discuss the trade-off between embedding
flexibility and complexity, in the context of SFC-GT. We formulate
SFC-GT as a multi-objective optimization problem and design a
mixed-integer linear program (MILP) to tackle it. Our simulation
results demonstrate notable resource efficiency gains when SFC-
GT is utilized prior to SFC embedding.

I. INTRODUCTION

Network Function Virtualization (NFV) decouples flow
processing from specialized network devices, known as mid-
dleboxes, enabling the deployment of virtualized network
functions (VNFs) on commodity servers with unprecedented
flexibility and low cost. The deployment, configuration, and
run-time management of VNFs entails various challenges (e.g.,
resource allocation [1]-[5], service chaining [6], [7], and VNF
scaling [8], [9]), which have spurred interest in the design and
implementation of NFV orchestration platforms [3], [10].

A challenging problem pertaining to NFV orchestration
is Service Function Chain (SFC) embedding. Existing meth-
ods optimize SFC embeddings with various objectives (e.g.,
footprint minimization, inter-rack traffic minimization, load
balancing), while adhering to capacity, flow preservation,
and other constraints [1]-[5]. Irrespective of the optimization
objective employed, the range of feasible SFC embedding
solutions may be highly dependent on the condition of the
underlying infrastructure, such as the utilization level and the
resource fragmentation. For instance, a datacenter (DC) with
highly utilized servers may not be in position to accommodate
VNFs with high resource demands. In addition, a DC with
significant degree of resource fragmentation may fail to meet
a VNF co-location objective, leading to embeddings with
large footprint, thereby, generating significant inter-rack traffic,
which is undesirable for oversubscribed DC topologies.

ISBN 978-3-903176-39-3© 2021 IFIP

To circumvent the difficulty of generating efficient embed-
dings from a limited range of feasible solutions, we stress
on the need for SFC graph transformation (SFC-GT), which
can complement existing embedding methods, improving their
resource efficiency, especially at conditions of the physical
infrastructure that do not favor VNF placements (e.g., high
utilization, fragmentation). SFC-GT aims at the transformation
of an initial SFC graph (e.g., as supplied by a client), while
maintaining the properties (e.g., VNF order, total resource
demands) of the original SFC graph. Opting for increased
embedding flexibility, SFC-GT seeks to generate an expanded
version of the original graph, i.e., with additional instances for
(some of) the VNFs. The decomposition of VNFs into multiple
instances with lower resource demands: (i) can significantly
increase the solution space, allowing for better embedding
decisions, (ii) can reduce SFC embedding rejections, since
smaller VNF instances fit more easily into a highly utilized or
fragmented infrastructure, and (iii) can enable the placement
of VNFs, whose resource demand exceeds the total capacity
of a server (which is infeasible without SFC-GT).

The computation of extended SFC graphs is by no means a
trivial task. First, the generation of multiple instances requires
the careful positioning of additional nodes in the graph for
traffic distribution among the instances, as well as additional
edges. These entail significant modeling challenges, which we
address in the problem formulation in Section V. Second and
most importantly, the generation of an arbitrary number of
instances could lead to significant resource overheads (e.g.,
resource consumption of additional nodes, switch Ternary
Content Addressable Memory (TCAM) consumption due to
additional forwarding entries, server memory consumption due
to VNF state replication), which could outweigh the gains in
terms of embedding flexibility. Thereby, the most significant
challenge of the envisaged SFC-GT is the tussle between
embedding flexibility and complexity (which encompasses the
resource overhead, amongst other aspects).

In this paper, we study the problem of optimized SFC trans-
formation, investigating the most critical aspects of embedding
flexibility and complexity, as well as their impact on SFC-GT.
Our main contribution lies in the establishment of a holistic
solution for the optimized transformation of SFC graphs. In
this respect, we design a mixed-integer linear program (MILP)
that computes SFC transformations, while balancing resource
overheads with the extra flexibility afforded by additional

NFVO Layer Physical Layer

Initial SFC graph

e P

@ @ @ Method * |
SFC Resource
Graph Transformation Monitoring

Transformed SFC graph

Datacenter Network

------- > Prevailing SFC Embedding

————> SFC-GT augmented Embedding

Fig. 1: SFC-GT augmented embedding approach.

VNF instances. Our SFC-GT MILP is complemented with
a SFC embedding heuristic in order to assess the gains of
SFC transformations in embedding efficiency. Our simulation
results show notable resource efficiency gains, when SFC-GT
is utilized, and also provide useful insights into the outcome
of SFC transformation and the evolution of resource allocation
across the infrastructure. To the best of our knowledge, a
problem similar to SFC-GT has not been thoroughly studied
in the literature.

The remainder of the paper is organized as follows. Sec-
tion II outlines the proposed SFC-GT approach. In Section III,
we define the required SFC models, whereas Section IV elabo-
rates on the aspects of embedding flexibility and complexity, in
the context of SFC-GT. Section V presents our SFC-GT MILP
formulation, with detailed discussion of the objective function
and constraints. In Section VI, we discuss our evaluation
results, and Section VII highlights our conclusions.

II. SFC GRAPH TRANSFORMATION APPROACH

SFC-GT alleviates the inefficiency of SFC embedding meth-
ods at conditions that restrict the embedding solution space,
such as high utilization and/or high degree of resource frag-
mentation across the infrastructure. Under such conditions, a
SFC embedder is restricted to a small set of feasible solutions,
one of which has to be picked, although it may not comply
with the embedding objective. Regardless of the degree of
sophistication exhibited by the embedding method, there is
very little that the embedder can do in such a case.

