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Abstract—Due to the ever-increasing complexity of modern
communication networks, network operators are making tremen-
dous efforts on achieving objectives for the network to meet
the diversified requirements of many real-world applications.
However, network operators are repeatedly taking a lot of time
on some common tasks shared by different networks. In order
to reduce repetitive human efforts on network management, ad-
vanced machine learning paradigms, such as deep reinforcement
learning, has received numerous attention in the networking com-
munity. Nevertheless, it encounters great difficulty in transferring
learned policies to new environments, resulting in new model
training and testing for each changed environment setting. To
tackle this important issue, in this paper we propose a new
framework that is the first of its kind to enable an agent to have
transferable knowledge for network management, specifically,
for network path selection tasks. Through this framework, an
agent can efficiently learn and express the transferable network
knowledge for achieving task objectives. Extensive experimental
results show that the learned knowledge through the proposed
framework can realize some common objectives of path selection
tasks across different network environments. In addition, the
knowledge learned from one network task can significantly
improve the learning performance of another similar but different
task.

Index Terms—Path selection, Transfer learning, Causal learn-
ing, Theory-based causal induction, Bayesian inference

I. INTRODUCTION

Network is an important infrastructure for data communi-

cation. With the advancement of digital economy and society,

the surging number of network data and applications present

in modern computer and communication networks. In order

to make it stable and functioning in a healthy state, network

operators are spending a remarkable amount of time and

efforts on network management to achieve some objectives

for networks. However, certain objectives are common across

different networks, such as shortest path, deadlock free, and

minimum delay etc. Operators spend a lot of time to achieve

these goals repeatedly in different networks. Manual config-

urations (e.g., path selection) not only consume tremendous

human efforts, but also bring potential risks of network errors.

According to a recent Cisco statement [1], 95% of network

configuration changes are still performed manually, resulting

in much higher operational costs, i.e., 2 – 3 times higher than

the cost of the network itself. In order to reduce the risks of

network errors and alleviate the repetitive work of operators, it

is of paramount importance to develop an intelligent agent to

substitute humans for realizing common objectives of network

management tasks.

For autonomously achieving objectives, the most important

research is reinforcement learning [2] [3]. Its core idea is

to learn which action maximizes future reward expectations

based on the current state of the environment. It has achieved

remarkable results around playing games [4] [5] and de-

veloping robot behavior control strategies [6] [7]. Network

researchers also used this technique to solve network au-

tomation problems, such as virtual network embedding [8],

network functions virtulization and placement [9] [10], and

resource management in network slicing [11]. Nevertheless,

the majority of model-free reinforcement learning methods

still have great difficulties in transferring learned policies to

new environments [12]. As long as the critical elements in the

environment change, it becomes an entirely new environment.

Because the policies learned by the model-free reinforcement

learning agent are not transferable, the process of learning

needs to be repeated to re-learn an effective policy for the

new circumstance. As for the network, because the network

environment is dynamic and multiform, an agent need be able

to correctly achieve objectives under changing environment. In

other words, the knowledge that is required to autonomously

achieve the objectives of a network task, should be transferable

from one network circumstance/setting to another.

In this paper, we take the classic problem of path selection

[13] [14], such as routing configuration and load balancing,

as an example to study the ability of transferable knowledge

for autonomously achieving the objectives of network tasks.

Network routing or load balancing protocol is a set of rules

that determine how data are transmitted between network

nodes. With the diversification of network services, a vari-

ety of routing protocols and load balancing strategies have

been designed for different application requirements. These

protocols or strategies share some common objectives, such

as shortest path, deadlock free, and minimum delay. In the

following, we use the term network task to represent the

network management task (e.g., path selection) that has one

or more objectives.

Causality is an important factor of knowledge [15] [16].

