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Abstract—Today’s WLANs rely on a centralized Access
Controller (AC) entity for managing distributed wireless Access
Points (APs) to which user devices connect. The availability of
real-time analytics at the AC opens the possibility to automate
the allocation of scarce radio resources, continuously adapting
to changes in traffic demands. Often, the allocation problem is
formulated in terms of weighted graph coloring, which is NP-
hard, and custom heuristics are used to find satisfactory solutions.
In this paper, we contrast solutions that are based on (and even
improve) state of the art heuristics to a data-driven solution that
leverages Deep Reinforcement Learning (DRL). Based on both
simulation results as well as experiments in a real deployment,
we show that our DRL-based scheme not only learns to solve the
complex combinatorial problem in bounded time, outperforming
heuristics, but it also exhibits appealing generalization properties,
e.g. to different network sizes and densities.

I. INTRODUCTION

IEEE 802.11 Wireless Local Area Networks (WLANs)
are the preferred communication medium for a wide variety
of large-scale corporate and campus networks. To manage a
large fleet of distributed wireless Access Points (APs), modern
WLANs adopt a centralized architecture, where an Access
Controller (AC) is responsible for both real-time monitoring
and control of the APs. For many medium to large scale
deployments, high density puts significant stress on scarce
radio resources, making channel and bandwidth allocation
across APs difficult. In recent times, scalable BigData analytics
complemented the AC with a computing backend to collect,
analyze and display several Key Performance Indicators
(KPIs), assisting network administrators in operation and
management. This opened the way towards centralised
continuous resources reallocation to cope with sudden changes
in traffic demands (e.g. reacting to a flash crowd) [1]–[3].

Yet, most academic research in the last decades targeted
distributed and cooperative radio resource allocation [4]–[8]
for wireless mesh networks, that however did not yield to
successful and pervasive deployments. A significant body
of literature also exists for the centralized version of the
problem [3], [9]–[17] and has been with almost no exception
formulated as an NP-hard weighted graph coloring problem,
generally approached with heuristics.

In this paper, we deal with a classical control problem that
can be tackled (i) building on state of the art heuristics, or (ii)
leveraging recent advances in Deep Reinforcement Learning
(DRL). We set out to assess the limits and advantages of each.
As for a heuristic solution to weighted graph coloring, we
provide an innovative dynamic local search (dynLS) solution
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that improves over the state of the art TurboCA [16] algorithm
currently implemented in the Meraki product series. As
for DRL-based solutions, we address several methodological
challenges and design an architecture (net2seq) capable of
not only tackling a hard combinatorial optimization problem,
but also generalizing to networks of variable size and density
(transfer learning) with a furthermore bounded inference time
(below 1 second). Particularly, our results testify that a clear
advantage of data-driven techniques is their intrinsic ability
to learn: e.g., by feeding a DRL-based agent with traffic-
related KPIs, it allows for learning to predict future demands
and adapt its solution as a consequence. This gives DRL
approaches an intrinsic advantage compared to plain heuristics,
where forecasting mechanisms should be explicitly designed
and accounted for. Summarizing our main contributions:
• We design dynLS (a novel real-time local-search based

solution that improves over the state of the art TurboCA [16])
and introduce net2seq (a novel sequence-based neural network
architecture that learns a sequential policy built as a set
of sub-actions). In particular, our DRL design augments
the traditional dual-network actor-critic architecture with a
selector network, that learns an approximation of the Q
function and picks the best action from a restrained set of
possible actions proposed by the Actor (as opposed to the
entire space, which would explode the inference time).
• We systematically compare net2seq, dynLS and TurboCA,

by both simulation as well as real deployment. By simulation,
we discover that while dynLS performance decreases with
increasing problem size, net2seq is instead not impacted by
the size of the network, which suggests DRL-based methods
to be interesting for scaling up the solutions of combinatorial
problems. Furthermore, we deploy the algorithms in a real
network of 34 APs for about one month, whose preliminary
benchmark confirms the results gathered via simulation.

The rest of the paper is organized as follows. Related
work is covered in Sec. II, and our MDP-based problem
formulation is presented in Sec. III. Design of net2seq and
dynLS are introduced in Sec. IV and Sec. V, respectively.
Sec. VI evaluates the algorithms in simulation settings and
via real deployment, and Sec. VII summarizes our findings.

II. RELATED WORK

We first examine existing WLAN centralized allocation
schemes (Sec. II-A), to identify the state of the art
reference baseline, upon which our dynLS improves. Then
we review a recent trend in the machine learning community
that we leverage in this work, namely the use of



TABLE I: Overview of centralized allocation schemes

Ref CA† LA† B† Metric† Method�
[9]

∑
interf nnI+ns

[10] X Conflict free clients nnI
[11] X X Weighted channel separation nnSA
[12] X X Delay SDP
[13] X ?

∑
interf C+nnI

[14] X X Throughput redux (fairness) nnI
[15] X Free AT (sum, min, fairness) nnI
[16] X X X Fair AT - reconfig cost nnI+NC
[17]

∑
channel util. ILP

† CA/LA: client/load-aware, ?: active clients, B: bonding, AT: air time
� nnI: node-by-node improvement, NS: neighbor swap, C: clustering,

ILP: integer linear programming, SDP: semi-definite programming,
nnSA: node-by-node simulated annealing, NC: neighborhood clearance

Deep Reinforcement Learning (DRL) techniques to solve
combinatorial optimization problems (Sec. II-B).