SFC-GT constitutes a viable approach to this problem.
In particular, SFC-GT aspires to expand SFC graphs by
decomposing VNFs into multiple instances. Each instance in
the extended graph has a lower resource demand than the
corresponding VNF in the initial graph. The resource demands
of all instances of a specific VNF should sum up to the
demand of the corresponding VNF (as expressed in the initial
SEC graph). In our SFC-GT problem formulation (Section V),
we discuss in detail all requirements for the extended graph.
The main intuition behind the VNF instance decomposition
is that VNF instances with lower resource demands can be
more easily accommodated into a highly utilized or highly
fragmented virtualized infrastructure (e.g., datacenter). Fig. 1
illustrates a simple example of a SFC-GT. In particular, an
initial SFC graph comprising three VNFs is transformed into
an extended SFC graph, at which VNF I has been decomposed
into three instances, whereas VNF 2 and VNF 3 encompass two
instances, each. The extended graph also contains additional

edges that connect the instances of subsequent VNFs. Note
that Fig. 1 merely provides a simplified view of the extended
graph (i.e., we have omitted additional nodes inserted before
decomposed VNFs for traffic distribution among the VNF
instances). We discuss in full detail all attributes of the SFC
extended graph in Section III.

Since embedding flexibility increases with the number of
VNF instances, one may expect that the SFC-GT should favor
extended graphs with a multitude of instances. However, this
is not the case, since additional VNF instances generate sig-
nificant resource overheads that can outweigh the gains from
the increased embedding flexibility. This resource overhead
stems from various resource consumption aspects, such as the
resources allocated for additional VNFs for traffic distribution
among the VNF instances, switch TCAM consumption by
the forwarding entries required by the additional edges in the
extended graph, and the server memory consumption due to
VNF state replication (we assume that VNF state is replicated
among all running instances, as we explain in Section IV-C).
We use the term complexity to accumulate these resource
overheads, which we model in Section IV-C. Apparently,
embedding flexibility and complexity are contradicting factors
that both require optimization by SFC-GT. As such, the SFC-
GT problem is far from trivial and requires careful attention
in the modelling and balancing of these factors.

In Fig. 1, we depict an example of the application of SFC-
GT in the context of NFV management and orchestration
(MANO) frameworks. An initial SFC request is supplied to
the NFV orchestrator (NFVO), which is, in turn, conveyed to a
SFC-GT module that computes an optimal SFC transformation
in the form of an extended SFC graph. The latter is sent to the
Virtualized Infrastructure Manager (VIM) for its embedding
and deployment on the virtualized infrastructure. Apparently,
as shown in Fig. 1, SFC-GT is executed prior to the SFC
embedding.

III. EXTENDED GRAPH MODEL

Service Function Chain Request (SFC-R) model. We use
a directed graph G = (V,E) to express a SFC-R. The set of
nodes V includes all VNFs i that are associated with a demand
value on CPU, denoted by d;. Edges between nodes i and j
(i,j € V) are expressed as (i,j) € E, whereas the incoming
traffic to VNF j is expressed with d/.

Extended Service Function Chain (E-SFC) model. The E-
SFC directed graph, denoted by G¢ = (V¢ E¢), is associated
with a graph G that describes an arbitrary SFC-R, as discussed
above, and is used to model the most expanded version of G.
To this end, G° generates multiple instances for each VNF,
based on a pre-determined maximum number of instances for
each particular VNF. A load balancer (LB) is inserted before
the instances of a particular VNF for traffic splitting among
the respective instances.

In more detail, given a SFC-R G comprising k VNFs
(k € Z,k > 2), we define m = {my,...,my }, where m; denotes
the maximum number of instances permitted for the i VNF
(e.g., software licenses). Furthermore, we denote with v; the

LB placed before VNF i, i € K = {1,...,k}, and v; ; the i
instance of VNF i, j € K;={1,...,m;}, i € K. For convenience,
we further use B; = {v;} to express the unit set of the LB
positioned before VNF i, and V; = {v;1,...,vim} to express
the set of all potential VNF i instances. Thereby, the E-SFC

graph G¢ is described by the set of nodes V¢ = |J B;UV,.
ick
Subsequently, we distinguish between four types of edges
between nodes in V¢ The first one refers to the set of
edges between LBs and their successor VNF instances, and is

expressed as Egy = |J U (vi,vij). Furthermore, we consider
icK jek;
the edges between VNF instances and the LB placed behind
the next VNF, denoted by Eyg = U U (vij,vit1). In
ieK—{k} jEK;
addition, we take into account the case at which two adjacent
VNFs share the same number of instances; in this case, the
insertion of a LB between the VNFs is omitted. To this end,

we define Eyy = U U (vi,j,vit1,j) to be the set
ieK—{k} jemin(K; K1)

of edges that explicitly connect the respective instances of

adjacent VNFs, where:

K; IKi| < [Kit1]

Kii1 otherwise

min(K,-,Ki+1) = {
Last, if a VNF i (i € K—{1}) comprises a single instance,
there is no need to insert a LB before the respective VNF.
As such, the instances of the i— 1" VNF can be directly
connected to this VNF. Such edges are expressed with the set
Evi= U U (vij,vi1,1). Consequently, the set of edges
icK—{k} jEK;
that describe the extended graph G° is the union of the four
aforementioned sets of edges, i.e., E° = Egy UEypUEyy UEy .
Fig. 2 illustrates an example of our E-SFC model. The
initial SFC graph (Fig. 2a) consists of three VNFs. The E-
SFC graph G°, generated from G, is depicted in Fig. 2b. Each
VNF is associated with an m-value that indicates the maximum
number of instances that each respective VNF can encompass.
For example, VNF [can span at most three instances. LBs are
interposed between consecutive VNFs in the E-SFC graphs,
since for all consecutive pairs of VNFs the number of instances
might be different. Essentially, the E-SFC graph defines the
search space for SFC graph alternatives, which we term as
feasible transformations (e.g., Fig. 2c).