Through constant interactions and experiments with a physi-

cal environment, humans refine the causal hypotheses about

the dynamic of the real world. In addition, humans have

ISBN 978-3-903176-39-3© 2021 IFIP



a remarkable ability to transfer causal knowledge between

environments governed by the same underlying mechanics

[17]. Inspired by the research of autonomous learning in

artificial intelligence, the transfer knowledge learning problem

can be viewed as a combination of instance-level associative

learning and abstract-level causal learning [18]. In this paper,

it is the first time that this theory is adapted to the network

environment, and based on this adaptation we propose a

new hierarchical framework for autonomously achieving the

objectives of network tasks. According to theory-based causal

induction and Bayesian inference, the proposed framework

is devised with three key components: Abstract-level Causal
Structure Learning representing prior knowledge for a net-

work task; Instance-level Subconstraints Learning determin-

ing which constraints are associated with a given network

task; Specific Causal Structure Learning combining the prior

knowledge and constraints learned from the network data by

virtue of Bayesian inference to obtain the casual structure of

the transferable knowledge.

The main contributions of this paper are threefold:

1) We devise a new knowledge hierarchical representation

and learning framework for autonomously achieving

the objectives of network tasks. Based on the idea of

Bayesian inference, the knowledge is divided into prior

knowledge and likelihood. In the prior knowledge part,

we devise an atomic schema and an abstract schema
to express the abstract casual structure for a network

task, called the top-down belief. In the likelihood part,

a set of constraints are derived to explain the likelihood

probability between the task objective and the network

data, called the bottom-up belief. Combining the beliefs

of the two parts, an agent is able to effectively learn

the knowledge of performing a network task from the

network data and encode it into the structural represen-

tation that will enable the autonomous achievement of

objectives of a network task.

2) In order to verify the effectiveness of the proposed

framework and the transferability of the knowledge,

we construct a learning environment with a real-world

wide area network topology. Running a path selection

algorithm on this topology can output the paths between

each pair of network nodes. We integrate the top-down

belief and the bottom-up belief to produce a highly

capable agent that learns the knowledge of generating

these paths. Then, we migrate the agent with the learned

knowledge into four new environments with different

network topologies. By comparing the paths output by

the original path selection algorithm and the agent,

extensive experimental results show that the agent is able

to autonomously complete the path selection task in a

new network environment. The learned causal structure

knowledge is transferable across different network set-

tings.

3) We also verify whether prior knowledge designed in

the proposed framework is beneficial for the agent

when learning a different but similar task. We perform

two different path selection tasks, one is the task of

finding the shortest path, and the other is the task of

performing load balancing. After learning the shortest

path task, the agent has a prior knowledge of the path

selection problem. Then, at the time that the agent

performs the load balancing task, we compare two cases

in the experiment, one is that the agent uses the prior

knowledge learned from the shortest path task, and

the other is that the agent does not have such prior

knowledge. Experimental results demonstrate that, using

prior knowledge, the agent needs less efforts to obtain

the causal structure knowledge in most episodes. This

proves that the prior knowledge structure designed in the

proposed framework has a certain level of universality

for learning similar tasks.

The remainder of this paper is organized as follows. Sec-

tion II presents the problem description. We elaborate the

knowledge hierarchical representation and learning framework

in Section III. Section IV verifies the effectiveness of the

proposed framework. Finally, Section V concludes this paper.

II. THE PROBLEM DESCRIPTION

Path selection is a classic routing or traffic engineering prob-

lem. For a concrete path selection problem, such as shortest

route, network operators have some objectives and code them

as technical constraints when searching for a suitable path.

The constraint is a set, which includes several subconstraints.

Each subconstraint is to achieve a certain objective.

For autonomous network path selection, the purpose of the

agent is to learn the structure of constraints, i.e., which subcon-

straints it includes, and the relationship between them. In the

following, we use causal structure to represent the structure

of constraints. The learned structure forms the knowledge of

the agent that can be used to autonomously complete the path

selection in any networks.

the last selected link 

the previously selected path

the candidate link the path before the last link.