A. WLAN Channel allocation and bonding

A substantial body of literature has targeted the problem
of centralized channel (and to a lesser extent bandwidth)
allocation, as surveyed in [18]. We compactly present the
literature landscape in Tab. I, that reports relevant aspects (such
as: topology, load-awareness, support of bonding, objective
metric, and optimization method) on which literature differs.

The problem is often formulated as weighted graph
coloring [9]–[14]: the color represents the channel, and
the weight some property such as the number of active
clients [13], extra transmission delays incurred due to
interference between each pair of APs [12], or the reduction in
throughput caused by interference between vertices [14]. As
illustrated in Tab. I, some work tackles the problem leveraging
simulated annealing [11], Integer Linear Programming [17]
or Semi Definite Programming (SDP) relaxation [12],
while the majority of existing solutions are local-search
(LS) based heuristics, that iteratively improve node-by-
node (nnI) [9], [10], [13]–[16]. To circumvent node-by-node
iteration, additional procedures are often necessary to escape
local minima: neighbor swapping (NS) has been introduced in
seminal work in the late 90s [9] and neighborhood clearance
(NC) is used in the TurboCA [16] state of the art solution
implemented by Meraki products nowadays.

In line with prior work, we assume knowledge of the
topology, our problem is by definition load-aware, and
our solutions support bonding as in [16]. Our objective
(regret) function depends on the overall network interference
as common in the literature [9], [13], [17] and explicitly
takes into account the reconfiguration cost, which is less
popular [16] but equally important. In addition, the edge-
by-edge design of our dynLS algorithm avoids local minima
by design, eliminating the need for additional node- [9] or
neighborhood [16] level procedures.

B. DRL to solve graph-based combinatorial problems

The machine learning community recently started exploring
the use of Deep Reinforcement Learning (DRL) as an
alternative to classic heuristics for solving combinatorial

optimization problems such as the Traveling Salesman
Problem (TSP) [19]–[26], Vehicle Routing (VRP) [22], [23]
and, to a lesser extent, Graph Colouring (GCP) [27], [28].

One popular approach is to use sequential algorithms:
Pointer Networks [19] are first to tackle TSP by leveraging
a Long Short Time Memory (LSTM)-based encoder-decoder
that works for variable size instances. The encoder extracts
features from input city coordinates, and the decoder uses
LSTMs to maintain a context, which together with attention-
based pointers directed at the inputs, selects the order of
node traversal. Bello et al. [20] build on [19], proposing an
Actor-Critic RL framework instead of supervised learning.
Vinyals et al. [29] reveal that sequence-based approaches
are sensitive to input order. Consequently, Nazari et al. [22]
extend [20] to propose a VRP solution that drops the sequential
encoder step. As sequential operations are time-consuming
(most notably for the encoder), Vaswani et al. [30] introduce
Transformers (self-attention mechanisms which process all
input information in parallel). The latter became the state of
the art in sequential Natural Language Processing (NLP) and
have also been applied to TSP and VRP [23].

All the above approaches do not use any information on
neighbor relations, which is inconvenient for GCP. Graph
Neural Networks (GNNs) [31], [32] seem to better fit to
process topologically structured data and have been used
in [21], [28], [33], [34]. Thus we also resort to GNNs in
our work. For instance, DRL is used by Naderializadeh et
al. [33] for resource management in 5G networks, but in
a distributed multi-agent approach, thus the architecture and
application context are rather different. Dai et al. [21] use
struct2vec [34] graph embeddings to solve TSP, Maximum Cut
and Minimum Vertex Cover problems. They rely on Deep Q-
learning Networks (DQN), where the Q-function is used as a
sequential decoder to decide sub-actions, i.e. next visited node.
Our net2seq approach shares similarities as it uses a sequential
decoder, but differs in learning a stochastic policy which,
evaluating multiple actions through our proposed Actor-Critic-
Selector architecture, is helpful in avoiding local minima.

Finally, similarly to our work, Nakashima et al. [28] tackles
WLAN channel allocation as a GCP problem. However, they
leverage a Double DQN using a Graph Convolutional Network
(GCN) [35] to estimate the Q-function – which fails to handle
variable-size instances, unlike our net2seq proposal.

III. PROBLEM DESCRIPTION

A. WLAN channel management and notation

Given an Access Controller (AC) managing a set of Access
Points (APs), our goal is to design an algorithm that lets the
AC continuously reassign channel and bandwidth resources
to the APs in order to best handle the traffic demands.
Intuitively, loaded neighbouring APs should be allocated as
disjoint radio resources as possible in order to reduce mutual
interference. We now formalize the system model, focusing on
the 5GHz band for simplicity (though this can also be applied
to orthogonal channels in the 2.4GHz band).
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Fig. 1: Temporal view of MDP problem formulation

Consider a WLAN comprising NAP APs, indexed by
i ∈ NAP = [1, NAP ]⊂N. We denote the primary channel
allocated to the i-th AP as ci ∈ C = [0, NC − 1] ⊂ N.
Early standards allowed only the use of single 20 MHz-wide
channels. Nowadays they further allow for channel bonding
of up to 8 channels (i.e. 160 MHz). We index the bonding
configuration with bi ∈ B = [0, NB − 1] ⊂ N, which
implies that 2bi channels are aggregated together. We let
ψ(ci, bi) : C × B → {0, 1}NC represent a bitmask encoding
of the set of all channels used, ψk is 1 if and only if the k-th
channel is used when an AP i is configured with (ci, bi).