IV. SFC TRANSFORMATION PROBLEM
A. The SFC-GT Problem

Each SFC graph G adheres to a specific policy ® (which
describes the processing steps each packet traversing G is
subject to) and is also associated with a desired processing
capacity p (which is commonly expressed via VNF computing
and bandwidth demands) in order to meet certain throughput
rates or other service-oriented performance indicators (e.g.,
service response time).

Definition 1. (Equivalent SFC graphs). Two SFC graphs G
and G, are equivalent if they adhere to the exact same policy,
i.e., T = Ty, and they have an €-similar processing capacity,

VNF1 VNF2 VNF3

Y
Y

mi=3 m,=2 m;=3

(a) Initial SFC graph G.

LB1 VNF1 LB2 VNF2 LB3 VNF3
——————————————— > e LT |
Vi -7 Va1 -7 Va1
/ \i“_,, ~ \i“_,—/
vy M vi2 > vy ~)————i Vo [M v 2 Va2
viz [V33

(b) Extended SFC graph G°.

A 4

V11 v21

— ™~
~ |

h 4

Va2 V22

(c) A feasible transformation of G, G'.

Fig. 2: Different SFC graphs considered within the SFC-GT
scope.

i.e., p1 = p2+¢€€~0. We write G| ~ G, to denote that G
is equivalent to G».

Definition 2. (Feasible transformation). Given an initial SFC
graph G and its associated extended graph G¢, a feasible
transformation of G is every graph G’, such that G’ C G¢ and
G' ~G. eg., G' (Fig. 2¢) is a feasible transformation of G
(Fig. 2a).

Definition 3. (Set of feasible transformations). We define
FT(G) to be the set of all feasible transformations of G.

Definition 4. (Optimal transformation). Given an appro-
priate optimization function f : (G,G',Gy) — R (subject to
minimization), where G is the initial graph, G’ € FT(G), and
G, the substrate network graph, the optimal transformation
of G is another graph G*, such that G* € FT(G), and
f(G,G*,Gy) < f(G,G',Gs),VG' € FT(G).

B. SFC Embedding Flexibility

As discussed in Section II, more expanded versions of SFC-
Rs yield higher flexibility in terms of embedding, since there
are more options for embedding smaller VNF instances onto
a substrate network. As such, a SFC-GT method should opt
for the transformation of the initial SFC graph in a way that
greatly facilitates its embedding.

However, such a transformation is by no means straight-
forward. More precisely, the transformation needs to take
into account not only the properties of the SFC graph, but
also the condition (i.e., utilization, fragmentation level) of the

physical infrastructure. Therefore, we introduce the function
F: (G',G,Gy) — R, which takes as input a feasible transfor-
mation of G (i.e., G'), the initial graph G, and the substrate
network G, and is defined as follows:

V=1V
Yickmi— |V
where 0(G;) € [0, 1] denotes the percentage of servers in Gj
with scarce resources, while |V’| encompasses the total number
of nodes (excluding LBs) that form G’. The fraction in Eq. (1)
applies a min-max normalization on the value of |V’|.

For the trivial case of an entirely unutilized datacenter,
the embedding flexibility of each G' € FT(G) will be the
same, since 0(G;) will be zero. For non-trivial cases (i.e.,
with a certain amount of CPU utilization), ¢(Gy) # 0. As
0(G;) increases, more weight will be given on the embedding
Slexibility of G', which is partially captured by |V'|. Note that
0(G;) can be also adjusted to represent fragmentation [11], the
average gap size [12], or other resource utilization indicators.

F(G',G,G;) = 0(Gy) - (1)

C. SFC Transformation Complexity

In principle, we consider several complexity aspects that can
be attributed to a particular SFC graph structure. For instance,
opting for G over G’ (Figs. 2a and 2¢) is expected to simplify
service deployment and run-time service management, because
of the smaller number of VNF instances that need to be
spawned and managed. Furthermore, the number of instances
affects the amount of state that a NFV orchestrator needs to
maintain. In this work, we focus on what we deem as the most
critical complexity aspect of SFC-GT, namely the resource
overhead. In the following, we discuss the most significant
factors that generate resource overhead. In this respect, assume
that G represents the initial SFC graph, whereas G’ € FT(G).
Load balancing. According to the E-SFC model, we insert
virtualized LBs before VNFs to split the incoming traffic
among the instances of each VNF. To prevent packet re-
ordering, we rely on flow-based load balancing, which can be
realized in a stateless manner (e.g., similar to ECMP). With
such a LB scheme, a flow aggregate can be easily split among
a set of VNF instances with the same processing capacity. One
possible implication of flow-based LB is that traffic may not
be distributed evenly among the VNF instances, in the case
of significant diversity in the flow sizes. This problem can be
rectified by detecting large flows and directing them to sep-
arate instances [13]. Such LB mechanisms require additional
functionality and state, which, in turn, would generate extra
resource overhead.

Since LB per se is not the focus of this paper, we incorporate
a stateless flow-based LB mechanism in our model. Since
the main computationally-intensive task within such a LB
is packet I/0, we have generated a resource profile driven
from packet I/O computational requirements (i.e., 1300 CPU
cycles/packet, according to [14], [15]). The resource overhead
introduced by the insertion of LBs in the E-SFC is computed

as follows:
R'|—|R
B(G’,G)— (R~ IR|

= ©)
|Rmax| — [R]

In Eq. (2), |R/| and |R| express the total CPU demands
of G’ and G, respectively, whereas |R,,| denotes the CPU
requirements of a feasible transformation of G that utilizes
each and every LB from G° (i.e., such a graph would result
in the maximum LB overhead).