Fig. 1. Schematic diagram

A. Causal structure

The causal structure, denoted as Ω, is formally defined

as a set of subconstraints: Ω = (ω1, · · · , ωk), where k is

the number of subconstraints ω. In this paper, we enumerate

three types of subconstraints: one is the set of restrictions

between the candidate link and the last selected link (e.g., they

must be connected), another is the set of restrictions between

the candidate link and the previously selected path (e.g., in

order to avoid loops, the candidate link is not overlapped

with the previously selected path), and the last one is the

set of restrictions between the candidate link and the network

operator’s intent on path performance (e.g., the path should be

the one with the shortest length or the one with the minimum
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Fig. 2. The hierarchical representation and learning framework for transfer-
able knowledge.

delay). To facilitate the understanding of the concepts, we

make a schematic diagram as shown in Fig. 1.

The above three types of subconstraints are defined

as three tuples, ωi = (μlast, υcandidate, η0), ωi =
(μhistory, υcandidate, η1), and ωi = (μmeasurement items, η2),
respectively, where μlast represents the last selected link. A

path is composed of links, and μhistory refers to an ordered set

of links of a path. υcandidate denotes the candidate link to be

selected, and μmeasurement items indicates the measurement

of link performance. η0 and η1 represent the relationship

between the first two items of each tuple. η2 is the requirement

of link performance.

The specific combination of these subconstraints constitutes

a causal structure. The agent selects the links according to

the ω at each time step. For example, (μlast, υcandidate, η0)
may describe that the candidate link must be connected to

the previously selected path. (μmeasurement items, η2) may

illustrate that the next selected link must meet the requirement

of the maximum bandwidth. These two subconstraints form

a sequential structure, which allows the agent to select the

link with the maximum bandwidth connected to the previously

selected path.

III. THE HIERARCHICAL REPRESENTATION AND

LEARNING FRAMEWORK

The design principles of the proposed framework come from

the theory-based causal induction and Bayesian inference. The

former expresses that the induction is the product of domain-

general statistical inferences guided by the domain-specific

prior knowledge, in the form of an abstract causal theory [19]

[20]. Combined with Bayesian inference, it can explain how to

learn the knowledge from data at the computational level [21].

For an agent, the hypothetical model of knowledge is regarded

as a causal structure. The proposed hierarchical representation

and learning framework is shown in Fig. 2. In what follows,

we elaborate this framework in terms of framework structure

and its associated computation details, respectively.

A. The structure of the framework

The framework consists of three parts from top to bottom,

namely, Abstract-level Causal Structure Learning, Specific

Causal Structure Learning, and Instance-level Subconstraints

Learning, as shown in Fig. 2.

1) Abstract-level Causal Structure Learning: This part fol-

lows the assumption that for a given path selection task,

all paths form a solution space, and the paths that satisfy

the task’s objectives form a target space. The solution space

contains the target space. The essence that an agent is able

to perform autonomous path selection is to use the learned

causal structure to obtain the target space from the solution

space. It can simply interpret that a causal structure can

make a subset of the solution space (subspace). A causal

structure consists of several subconstraints. Each subconstraint

corresponds to a subspace. The purpose of this part is to

provide the abstract causal structures with top-down beliefs

about how these subspaces form the target space for the given

network task.

We define two parameters, P and R. P attempts to answer

the question of what proportion of the target space is among

the subspaces confined by subconstraints, and R refers to the

question of what percentage of the subspaces derived from

subconstraints is among the target space. When P and R are

both equal to 1, it shows that the causal structure learned by the

agent can accurately obtain the target space. P and R provide

a theoretical support and measurement of the rationality of

the causal structure. It induces three kinds of basic structural

patterns (called atomic schema) of the causal structure, as

shown in Fig. 3.

a) Atomic schemas: The atomic schema represents the

basic structural pattern of subconstraints in the causal struc-

ture. The simplest atomic schema is a linear pattern, which

consists of multiple subconstraints connected in tandem, as



shown in Fig. 3(a). Note that there is a recursive relationship

between X , Y and Z from top to bottom. It means that the

top layer subconstraint X is to reduce the solution space of

the outermost box. The subconstraint Y of the next layer is

to reduce the space of the previous layer subconstraint X . In

this way, each subconstraint narrows down the solution space

step-by-step and approaches the target space, as illustrated by

the lower part of Fig. 3(a).