Define the load as the ratio of time-resources necessary to
transmit and receive integrally on one channel. Let `i ∈ L =
R+ be the current load of i-th AP. E.g. if AP i requires to
occupy 70% of two bonded channels, then `i = 0.7 · 2 = 1.4.

At network level, the AC builds an asymmetric AP
neighborhood map m = (mi,j)i,j∈NAP , where mi,j = 1
represents the fact that AP i is within the interference range of
AP j, else mi,j = 0. In practice, this is commonly obtained by
measuring inter-AP received signal strength and considering a
threshold to establish neighborhood (e.g. we use -82 dBm).

An AP i is prevented from transmitting (by medium access
control) on the account of an AP j when: (i) AP i is in
the interfering range of AP j, (ii) AP j is transmitting and
(iii) any of their primary or bonded channels overlap. Under
the simplifying assumption that traffic is equally split on all
bonded channels `j2−bj , we define the interference to AP i
from AP j on channel k as:

ii,j,k = mi,j `j2
−bj ψk (cj , bj) (1)

The AC objective is to reduce interference and balance the
channel utilization over the whole network. We thus define the
maximum channel utilization u+ as the sum of interference
seen by an AP i on the worst channel it uses:

u+i = maxk ψk (ci, bi)
∑
j ii,j,k (2)

While our methods are not bound to any specific objective
function, whose detailed definition is deferred to Sec.VI, we
point out a reasonable AC goal is to minimize (any convex
function of) u+i .

B. Markov Decision Processes (MDP)

We model the problem as an MDP, that we describe with
the help of Fig. 1. The goal is to learn a policy for selecting an
action given a current state aimed to minimizes a discounted
regret, where system transition to future states is modeled
through a transition kernel.

a) State and Action Spaces: A state written as s =
(m, c, b, (`, `[1], ..., `[NH ])), is composed of: the current
topology m, the current configuration c and b, and the
current and historical load up to NH past time instances
`[h] for h ∈ NH = {0, ...NH} (note `[0] ∼ `). The
historical load is included to ensure the Markov property.
All components are seen as stochastic processes on some
probability space. The correspondent state process at time t
is St = (Mt, Ct, Bt, (Lt, ..., Lt−NH )), where each component
is a random process in the domainsMNAPNAP , CNAP , BNAP
and LNAPNH , respectively. The combinatorial explosion of the
state space is obvious. An action is then written as a = (ca, ba)
with ca = (cai )i∈NAP and ba = (bai )i∈NAP representing
channel and respectively bonding re-allocations. Let At be
the action process in the space A = CNAP × BNAP of size
card(A) = (NCNB)

NAP .
b) Transition Kernel: Let us consider s′ =

(m′, c′, b′, (`′, `′[1], ..., `′[NH ])) the future state, following
state s after taking action a = (ca, ba). In part, the future
state is deterministic and assuming invariable topology, the
only random component is the future load, and the transition
probability is:

P (s′|s, a) = I{m′ = m} I{c′ = ca} I{b′ = ba}
I{`′[1 : Nh] = `[0 : Nh − 1]} P (`′|s, a) (3)

where I is the indicator function: I{true} = 1, I{false} = 0.
c) Regret: Let Rt be the process of instantaneous regrets

and r(s, a) ∈ R be the regret of being in state s and taking
action a, i.e., r (s, a) = E [Rt+1|St = s,At = a], that is
the quantity MDP seeks at minimizing. While we defer the
specific regret definitions to Sec.VI, we point out that as in [16]
we introduce two regret components: a state-regret Rs taking
into account network performance, and a reconfiguration-
regret Rr to avoid excessive updates:

Rt+1 = Rst+1 +Rrt+1 (4)

d) Policies and Value Functions: A policy π maps states
to a probability distributions over the action space A, i.e.
π (a|s) = Pπ (At = a|St = s). The optimal policy π∗ is
the one preferring actions that minimize the classic value
functions [36] which estimate the sum discounted regret given
for any starting state and action:

Vπ(s) = Eπ [
∑∞
t=0 γ

tRt+1|S0 = s] (5)
Qπ(s, a) = Eπ [

∑∞
t=0 γ

tRt+1|S0 = s,A0 = a] (6)

where γ ∈ [0, 1] is the discount factor and Eπ is the
expectation given that the followed policy is π.