TCAM consumption. VNF chaining requires the installation
of flow entries in switch TCAMs [6], [7], [16]. A larger num-
ber of VNF instances is expected to lead to increased TCAM
consumption. VNF instance co-location could reduce TCAM
consumption; however, this is subject to capacity constraints
which become more severe, as the utilization of the underlying
infrastructure increases. We note that in commodity switches
TCAM is usually limited (i.e., few thousands of flow entries).
The depletion of TCAM space can be potentially mitigated by
the deployment of datapaths on commodity servers [17], [18].
However, this would lead to consumption of server capacity,
which could have been utilized for VNF deployment instead.
In the context of SFC-GT, feasible transformations of a
given graph G will typically encompass at least as many edges
as G. With the largest embedding footprint (typical worst-
case embedding scenario), each pair of adjacent nodes will be
placed in servers within different racks and, as a consequence,
each edge will be mapped onto a path that connects these two
servers. In a two-layer datacenter fat-tree topology, such a path
will span three switches (two top-of-the-rack and one core),
hence, three flow entries will be required for each edge of the
graph G. Observing the extended graph (Fig. 2b) derived from
a simplistic initial graph, we expect a significant overhead in
terms of TCAM consumption, in the case of a highly expanded
graph. We denote this overhead as M(G’,G) and compute it:

_ _EN-E|

MG ,G) = ———L

3)
where |E’| and |E| express the number of edges of G’ and
G, respectively, while |Ej.| corresponds to the maximum
number of edges that can exist in a feasible graph of G.

VNF state. The majority of VNFs (e.g., firewall, IDS, NAT)
require internal state for their packet processing operations
[8], [19]. Spawning additional instances of a stateful VNF
requires, at the simplest case, the replication of their states
across all instances, which leads to additional server memory
consumption. Main memory consumption can be alleviated
by correlating flows with running instances, such that each
instance can maintain only a subset of the total state [9]. How-
ever, this yields higher complexity, since it requires the joint
optimization of VNF instance placement and flow distribution.
In our work, we account for the overhead stemming from state
replication. The respective resource overhead is estimated as
follows:

T Sargmax Vi o) —5(6)
GieFT(G) '

where s(G') and s(G) express the number of stateful VNF
instances that belong in G’ and G, respectively. Additionally,
we utilize |V ful| to denote the number of stateful instances

TABLE I: Notations in the SFC-R, the E-SFC, and the MILP.

Symbol | Description
SFC-R
\%4 the set of virtual nodes comprising a SFC
E the set of virtual edges between virtual nodes
d; CPU demand of virtual node i
d inbound traffic to VNF i
E-SFC
m; maximum number of instances allowed for VNF i
K index set of VNFs, i.e., of V
K; index set of VNF i instances
Vi the i LB node
Vi j the j instance of VNF i
B; the singleton comprising v;
Vi the set of v; ; instances
ve the set of virtual nodes comprising the extended graph
Egy the set of edges associated with v; and v; ; nodes
Evp the set of edges associated with v; ; and v; ;| nodes
Evy the set of edges associated with v; j and v;;1 ; nodes
Evy the set of edges associated with v; ; and v;;11 nodes
E¢ the set of virtual edges comprising the extended graph
MILP
X; assignment of node v;
Xi j assignment of node v; ;
Tij CPU demand assigned to the j* instance of VNF i
zﬁ..,j assignment of edge (v;,vi ;) € Epy
rij resource demand assigned to edge (v;,v; ;)
Z;»Lfl assignment of edge (v j,viy1) € Evp
rﬁﬁl resource demand assigned to edge (v; j,vis1)
Zﬁil‘j assignment of edge (v j,viy1,j) € Evy
rfi 1 resource demand assigned to edge (v;j,vi+1,;)
Z;:rfl‘l assignment of edge (v; j,vi+1,1) € Evi
r::;fl \ resource demand assigned to edge (v; j,vis1,1)

in graph G; € FT(G). Therefore, s(argmax |V, q,1) is the
GicF T(G)
maximum number of stateful instances that can exist in a

feasible transformation of G.

Essentially, Eq. (2), (3) and (4) apply a min-max normaliza-
tion on the first terms of their nominators; thus, they share the
same co-domain, which is [0, 1]. Since the resource overhead is
considered to stem from load balancing, TCAM consumption,
and VNF state replication, it is computed as:

C(G,G)=a-B(G',G)+B-M(G'.G)+7-S(G',G) (5
where a,B,yE€ R>o, a+B+y=1,and C: (G',G)— [0,1].

V. OPTIMIZED SFC TRANSFORMATION FORMULATION
A. Core Variables

We initially introduce the core variables of our MILP
program, which are practically associated with the assignment
of nodes and edges from G°, as well as the assignment of
the respective resources. We denote by x the binary variables
that indicate the assignment of nodes, and by z the binary
variables that indicate the assignment of edges between nodes.
In particular, x; refers to the assignment of v;, i.e., the ith
LB, whereas x; ; denotes the assignment of v; j, i.e., the ;7

instance of VNF i. Similarly, z; ; indicates the assignment of

the edge that connects v; and v; j, z;/ | expresses the assignment

of the edge that connects v;; and v;y1, and, last, z/, . and

v i+l
Zi{ﬁu refer to edges in Eyy and Eyi, respectively. Each of
the aforementioned variables (except from the variables x;)
is associated with an r-variable that expresses the amount of
resources assigned to the corresponding virtual element. For
example, roo refers to the CPU resources assigned to vo»,
whereas r(l)’2 represents the bandwidth requirements assigned

to the link (vo2,v1).