An effective causal structure needs to meet that the space

reduced by the subconstraint of each layer needs to contain the

target space completely. This means that the measurement R
of X , Y and Z must all be equal to 1. Moreover, the reduced

space of the next layer should be closer to the target space,

i.e., the measurement P of X , Y and Z should satisfy PX <
PY < PZ = 1.

As shown in Fig. 3(b), when X1 does not include all target

spaces, it needs to be supplemented by X2 in the same layer.

Therefore, the multiple-to-one pattern of causal structure is

introduced. The above analysis is also applicable to the third

pattern: one-to-multiple, as shown in Fig. 3(c)

X

Y

Z

Solution space

XYZ

Target space

(a) Linear

X1 X2

Y

Solution space

X1 X2

Y Y

Target space

(b) Multiple-to-one

X

Y2Y1

Solution space

Y2

X

Y1

Target space

(c) One-to-multiple

Fig. 3. The three types of atomic schemas

b) Abstract schemas: The abstract schema is a set of

variants induced by the atomic schema. Each abstract schema

can correspond to one of the three atomic schemas by cal-

culating the shortest edit distance [22]. An abstract schema

expresses the number and the arrangement of subconstraints

provided by a network task, but there is no specific form

of instantiating subconstraints. As shown in Fig. 2, in the

abstract schema, N0, . . . , Nn are placeholders, instead of spe-

cific subconstraints. Each placeholder can be instantiated as an

arbitrary subconstraint. The purpose of abstract schema is to

provide the top-down belief about the abstract causal structure

to the Specific Causal Structure Learning part. This belief can

be considered as a branch and bound condition to improve the

search efficiency when the Specific Causal Structure Learning

part searches for a causal structure.

2) Specific Causal Structure Learning: The Specific Causal

Structure Learning accepts the top-down belief representing

the abstract causal structure and the bottom-up belief denoting

the subconstraints learned from the network data, as shown

in the orange box of Fig. 2. Combining these two beliefs and

using Bayesian inference, the agent makes multiple attempts to

learn which combination of subconstraints is the correct causal

structure of a network task. When learning is completed, the

agent feeds back the correct structural information to Abstract-

level Causal Structure Learning so that it can update the belief

of the atomic schema and the abstract schema. The detailed

computation process of beliefs is elaborated in Section III-B3.

3) Instance-level Subconstraints Learning: In the Instance-

level Subconstraints Learning part, the agent learns instance-

level subconstraints ωi from the network data and puts them in

an instance-level subconstraints pool, as shown in the green

box of Fig. 2. The three green dotted boxes at the bottom

represent the likelihood of three types of subconstraints. The

subconstraints pool includes all subconstraints and their cor-

responding likelihood probabilities. The subconstraints in the

pool are provided to the Specific Causal Structure Learning

part to obtain the causal structure of the network task. The

details of calculating instance-level subconstraints ωi are il-

lustrated in Section III-B1.

B. The computation of beliefs

The belief of the agent comes from two calculation channels

of the framework, one is bottom-up belief which is recorded

as the ϕ theory, and the other is top-down belief which is

recorded as the λ theory, as shown by the green upward

arrow and the blue downward arrow, respectively, on the left-

hand side of Fig. 2. These two channels are for computing

beliefs and enabling the Specific Causal Structure Learning

part to search for the causal structure. In the following, we

will elaborate the calculation of bottom-up belief, top-down

belief, the integration of these two beliefs, and the top-down

belief update.

1) Bottom-up Belief: The agent first collects the bottom-

up beliefs from the Instance-level Subconstraints Learning

part. As mentioned in Section II-A, the framework has three

forms of subconstraints: ωi = (μlast, υcandidate, η0), ωi =
(μhistory, υcandidate, η1), and ωi = (μmeasurement items, η2).
There are seven elements, μlast, υcandidate, μhistory,

μmeasurement items, η0, η1 and η2 that can be considered as

random variables, and the agent should learn their probability

distribution.