IV. DEEP REINFORCEMENT LEARNING (net2seq)

Computing the optimal policy π∗ in a closed form is
not possible. The same applies for tabular methods because
the state space S is not tractable as it scales exponentially
with the number of APs. We hence focus on the restricted
class of parameterized policies πθ, approximating π∗, and set
out to learn its parameters θ leveraging Deep Reinforcement
Learning (DRL) with Gradient Policy Iteration [36] – which
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Fig. 2: DRL: Interaction of Actor, Critic and Selector

implies there is no guarantee to find an optimal policy, but
this is accepted in practice if results are good and coherent.

We take a novel approach complementing the Actor-Critic
architecture [36] by a Selector network (Fig. 2) used only at
inference time to pick the best action among multiple tryouts
proposed by the Actor. This reduces the risk of local minima.
The three components are built using Deep Neural Networks
(DNNs). We provide the architectural details in the following
(illustrated in Fig. 3).

A. Sequential Actor Network (π)

Sampling πθ is not straightforward, as the action
space scales exponentially with the number of APs
(NCNB)

NAP . Similarly to recent DRL-based combinatorial
optimization [23], we factor the policy π to sample it
sequentially: at each sequence step τ ∈ NAP , a sub-action
anτ is selected for a not yet reconfigured AP indexed nτ .
Grouping all sub-actions, we get an ordered list of actions
(an1

, . . . , anNAP ) for the corresponding AP sequence σ =
(n1, . . . , nNAP ) ∈ P , where P is the set of all possible
AP permutations of the set {1, . . . , NAP }. Since the size
NAPNCNB of the sub-action space scales linearly with the
number of APs, considering all the NAP sequence steps, the
sampling complexity scales quadratically as N2

APNCNB . We
thus rewrite the policy as:

π (a|s) =
∑
σ∈P π

(
nNAP , . . . , n1, anNAP , . . . , an1

|s
)

(7)

=
∑
σ∈P

∏NAP
τ=1 π

(
nτ , anτ |s, n1:τ−1, an1:τ−1

)
(8)

where, with slight abuse of notation, we reuse π to denote
also the step-wise policy. Note that the order σ does not
impact how the action a is applied on the environment. The
sequential process is sketched in Fig.2: first AP2 is assigned
the orange channel, then AP5 is configured with bonding two
channels orange-green and so on until an action a, i.e. a full
configuration for all APs, is proposed.

At each step the sub-action is selected by means of a DNN
architecture. The DNN produces a probability distribution (of
size NAPNCNB) across possible sub-actions, i.e., the step-
wise policy πθ, which is randomly sampled. As a first step
towards a solution transferable to any network size, note that
the same DNN is re-used sequentially.

Training the DNN with DRL is expected to increase the
probability of selecting the best actions, i.e. the actions that
have yielded lower regret. As shown in Fig.2, the probabilities
of all sampled sub-action are collected and used to update the

policy parameters θ. We now delve into the specific DNN
architecture with the help of Fig.3.

a) Node-pair features f (recv) and f (neigh): The Actor
DNN takes two types of features as input. The first input
features f (recv) represent the interference received by each
AP on each channel, as illustrated in Fig. 4 for AP0, where
clearly we expect the DNN to learn that the lower the
interference, the better. As the interference depends on channel
configuration which changes when we advance over the steps
of the sequence τ , we provide the DNN with interference
matrices that report distinctively on the already reconfigured
APs N τ = {n1, . . . nτ} and the remaining ones:

f
<τ (recv)
i,j,k,h = I{j∈N τ−i}mi,j`j [h] 2

−bjψk(a
c
j , a

b
j) (9)

f
>τ (recv)
i,j,k,h = I{j /∈N τ+i}mi,j`j [h] 2

−bjψk(cj , bj) (10)

where i, j ∈ NAP , (j ∼ the neighbour) k ∈ C, h ∈ NH ,
N τ
−i = N τ\{i} and N τ

+i = N τ ∪ {i}.
Selecting a channel configuration will also reversely impact

the neighbours. For example, in Fig. 4, if we were to allocate
a channel to AP0 based only on the received interference
above, then we may chose the green one, which would
severely damage AP1’s performance. Such situations occur
primarily due to asymmetry, as in this example AP1 suffers
from AP0 interference, but not vice-versa. We hint that when
picking the channel for AP0 it is useful to be aware that
AP1 is using the green channel cumulating 60% channel
usage from all his neighbours except AP0. Thus, the second
input feature f (neigh) extends decisions to considering the
neighbours interference situation:

f
<τ (neigh)
i,j,k,h = I{j∈N τ−i}mj,i

∑
x∈N τ−i

f
<τ (recv)
j,x,k,h ψk(a

c
j , a

b
j)

f
>τ (neigh)
i,j,k,h = I{j /∈N τ+i}mj,i

∑
x/∈N τ+i

f
>τ (recv)
j,x,k,h ψk(cj , bj)

(11)
where i, j ∈ NAP (j ∼ the neighbour), k ∈ C, h ∈ NH .

b) Aggregation of Variable Size Neighborhood : The
so far obtained feature matrices f>τ(tag), and f<τ(tag) with
tag ∈ {recv, neigh} have four dimensions each NAP ×
NAP × NC × (1 + NH), specifically: the number of APs,
number of channel, number of neighboring APs and length of
load history. We remark that as the number of neighbors is
a variable-sized input, we need a DNN capable of handling
any size. As exemplified in Fig.3 for f<τ(recv), we first apply
a Dense layer with a ReLU activation that will project the
information per neighbor on a higher dimensional space of
fixed size Nf = 8 , and sum over neighbors. We obtain
matrices with 3 dimensions each, and particularly a third
dimension with fixed size Ng = Nf . Denote the intermediate
node-wise output of this layer as g>τ(tag)and g<τ(tag) with
tag ∈ {recv, neigh}, each of shape NAP ×NC ×Ng .