B. Node and Edge Assignment Constraints

Reduction of the solution space. We assume that instances
of a particular VNF have the same processing capacity. Thus,
according to the E-SFC model, there are many solutions that
essentially express the same graph. For instance, the graph
Vi,1 = V2,1 = V31 is the same as Vi3 — V21— V31, i.e., both
graphs encompass the same number of instances for each
VNF (see Fig. 2b). Constraint (6) is defined to ensure that
VNF instances are selected in ascending order. This reduces
the solution space and alleviates the solver from evaluating
solutions with the same efficiency.

Xijy1 <xij VjieKi—{m},VieK 6)

At least one instance of each VNF is selected. Considering
Eq. (6), this constraint is defined as shown in Eq. (7).

Z x,;yl = k (7)
icK
LBs are not placed before VNFs with a singe-instance. This
constraint, which eliminates unnecessary nodes, is defined as:

xi+e< Y x; VieK.ee(0,1) (8)
JEK;
Assigned nodes enforce the selection of links, and vice-
versa (Case: LB; — VNF;). Constraint (9) ensures that a
virtual link is established between v; and the selected v;;:

xixij=z; V(vivi)) € Epy ©)

Since Eq. (9) is a non-linear constraint and all of the associ-
ated variables are binary, Eq. (9) can be linearized with the
following constraints:

2 <xi V(vi,vij) € Epy (10)
;< xij Y(vi,vij) € Epy (11)
Xi+xij—1<z; V(vivij) €Epy (12)

Assigned nodes enforce the selection of links, and vice-
versa (Case: VNF; — LB,). In case a LB is placed before
VNF i+1 (ie., x;+1 = 1), the selected instances v; ; of VNF i
should be connected to it. This is defined as:
ij
Xip1-Xij =271, Y(vij,vit1) € Eva (13)

We employ the previous logic, i.e., similar to constraints (10)
- (12), in order to linearize Eq. (13).

LBs are not placed between adjacent VNFs with the same
number of instances. This constraint enables the creation of
parallel paths within a SFC graph, thus, allowing for more
flexible (in terms of embedding) and robust graph structures.
This is formulated via the following expression:

Y xij= Y =i =0 VieK—{k}
Jjeki J€Ki1

(14)

which certainly does not conform to LP modelling require-
ments. To this end, we introduce the integer variables 8; 1

8, 8%, ,, and the binary variables y., , as follows:
=Y xiji— Y, xipy VieK—{k} (15)
JEK; JEKit1
81 =81 -85 VieK—{k} (16)
0 <8, <max(mi,mi11)-yi,, VieK—{k} (17)

0 <8, <max(mi,mi11)-(1—y\,,) VieK—{k} (18)

X <O 48, VieK—{k} (19)

Essentially, constraints (15) to (18) impose that 87 +6~ =
18] = | ¥ jex; Xi.j — Ljek;,, Xi+1,j|. Consequently, Eq. (19) im-
plies Eq. (14).

Assigned nodes enforce the selection of links, and vice-
versa (Case: VNF; — VNF;,). It is further required to en-
force the selection of edges that directly connect the respective
instances of two adjacent VNFs, in case these are split into the
same number of instances. Recall that the latter is implied by
87, +8}; =0 (see constraint (14)). To this end, we introduce
the followmg expression in our formulation:

(xi,; = 1/\x,+1]— A8 +8,=0

— 7l =1 V]EK,’,VZEK—{/C} (20)

t+1 J

which can be easily linearized by the insertion of tl e binary
variables to hold the product of x; ; and x;y;; (in a similar
manner to the linearization of Eq. (9) and Eq (13)). In
particular the following expressions linearize constraint (20):

:+1 J Siil 6i+1 < max(mj, mi4) 'Z;il,j
V(Vij7Vi+l7j) € Eyy (1)

8L +85, — 1y e < max(mimiy)- (1=)
V(v,-7j,vi+17j) € Eyy,e € (0,1) 22)

Assigned nodes enforce the selection of links, and vice-
versa (Case: VNF; — VNF;,). The following constraint
enforces the required binding between the x and z variables,
when there is only a single instance of VNF i+ 1, i.e., xj112 =
0 (see constraint (6)). In this case, according to constraint (8),
we do not place a LB before the single instance. As such, the
assigned v; ; instances, i.e., those for which x; ; = 1, should
be directly connected to the v;11 1 node. This is expressed as
follows: .
Xit12=0Ax;j =1 < Zi’il,l =1

VjeK;,Vie K—{k} (23)

which is equivalent to the following linear expressions:

xij—Xip12 <zl V(vijvier1) € Evi (24)
Zf-'gfl 1 <xij Y(vij,vir11) € Evi (25)
,H L < U=xiy12 V(vij,vir11) € Evi (26)

Place a LB before the first VNF with multiple instances.
The first VNF in a SFC is treated as a special case, since
the placement of a LB is required before the VNF, in case
it encompasses multiple instances, i.e., Z]EKI x1j=>2. In LP
terms, this is formulated as:

Z x]7j—2—|—£§m1 - X1
JeKy

€ (0,1) 27)
Place a LB between two VNFs with different number of
instances and when the second VNF has multiple instances.
According to the previous discussions, we formulate this
constraint as:

Siil —I—SZJF] >1Axip2=1=x41=1
Vie K —{k} (28)
which is equivalent to the linear constraints:
Xig1 < Xig12-max(mimizy) Vi€ K—{k} (29)
5111 +5i_7_1 (1 —x,'+172) -max(m;,miy1)
< Xipr1-max(mi,miy1) Vie K—{k} (30)

along with constraint (19).

C. Resource Assignment Constraints

Resource demands for VNF instances. Apparently, the
resource demands of all VNF instances must sum up to the
initial resource demands of the respective VNF. Recall that
we opt for VNF instances with the same processing capacity,
hence, their resource demands will be equal.