In this paper, we have enumerated several common network

attributes, relations and intents. For example, the elements in

ζ∗ = {φ0, φ1, φ2, φ3, φ4, φ5} can refer to one node connected

by a link, the other node connected by the link, the length

of the path, link delay, link bandwidth, and link throughput,

respectively. We resort to the power set to allow an agent to

consider the impact of each combination of attributes on the

link selection. If we choose two attributes from ζ∗, i.e., ζ∗1 =
{φ0, φ1}, we use Powζ∗

1 to denote the power set of these two

attributes. The value range of random variables μlast, μhistory

and υcandidate is Powζ∗
1 . The value range of the random

variable μmeasurement items is the set {φ2, φ3, φ4, φ5}. η0 and

η1 describe the relationship between μlast and υcandidate, and

μhistory and υcandidate, respectively. In order to make sub-

constraint ωi = (μlast, υcandidate, η0) cover more cases, we

choose the most common relationship between μ and υ, i.e.,

equality μ = υ, inequality μ �= υ, true inclusion μ ⊂ υ, reverse

true inclusion μ ⊃ υ, and intersection μ∩υ, denoted by θ0, θ1,



θ2, θ3, θ4, respectively. The value range of the random variable

η0 is the set {θ0, θ1, θ2, θ3, θ4}. η1 records the number of times

that θi occurs in history. Therefore, corresponding to the above

five possible relationships, the value range of the random

variable η1 is the set {(θ0, n), (θ1, n), (θ2, n), (θ3, n), (θ4, n)}
showing n times occurrence of θi in history. In most cases, net-

work management tasks require the network quality-of-service

(QoS) to be maximum or minimum in the measurement. For

the sake of clarity of illustration, for each measurement item,

we consider two possible relationships, i.e., the minimum and

maximum values of a measurement item, denoted by θ5 and

θ6, respectively. Thus, the value range of the random variable

η2 is the set {θ5, θ6}.

As for ωi = (μlast, υcandidate, η0), the agent learns a

likelihood over which μlast, υcandidate and η0 are associated

with the instance-level subconstraints that induce the selected

paths in the network. In order to reduce the bias introduced by

a given distribution, the distribution of μlast, υcandidate and

η0 are modeled as multinomial distributions. Because dirichlet

distribution is the conjugate prior of multinomial distribution,

the parameters of multinomial distributions can be naturally

determined by a dirichlet distribution [23]. There are three

dirichlet distributions to maintain the beliefs regarding which

combination of subconstraints ωi = (μlast, υcandidate, η0) is

more likely to induce the selected paths. The above also

applies to ωi = (μhistory, υcandidate, η1). Thus, there are

three dirichlet distributions to maintain the beliefs about

which combination of ωi = (μhistory, υcandidate, η1) is part

of the causal structure. In ωi = (μmeasurement items, η2),
μmeasurement items and η2 are also encoded as the multi-

nomial distribution. Their parameters are sampled from the

dirichlet distribution. The agent maintains two beliefs about

ωi = (μmeasurement items, η2). In summary, there are eight

dirichlet distributions to maintain eight beliefs that are in-

volved in the three types of subconstraints, i.e., ωi =
(μlast, υcandidate, η0), ωi = (μhistory, υcandidate, η1), and

ωi = (μmeasurement items, η2).

Let ρ represent the selected paths in the network. The agent

computes the likelihood of causal structure by decomposing

them into subconstraints, as shown by Eq. (1).

p (ρ|Ω;ϕ) =
∏

ωi∈Ω

p (ρ|ωi;ϕ) (1)

When the agent learns ωi = (μlast, υcandidate, η0), ωi =
(μhistory, υcandidate, η1) and ωi = (μmeasurement items, η2),
p (ρ|ωi;ϕ) is formulated as Eqs. (2) – (4) respectively,

p (ρ|ωi;ϕ) ∝ p (ρ|μlast;ϕ) p (ρ|υcandidate;ϕ) p (ρ|η0;ϕ)
(2)

p (ρ|ωi;ϕ) ∝ p (ρ|μhistory;ϕ) p (ρ|υcandidate;ϕ) p (ρ|η1;ϕ)
(3)

p (ρ|ωi;ϕ) ∝ p (ρ|μmeasurement items;ϕ) p (ρ|η2;ϕ) (4)