The above information is complemented with AP-level
information about the load ` and the initial channel
configuration (c, b), that we denote as by g(comp) which is
of shape NAP ×NC ×N ′g where N ′g = (1+NH) + 1+NB .
Concatenating previous elements along the 3rd dimension, we
obtain gτ with overall shape NAP ×NC × (4Ng +N ′g) .
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Fig. 4: Illustrative examples for Actor DNN input features.
AP0 evaluates the interference received from each neighbour
and also their interference situation (e.g. AP1) to estimate the
impact it can reversely have on them.

c) Intermediate and Output Scores: As illustrated in
Fig. 3, the DNN comprises 3 further stages to produce the
final output scores. First, the last dimension of gτ is input to
a Dense layer (of size 256): this produces information per AP
and channel, reflecting the primary channel situation (denoted
as P20 in Fig. 3) for an output having shape NAP ×NC×256.
This tensor representing the primary channel is mirrored to
reflect the situation on each of the corresponding secondary
channels (denoted as S20 in Fig.3). For the sake of illustration,
Fig. 3 maps blue (green) primary with green (blue) secondary
channels, whereas the orange channels cannot be used for
bonding in the example (represented by a grayed out layer).
We note that this architecture is designed for bonding up to 2
channels. Similarly it can be augmented for 4 and 8 channels.

The concatenation of the primary and secondary channels
(P20 and S20) is input to two dense layers (of size 256 and
NB respectively), applied to the last dimension. Intuitively, the
output in this layer gives intermediate scores: per AP, channel
and bonding configuration pair. The intermediate score is

augmented with a layer pooling the top-K intermediate scores
per AP after flattening the channel and bandwidth dimensions.
Intuitively, this DNN layer reveals the number of alternative
configurations for each AP, which is helpful in selecting an
order of allocation for the sequence.

Finally, two dense layers (size 4 and 1) reduce this
information to a set of scores per AP and channel
configurations. This is followed by a sofmax layer to produce
the probability distribution.

B. The Critic DNN (V )

The role of the Critic is to learn the state-value function
V , so that it can assist the Actor’s training. As for the Actor,
we resort to DNNs to approximate it. A simplified view of the
Critic DNN architecture is shown Fig. 3. Using as input feature
the current state (m, `, c, b) the critic estimates the function by
explicitly modeling the interference:

fVi,j,k,h = mi,j`j [h] 2
−bjψk(cj , bj) (12)

After, fV is aggregated (as in the Actor network) to gV , then
reduced by three dense layers (sizes: 256, 256 and 1) then
averaged over all dimensions to obtain a single scalar V .

C. The Action Selector DNN (Q)

Unlike a deterministic policy (e.g. obtained via Q-learning),
the stochastic policy we learn can help mitigate the risk
for local minima, because it allows to sample it multiple
times (possibly in parallel) for a single inference, producing
a (limited size) subset of candidate actions At, among which
the Selector DNN chooses the best one:

Abest = argmaxa∈AtQ (St, a) (13)

The Selector employs a DNN architecture similar to the one
of the Actor and Critic DNNs, whose aim is to learn Qθ by
leveraging the following input features:

f
Q (recv)
i,j,k,h = mi,j`j [h] 2

−bajψk(c
a
j , b

a
j ) (14)

f
Q (neigh)
i,j,k,h =

∑
x∈NAP \{i,j} f

Q (recv)
j,x,k,h ψk(c

a
j , b

a
j ) (15)



Then fQ (recv) and fQ (neigh) are aggregated and
complemented with further information (e.g., per-AP current
and historical load `[h] (h ∈ NH ), and an indication of per-AP
configuration change I{ci 6= cai } · I{bi 6= bai }), to produce the
intermediate output gQ of size NAPNC(2Ng + N

′′

g ) that is
fed to a stack of Dense layers and finally averaged over all
dimensions to obtain a scalar Q output.

D. The Reinforcement Learning loop

For estimating the best policy πθ and the corresponding
state value function Vθ we rely on the following classic double
recursion:

δvt+1 = Rt+1 + γVθ (St+1)− Vθ (St)
θvt+1 = θvt + αvt δ

v
t+1∇θvVθ (St)

θt+1 = θt + αtδ
v
t+1∇θ log πθ (Xt, At|St)

(16)

where δvt+1 represents the state value function Temporal
Difference (TD)-error, αvt and αθt are learning rates, and γ
is the discount factor. In addition to that, the Selector DNN
is trained in parallel (but used only at inference), with the
following recursions:

δqt+1 = Rt+1 + γVθ(St + 1)−Qθ (St, At)
θqt+1 = θqt + αqt δ

q
t+1∇θqQθ (St, At)

(17)

where δqt+1 is the action-state value function TD-error and αqt
is the learning rate.