Zri,j'xi,j:di Vie K (31
JEK;
Xijy1 =1=rij=rij
VjeKi—{m},VieK (32)

Yet, we should pay attention to the product of r and x variables
in order to avoid non-linearity. To this end, we introduce #4; ;,
which is a positive continuous variable adhering to:

hw‘ Sx,',j-di Vie K (33)
r,-_,j—(l—xhj)'d,'ghi’j VieK (34)
h,',j <rj VieK 35

Constraints (33) - (35) ensure that /; ; holds the product ; ;-
x; j. Therefore, Eq. (31) can be now expressed as:

Z /’l,’_’j:di VieK
JEK;

(36)

while Eq. (32) can be enforced by the following expressions
in conjunction with constraint (6):

rijp1 <rij VjieKi—{m},ViekK (37)
rij—rij+1 <di-(1—=xij11)
VjeKi—{m},VieK (38)
Fijr1 S diXiji
VjeK—{m},ViekK (39)

Resource demands for edges departing from VNFs. The
bandwidth demands of edges that depart from VNF i instances
must sum up to dt! j.e., the total ingress traffic to VNF i+ 1.
To enforce this, we introduce the following constraints:

Y G- ;+jl +Z1+1 1 111,1)

JEK;

ij 1 Jo i+l
+ Z L1,y it =d
jemin(K; Kiy1)

vie K—{k} (40)

The individual products of z and r variables can be linearized
in the same manner with Eqgs. (33) - (35) for Eq. (31).
However, we omit these nine constraints (three per product),
due to space limitations. Since we employ constraint (32), we
distribute the required bandwidth evenly among all edges, i.e.,
edges that depart from VNF i have equal resource demands.
This is captured by the following expressions:

e i
zh 1:>r;+Jl il
V]éK—{m,} Vie K—{k} 41)
i+l gl
Z;Jil j=1= ”z+1 | = r:+J1 1
VjEK—{m,} Vie K —{k} 42)
i,j+1 _ _ij+l
e = 1= Vz+1 T+

Vj € min(K;,Kiy1) — {min(m;,miy1)},Vie K—{k} (43)
Each one of the Egs. (41), (42), and (43) can be applied in

our MILP program through triplets of constraints (omitted for
brevity), similar to Eqgs. (37), (38), and (39).

Resource demands for edges departing from LBs. We fur-
ther consider the bandwidth demands of edges that depart from
the assigned LBs. In this respect, the following expression
implies flow conservation, i.e., the amount of inbound traffic
to the LB is equal to the total amount of outbound traffic. This
is formulated as:

VieK

Z Zt,j ri.'

JEK;

Zl 1 (44)

We linearize Eq. (44) by incorporating three additional con-
straints (similar to Egs. (33) - (35)) in order to model the
product between z; ; and r; ;, whereas another triplet of con-
straints, in a 51m11ar manner to Egs. (37) - (39), is utilized to
enforce equal bandwidth demands among the edges that depart
from LBs.

D. Objective Function

The objective of the SFC transformation problem is as
follows. Given an SFC-R G, a substrate network G,, and its
resource utilization state ¢(Gy), identify G* € FT(G), such
that f(G*,G,Gy) < f(G',G,G;),VG' € FT(G), where

f(G/vGa GS) = (1 _q)(GS)) C(G/7G) _F(GlaGa GS) (45)

Recall that, as explained in Section IV, C and F are contradic-
tory; thus, our MILP seeks Pareto-optimal solutions (specif-
ically, it tries to minimize the complexity, while maximizing
the embedding flexibility of the transformation). Furthermore,
since F(G',G,G;) depends heavily on ¢0(G;), the value of
Eq. (45) will be mainly driven by C(G’,G) whenever ¢(Gy)
is close to zero. However, as ¢(G,) deviates from zero,
F(G',G,G;) will have a greater impact on the fitness score

of candidate solutions.

VI. EVALUATION

In this section, we aim at quantifying the gains from our
proposed SFC transformation method. To this end, we utilize
a SFC embedding method in the following two evaluation
scenarios: (i) our SFC-GT scheme generates an optimized
transformation of the initial SFC-R, which is subsequently
conveyed to the SFC embedding method (termed as GT-
augmented embedding), and (ii) the initial SFC-R is processed
directly by the SFC embedding method, without any SFC
transformation (termed as baseline embedding).

The SFC embedding method is essentially a heuristic that
computes SFC embeddings using the following steps. The
heuristic maps the VNFs of the SFC in a sequential manner,
starting with the first VNF of the SFC. Initially, it ranks
the racks of the datacenter in descending order, according
to their available ToR to core link capacity, and also ranks
the servers of the current rack in descending order, according
to their residual CPU capacity. Subsequently, the heuristic
places the first VNF in the top ranked server, and prioritizes
the assignment of adjacent VNFs in the same server. If such
assignments are infeasible, the heuristic seeks another server
of the current rack; otherwise, it repeats the process at the
ranked servers of the subsequent rack, until each VNF has
been successfully placed. In case the placement of any VNF
(or link) in the SFC fails, the embedding request is rejected.

A. Evaluation Environment

We have developed a simulation environment for SFC
embedding evaluations in Python. The SFC-GT MILP is
implemented with the Gurobi. All evaluations are carried out
on a simulated two-layer fat-tree datacenter network topology.
The datacenter comprises 200 servers, organized in ten racks.
The corresponding top-of-the-rack (ToR) switches are inter-
connected through five core switches. The intra-rack and inter-
rack links have capacity of 1 Gbps and 10 Gbps, respectively,
and the CPU capacity of each server is set to 7.2 GHz.