V. LOCAL SEARCH (dynLS) AND OTHER HEURISTICS

As commonly done in the literature [9], [10], [13]–[16],
we consider local search heuristics: namely, the current state
of the art (TurboCA) [16], a practical Dynamic Local Search
(dynLS) proposal that improves upon the state of the art, and
an idealized version that is useful as a baseline (Oracle).

A. TurboCA

TurboCA [16], used in Meraki products, is the current state
of the art. TurboCA performs node-by-node updates to the
channel allocations, so as to adapt to load changes at different
time scales: on a relatively short timescale (15 min) the AC
tries to find a better configuration for individual APs, and on a
longer timescale (3hr and daily) larger parts of the network are
reconfigured by going over neighborhoods of nodes iteratively,
adapting to more significant load changes while avoiding bad
local optima. For lack of space, we refer the reader to [16]
for further details. Our TurboCA implementation performs
a 2-neighborhood clearance in the first iteration, and a 1-
neighborhood clearance every 12 iterations afterwards. To
perform a fair comparison, we modify the original objective
function with the same regret of dynLS and DRL so that all
solutions are compared on the same ground.

B. Dynamic Local Search (dynLS)

At high level, dynLS iteratively improves the current
configuration in a randomized edge-by-edge fashion,
performing a number of runs and outputting the result of
the best run. In detail, dynLS takes as input the network
topology m, the current load `0 and the current channel and

Algorithm 1 dynLS

1: (ca, ba) = (c, b) , i = 0, done = false . initialize
2: while not done and k < thresh do . local opt or interrupt
3: Sort E randomly, k = k + 1
4: done = true . only remains true if all E checked
5: for each {i, j} ∈ E do
6: Find ci, bi, cj , bj with min regret (complete enum)
7: if ci, bi, cj , bj improve over (ca, ba) w.r.t Rs +Rt then
8: cai = ci, b

a
i = bi, c

a
j = cj , b

a
j = bj . update

9: done = false
10: break . reshuffle

bonding configuration (c, b). It then iterates in a randomized
fashion over the set E containing all AP pairs with at
least one interference relation. Each AP pair is optimized
while keeping all other configurations constant. One run of
dynLS ends when no further improvement is made, or some
configurable step limit is reached. In our simulations, we
allow for 4 random runs. For details see Alg. 1.

Note that, within one run, the current solution keeps
improving with respect to regret (4), and thus terminates in
a local minimum unless interrupted early. The randomization
in step 3 expands the search space and helps avoiding bad
local minima. Two APs i and j are optimized in step 6
by complete enumeration of all their possible configurations.
Since each configuration needs to be evaluated w.r.t the regret
function, there are O(|C|2 |B|2) such evaluations per edge and
O(|E| |C|2 |B|2) per for-loop (steps 5 to 10).

a) Advantages of dynLS: While dynLS is inspired by
prior LS approaches, it differs in that it improves edge-by-
edge instead of node-by-node. We explain its advantage with
two relevant examples from the literature. In [9], the authors
noticed the propensity to being stuck in bad local optima,
and thus introduced a swapping step to avoid it: when a local
optimum is reached, they attempt to improve by exchanging
channels on neighboring nodes. Such step is unnecessary
when operating in edge-by-edge fashion as in dynLS, since
channel configurations are already established for neighbor
pairs (as opposed to individual nodes). Moreover, particularly
in the case in which channel bonding is allowed, a simple
configuration swap is not sufficient to avoid bad local optima:
in dynLS, directly optimizing neighboring nodes jointly also
leads to a steeper descent towards a good local optimum. In
TurboCA [16], we remark that a similar problem related to
node-wise operation appears: in each larger optimization step,
nodes are reconfigured in a greedy fashion. The problem with
this approach is that the last nodes of each larger optimization
step can produce significant interference that will not be
eliminated until the next step – which dynLS avoids by design.

b) Limits of dynLS: The evaluation in step 8 needs to
compute with respect to the initial configuration (c, b), the
reconfiguration and state regret for each new configuration.
Since the load in the following time period (19) is not available
to dynLS, the state-regret is calculated using the current load
`0 as predictor of future load – a clear oversimplification.



C. Oracle

The Oracle baseline extends dynLS in two ways:
• First, we directly provide the Oracle with knowledge of

future load, hence avoiding the need for learning, which we
argue to be an unfair advantage over both the naı̈ve forecast of
dynLS, as well as over the learning of the DRL-based method;
• Second, we relax the time constraint to extend the Oracle

search space, using a threshold of 100 runs (15 starting from
the state configuration, and 85 from additional random states).

Albeit impractical due to the use of future knowledge, the
Oracle baseline is interesting for us as it allows to get closer
to the optimal by (i) allowing dynLS to significantly extend
the search space, and as well as (ii) relieving it from the need
of learning the future demand.

VI. PERFORMANCE EVALUATION

We evaluate performance via simulation and experiments. In
particular, while the regret and evaluation metrics (Sec.VI-A)
are common to both evaluation methods, we are only able
to fully control (Sec.VI-B) the scenarios of the simulation
simulation-based methodology (Sec.VI-C), but do not have full
control on the real deployment (Sec.VI-D).

A. Regret and evaluation metric

As introduced earlier, net2seq, TurboCA and dynLS
algorithms are not bound to a specific regret function. Without
loss of generality, we fix the choice for the regret (4)
used consistently to train, guide and evaluate the different
algorithms. First, we define the state regret:

Rst+1 =
∑
i ρ̂2Bt+1,i

(
U+
t+1,i

)
Lt+1,i (18)

where U+
t+1 corresponds to the maximum channel utilization

at time t + 1 as defined in (2) and ρ̂β(x) is a concave
function computing the individual regret of each AP shown
in Fig. 5. For x < 0.9, ρ̂β(x) = ρβ(x): the throughput of
an M/M/1 queue scaled by the quota of used channels out of
the maximum 8 allowed by the standard (β/8), wrapped into a
logarithm to impose fairness among APs. To avoid the vertical
asymptote of ρ at x→ 1, we substitute it with an exponential
function for x ≥ 0.9. Finally, we sum over the individual AP
regrets, weighting by the AP load to give more importance to
busy APs. Next, the reconfiguration regret simply identifies the
configuration change for each AP and sums them weighting
by load of the AP:

Rrt+1 =
∑
i

(
1− I{Ct+1,i=Ct,i}I{Bt+1,i=Bt,i}

)
Lt,i (19)

We also experimented with the relative importance w of
reconfiguration vs state regret, i.e. R = Rs+w ·Rr: as results
are qualitatively similar, we fix w = 1 in what follows.

B. Evaluation Scenarios

1) Topologies: We compare the algorithms on a reference
real network topology composed of 49 APs (unless otherwise
specified, but up to ∼150 APs for the most challenging
scenarios), where each AP has on average 15 neighbors
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Fig. 5: Illustration of ρ̂ used in the state regret definition

(unless otherwise specified, but up to 47 neighbors for the
most challenging scenarios). As in the real deployment, every
10 minutes (15 min in [1]), we reconfigure APs using 9
channels in the 5 GHz band (excluding problematic DFS
channels [1]). For bonding, we only consider a maximum
of two channels. To study the transfer learning of DRL, we
generate synthetic typologies varying the number of APs and
the number of neighbours: APs are randomly placed based
on a Space Poisson Point Process in the [0, 1]2 square. We
use a log-distance pathloss model (with an exponent of 3.0),
4dB asymmetric log-normal shadowing and 3dB log-normal
transmit power variation over APs (a constant term is added
to scale the inter-AP distance and control the neighborhood).

2) Traffic: We express the traffic demand volume as a time-
resource requirement. Following prior work [11], we use two
types of traffic profiles exhibiting time-correlation.

a) Volatile Demands: In this profile, the load of all
network APs oscillates between 0 and 100%, which represent
a challenging scenario for any dynamic reconfiguration
algorithm since all APs have highly volatile traffic profile.
In particular, each AP starts with a random load x ∈ [0, 1], at
each step the load is incremented by a random uniform amount
in [0, 0.2] until the load reaches 100%, after which the load
decreases with the same random process, and so on.

b) Flashcrowd: This profile simulates transient traffic
surge affecting regions of the network. All APs have a base
load of 0.1 and an additional stochastic load component
fluctuating in [0, 0.2]. A random subset of 3 APs is selected
together with their 4 closest neighbors to form hotspot (HS)
regions. HS APs get an additional load of 0.7, for a random
duration of [3,9] time slots. Then a new flascrowd occurs: the
HSs are re-selected and the entire process repeats.

3) Training and testing: We train each version of DRL on
14400 iterations, using a batch size of 32. To give an idea,
training one DRL version in this setting takes around 1 hour
on a Tesla V100 PCIe 16 GB GPU. Evaluation is done in two
steps: in a first step, the best out of 10 models is selected as
the one minimizing the average regret over a validation-set
comprising 16 instances; results are then reported by running
the selected model on a test-set comprising 16 instances. Each
instance consists of 144 time slots, corresponding to a single
day (144 reconfiguration cycles every 10 minutes). To be
fair, we give any algorithm the same time budget of 1sec
(2sec in case of bonding) to compute a full reconfiguration.
Algorithms are evaluated by comparing the two components
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Fig. 6: Evaluation: (a)-(c) Comparison of regret under heuristic (TurboCA, dynLS, Oracle) vs DRL-based (net2seq) algorithms
and (d)-(f) Transfer learning capabilities of net2seq

of the regret as given in (18)-(19), reporting both the spatio-
temporal average (i.e. over all APs and iterations after a
warmup of 25 iterations), as well as box plots with quartiles,
minimum and maximum across the 16 test scenarios.