Each SFC-R consists of three to eight VNFs, whereas the
CPU demand of each VNF in the SFC-R lies between 10 to
50% (with 10% step) of 7.2 GHz. The inbound traffic in the

3
3

]
3

8
=

R B S S T

8
2

3

—&— GT-augmented
-+~ baseline

acceptance rate (%)
=

relative to baseline (%)

=]

—@— intra-rack

<]
&

--A-- inter-rack

]
8

—&— VNFs
-4 VNFs+LBs

3

3
8

0 2000 4000 6000 4000

number of requests

8000 10000 0 2000

GT-augmented CPU allocation

Fig. 3: Request acceptance rate.

3

number of requests

Fig. 4: CPU utilization of GT-
augmented, in relation to baseline.

relative to baseline (%)

8 & 8 &

6000 8000 10000

o

100 200 300
time intervals

400 500

GT-augmented traffic generation

Fig. 5: Generated traffic by GT-
augmented, in relation to baseline.

B8 8
g 8

@
g

r’l
20 ff
—8— GT-augmented

10 -~ baseline

@-value (%)

8
GT-augmented overhead
relative to baseline (%)
3 8
8 8

g

Jv,/\M~—-">ﬁ*"‘""“’“'»—-rkw =

—8— GT-augmented
03 ||-#- baseline

—@— VNF instances
--A-- forwarding rules

runtime (seconds)
o
S

R
0 100 200 300 400 500
time intervals

0 2000

Fig. 6: ¢-values of GT-augmented and
baseline.
baseline.

SFC lies anywhere between 50 and 200 Mbps. Concerning the
maximum number of instances that each VNF can span (i.e.,
m;-values), we set these to five, while there is 80% probability
that a VNF is stateful (otherwise, it is stateless). Furthermore,
0(G;) indicates the percentage of servers with available CPU
between 3% and 15%, whereas for the complexity metric, we
set o, 3, and Y to 0.4, 0.4, and 0.2, respectively. In future work,
we will investigate more precise values for these parameters
based on experimentation with VIMs, such as OpenStack.

In addition, we account for a set of n discrete time intervals
T = {1,2,...,n}. At each time interval, N SFC-Rs arrive
sequentially, where N follows a Poisson distribution with
A =20. Each NS comes with a lifespan k. Therefore, if a NS is
embedded at time ¢ € T, it will expire at time ¢ +k € T. During
our simulations, k lies within [3,10] (randomly), whereas n is
set to 500.

B. Evaluation Results

Initially, we compare the request acceptance rate achieved
by the GT-augmented method and the baseline. This metric
expresses the ratio of the number of successfully embedded
SFC-Rs over the total number of SFC-Rs. According to
Fig. 3, GT-augmented admits 87% of the requests, whereas
the respective percentage for the baseline is 82%. Further
examination of the acceptance rate results uncovers that all
rejections of GT-augmented are attributed to lack of CPU
resources, whereas a small fraction of the baseline rejections
is caused by lack of bandwidth, as well.

As expected, the higher acceptance rate of the proposed
method is translated into higher resource efficiency, as shown
in Fig. 4. In this plot, we compute the moving average of
the fractions CPUiI/CPUiz, where CPUi1 is the sum of the
CPU assigned to SFCs, until request i by the GT-augmented
method (the denominator captures the same value for the
baseline). Recall that a graph transformation may introduce

4000
number of commonly 3 4 5
accepted services

Fig. 7: VNF instances and forwarding
rules of GT-augmented, in relation to

6000 8000 00

6 7 8
SFC length

Fig. 8: Average solver runtime for
diverse SFC lengths.

further CPU requirements, because of the addition of LBs. The
reasonable assumption is that such resources are not monetized
by the InPs, who may opt for utilizing them in favor of
higher resource efficiency. That said, Fig. 4 indicates that the
GT-augmented algorithm manages to assign 9% more CPU
compared to the baseline, while the net gain (i.e., resources
for VNFs, which are indeed monetized) is 8%.

Fig. 5 illustrates the relative efficiency of the proposed
method against the baseline in terms of generated traffic, sub-
divided into intra- and inter-rack. In this plot, the respective
values are computed per time interval (which is per ~20
SFC-Rs), thereby, covering the whole range of the simulation.
While initially both curves tend to fluctuate, they eventu-
ally reach a steady state, which is the same for both DC
topology levels, i.e., at 90% of the traffic generated by the
baseline. Apparently, this indicates higher efficiency for the
proposed method, especially at the inter-rack level, where
bandwidth conservation is crucial. At first, bandwidth conser-
vation through VNF decomposition (into multiple instances)
may not be expected, especially since more emphasis was
given (narrative-wise) on relaxing the CPU requirements for
enhanced embedding flexibility. Nevertheless, SFC-GT may
indeed generate less traffic, since VNF decomposition opens
up opportunities for co-locating more communicating SFC
components into the same server or rack. For instance, each
one of the links vi; — vp; and vip — vy in Fig. 2c yields
half of the bandwidth requirements compared to the link
VNF1 — VNF?2 in Fig. 2a. Therefore, if VNF1 and VNF2 are
not placed on the same server, the whole required bandwidth
will be allocated from the corresponding DC links. In contrast,
assume that the GT-augmented method places only vy and
vpo on different servers. This would result in only half of the
bandwidth consumption observed in the previous case (i.e.,
without employing GT-augmented).

To gain further insights on the behavior of the two methods,

we examine the condition of the underlying DC, quantified by
the ¢-values, i.e., the percentage of servers with available CPU
between 3% and 15%, which we use as a rough approximation
for CPU fragmentation. According to Fig. 6, ¢ reaches 50%
with the baseline (with a tendency to increase), whereas the
respective value with the GT-augmented is significantly lower.
Additional results (which are omitted due to space limitations)
indicate that, at steady state, the baseline utilizes 80% of
the servers’” CPU (the respective value with GT-augmented
is 90%). This, along with the measured high fragmentation,
implies that a considerable portion of the residual CPU is
scattered in resource blocks of size 3% to 15%, a fact that
highly restricts the embedding options of SFCs, eventually
reducing the efficiency of the baseline.