C. Simulation results

We now compare the performance of heuristic vs DRL
designs in Fig. 6 (a)-(c) and systematically assess DRL transfer
learning capability in Fig. 6 (d)-(f).

a) Hasty regret: We first assess the algorithms based on
their sole ability to find the best configuration for a given load,
regardless of whether they can anticipate future load evolution
or not. We do so by considering a hasty regret: altering Rst+1

in (18) by replacing U+
t+1,i and Lt+1,i with U+

t,i and Lt,i, we
optimize the configuration only for the current (known) load
distribution. Accordingly, we train DRL on hasty regret, with
no load history (NH = 0) and no farsightedness (γ = 0).
To further eliminate anticipation abilities, a random channel
configuration is reset after each step. This penalizes TurboCA
which cannot benefit from its varying optimization steps,
which we partly compensate by applying 2-neighborhood
clearance in each iteration. We remark in Fig. 6-(a) that dynLS
is within 1% from the Oracle solution (diminishing return of
a broader search space), closely followed by DRL.

b) No bonding: From now on, we focus on the initially
defined regret (18) and let the algorithms run continuously,
considering first only channel allocation, with no bonding.
Fig. 6-(b) shows the performance of several DRL versions: the
previously trained hasty version, an oblivious version trained
with the normal regret but only instantaneous load (NH = 0),
and a version including historical load (NH = 2). Note that
γ = 0 for all DRL variations here.

First, we observe that dynLS and DRL performance are both
(slightly) better than TurboCA, and also closer. Second, unlike
TurboCA and dynLS, DRL is able to predict future demand
from historical information, with a significant advantage over
other DRL versions and approaching Oracle results. Third, we
run net2seq in actor-critic mode only, disabling the selector
network, and denote results as AC: results show that the use

of the selector network improves the result for both hasty
evaluation on current load as well for the case of historical
load – confirming the soundness of our DNN design.

c) Bonding: When bonding is allowed, difference
between TurboCA and the other algorithms widens, as shown
in Fig. 6-(c). In particular, we see that the gap between dynLS,
DRL (from here on farsighted γ = 0.5, with NH = 2) and the
Oracle remains consistent, with DRL still close to Oracle.

d) Variable traffic profile: While in practice, DRL should
be trained on a wide variety of scenarios, Fig. 6-(d) assesses
the transfer learning ability across traffic profiles: we test on a
flashcrowd scenario two versions of DRL, trained on volatile
vs flashcrowd respectively. We observe that the model trained
on the more volatile profile achieves better results, which may
be due to the fact in this case the load evolution is smoother
allowing for a more stable learning.

e) Variable network size: Fig. 6-(e) employs a DRL
model trained on the real 49-nodes topology and test it
on synthetic networks with variable size and fixed density
(15 neighbors/AP). Interestingly, we find that unlike dynLS
whose performance decreases with increasing network size,
the DRL performance is relatively steady. This result hints to a
fundamental difference between heuristics, whose randomized
search solution is impacted by the instance size, vs the DRL
approach which seems to have learned a successful strategy,
that is less impacted by the problem size. Further investigation
is needed to explain the root cause of this notable difference.

f) Variable number of neighbors: Finally, Fig. 6-(f)
shows that regrets of both dynLS and DRL grow for denser
networks (where the number of APs is fixed to 49), that are
both dominated by increasing interference, so that there is no
longer any noticeable advantage on DRL over dynLS.

D. Deployment results

As a proof of concept, we obtained access to a real corporate
network composed of 34 APs, that supports about a thousands
users and visitors every day. During a month, we deploy
dynLS, DRL (net2seq) and TurboCA for five working days
each, and contrast the results to those obtained with a static
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Fig. 7: Measurement results from real network deployment

daily re-optimization (denoted as legacy). We train net2seq
on the simulated traffic profiles with γ = 0.5 and NH = 2.
Clearly, unlike in simulations where we can rigorously
compare algorithms using the exact same input, in live
deployment the comparison is more complex: while conditions
(e.g., the network usage, traffic patterns, interference, etc.) are
similar over different days, they are however not identical. As
such, conclusive results can be gathered only from a longer
experimental campaign than the one we present here: results
in this section should be seen more as an empirical validation
of our regret function and assumptions, rather than a fully
fledged experimental comparison.

With the above caveat in mind, we start by observing
from Fig.7 that the three algorithms improve over the legacy
baseline, confirming the soundness of our regret design, which
leads to a real enhancement in actual network conditions. The
figure shows the evolution of channel utilization, as reported
by existing telemetry. The top outlines absolute counts of
observations with a value > x% as indicated on the x-axis,
while the bars show the relative changes when deploying DRL
dynLS and TurboCA , respectively. For example, all dynamic
algorithms reduce by at least 50% the events where APs
experience a utilization > 80%. Overall, dynLS outperforms
TurboCA and net2seq outperforms both. We plan to conduct a
more thorough evaluation protocol as part of our future work.

VII. CONCLUSIONS

This paper provides a novel Deep Reinforcement Learning
(net2seq) design to tackle the problem of real-time channel and
bandwidth allocation in WLANs. We have shown that net2seq
can compete, performance and time-wise, with state-of-the
art heuristics on this combinatorial optimization problem.
Moreover, when given access to historical data, our net2seq
design natively develops predictive abilities, allowing it to
outperform our best heuristic by optimizing for future load.
Finally, whereas the design of the individual DNNs presented
in this paper is specific to WLAN channel allocation, our
net2seq design can be easily extended to other combinatorial
problems (e.g., plain graph coloring, travelling salesman), that
are part of our future research agenda.
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