Recall that SFC-GT seeks a balance between maximizing
the embedding flexibility and minimizing the complexity of
graph transformations. So far, our evaluation results corrob-
orate the gains of SFC-GT in terms of embedding flexibility.
With respect to complexity, Fig. 7 illustrates the generated
VNF instances, as well as the required forwarding rules for the
proposed method, in relation to the initial service graph and its
mapping by the baseline. For this comparison, the successful
mapping of the respective graphs (i.e., transformed and initial)
is crucial, hence, we only account for the commonly accepted
SFC-Rs by both methods. In this respect, we observe x3
increase in the number of VNF instances, and X2 increase
in terms of forwarding rules. Practically, this means that the
transformed graphs embedded by GT-augmented comprise of
triple the nodes of the initial graph, while their chaining
requires twice as much forwarding rules on the switches,
on average. Given that m;-values are set to 5, this result
indicates an achieved balance in terms of VNF instances. In
terms of forwarding rules, steering traffic across more VNF
instances inevitably increases switch TCAM consumption. In
future work, we will seek to alleviate this TCAM consumption
overhead, by coupling SFC-GT with source routing in an
experimental environment.

Finally, we compare the solver runtime between the GT-
augmented and the baseline. According to Fig. 8, the runtime
of GT-augmented exhibits an exponential growth, in relation
to the problem size (i.e., SFC length). However, for reasonable
SFC lengths and values of m;, the GT-augmented runtime
is bounded below 0.4 sec, which indicates its feasibility in
realistic embedding scenarios.

VII. CONCLUSIONS

In this paper, we tackled the challenging problem of SFC-
GT in order to empower SFC embedders to perform more
efficient VNF placements. To this end, we presented a SFC-
GT problem formulation that captures various aspects of
embedding flexibility and resource overheads, as well as the
design of a MILP that seeks Pareto-optimal solutions for

SEC transformations. Our evaluations indicate that our multi-
objective optimization adapts SFC graphs according to the
prevailing conditions, leading to enhanced resource efficiency,
especially for medium and high utilization levels.

VIII. ACKNOWLEDGMENTS

This work is supported by the MESON (Optimized Edge
Slice Orchestration) project, co-financed by the European
Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH - CREATE - INNOVATE (project
code: TIEDK-02947).

REFERENCES
[1

—

Dietrich er al., “Network function placement on virtualized cellular
cores,” in IEEE COMSNETS, 2017.

Tomassilli et al., “Provably efficient algorithms for placement of service
function chains with ordering constraints,” in JEEE INFOCOM, 2018.
Palkar et al., “E2: a framework for nfv applications,” in ACM SOSR,
2015.

Dietrich et al., “Multi-provider service chain embedding with nestor,”
IEEE Transactions on Network and Service Management, vol. 14, no. 1,
pp. 91-105, 2017.

[5] A. Pentelas et al., “Network service embedding across multiple resource
dimensions,” IEEE Transactions on Network and Service Management,
2020.

Qazi et al., “Simple-fying middlebox policy enforcement using sdn,” in
ACM SIGCOMM computer communication review, vol. 43, no. 4, 2013,
pp. 27-38.

[7]1 S. K. Fayazbakhsh et al., “Enforcing network-wide policies in the
presence of dynamic middlebox actions using flowtags,” in USENIX
NSDI, Apr. 2014.

Gember-Jacobson et al., “Opennf: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4. ACM, 2014, pp. 163-174.

Cao et al., “Distributed data deluge (d3): efficient state management for
virtualized network functions,” in IEEE INFOCOM SWFAN, 2016.
Kourtis et al., “T-nova: An open-source mano stack for nfv infrastruc-
tures,” IEEE Transactions on Network and Service Management, vol. 14,
no. 3, pp. 586-602, 2017.

J. Gehr and J. Schneider, “Measuring fragmentation of two-dimensional
resources applied to advance reservation grid scheduling,” in IEEE/ACM
CCGrid, 2009.

L. Tom et al., “Improving grid resource usage: Metrics for measuring
fragmentation,” in JEEE/ACM CCGrid, 2012.

M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in USENIX NSDI, 2010.

M. Dobrescu et al., “Routebricks: exploiting parallelism to scale soft-
ware routers,” in ACM SOSP, 2009.

A. Abujoda and P. Papadimitriou, “Profiling packet processing work-
loads on commodity servers,” in IFIP WWIC, 2013.

C. Papagianni et al., “Towards reduced-state service chaining with
source routing,” in IEEE CNSM, 2018.

N. Sarrar et al., “Leveraging zipf’s law for traffic offloading,” SIG-
COMM Comput. Commun. Rev., vol. 42, no. 1, p. 16-22, Jan. 2012.
Z. Bozakov and P. Papadimitriou, “Openvroute: An open architecture for
high-performance programmable virtual routers,” in JEEE HPSR, 2013.
S. Rajagopalan et al., “Split/merge: System support for elastic execution
in virtual middleboxes,” in USENIX NSDI, Apr. 2013.

[2

—

[3

[t

[4

[6

[8

=

[9

—

[10]

(1]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

HELLENIC REPUBLIC
MINISTRY OF

EPANEK2014-2020
OPERATIONAL PROGRAMME
COMPETITIVENESS
ENTREPRENEURSHIP
INNOVATION

< EIMA
=m 2014-2020

avinutn- cpyasa - alideyyin

Partnership Agreement
2014 - 2020

* *
* 4 * ECONOMY & DEVELOPMENT

SPECIAL SECRETARY FOR ERDF & CF

European Union MANAGING AUTHORTTY OF EPANEK
European Regional

Development Fund

Co-financed by Greece and the European Union