This instance-level subconstraints likelihood encodes a

naive Bayesian prediction of how likely a given subconstraint

has occurred in the selected paths in history, without regarding

for a task structure. This Instance-level Subconstraints Learn-

ing part in Fig. 2 provides the agent with the basic knowledge

about which subconstraints are more likely to induce a path.
2) Top-down Belief: The agent learns abstract-level causal

structure to encode generalized abstract causal structure about

path selections tasks, which is invariant to different network

environments. The belief of each atomic schema p
(
gM ;λ

)
is

modeled as a multinomial distribution, whose parameters are

determined by a dirichlet distribution Dir(αM ). gM refers to

an atomic schema, and αM is the parameter vector whose

length is the number of atomic schemas. By sampling from

Dir(αM ), the atomic schema gMmax corresponding to the

maximum p
(
gM ;λ

)
is obtained. gMmax induces a series of iso-

morphic abstract schemas gA. The abstract schema represents

the number and the structure of subconstraints of the causal

structure, regardless of the specific form of subconstraints. Its

probability distribution is recorded as p
(
gA;λ

)
. The belief of

abstract schema is also modeled as a multinomial distribution.

By sampling from the corresponding dirichlet distribution

Dir(αA), where αA is the parameter vector whose length

is the number of abstract schemas, the agent gets the multi-

nomial distribution p
(
gA;λ

)
. The optimal abstract schema

gAmax, whose probability is the largest under p
(
gA;λ

)
, can

be obtained.
3) Combining Bottom-up Belief and Top-down Belief: In

the bottom-up belief, although the agent calculates which

subconstraints lead to the selected paths, the agent lacks the

logical structures among them. In the top-down belief, gAmax

provides the agent with a belief about the most likely abstract

causal structure of path selection tasks. When searching for the

causal structure Ω, gAmax is used as a benchmark to branch

and bound the search. The agent combines the bottom-up

belief provided by the instance-level knowledge and the top-

down belief given by the abstract causal structure, significantly

improving the efficiency of the agent to search in the space of

causal structures.
The above process can be formalized as the Bayesian

inference, as shown by Eq. (5).

p (Ω|ρ;λ, ϕ) ∝
|Ω|∏

j=1

p (ρ|ωi;ϕ) p
(
gA;λ

)
(5)

where p
(
gA;λ

)
is top-down belief and p (ρ|ωi;ϕ) is

bottom-up belief. |Ω| is the number of subconstraints contained

by Ω.
4) Belief Update: When the agent successfully finds the

causal structure, it is necessary to update the prior knowledge

of the agent, that is, the top-down belief. The way of update is

by changing the probability distribution of an atomic schema

and an abstract schema. The calculation process is presented

as follows.
According to the causal structure that has been searched,

the agent traces back to the source to find its isomorphic

abstract schema, and then it updates the dirichlet distribution.

p∗
(
gA;λ

)
is the updated distribution, and the agent uses it

to update the probability distribution of an atomic schema.

The agent backtracks to the atomic schema by calculating the

formula:



p
(
gM |gA) = 1

Z
exp(−D(gM , gA)) (6)

Z =
∑

gM∈χgM

exp(−D(gM , gA)) (7)

where χgM is the space of atomic schemas and D(gM , gA)
is computed as the minimal graph edit distance between the

atomic schema and the abstract schema. exp is the exponential

function based on natural constant e. Through this formula, if

the agent finds that the atomic schema gM∗ is most similar

one to the abstract schema structure, it updates the dirichlet

distribution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the effectiveness of the proposed

framework for autonomously achieving the objectives for path

selection tasks, we conduct extensive experiments to verify

the agent’s learning performance on subconstraints during

the training phase. Then, we migrate the agent to four new

networks with different network topologies, and let it find

the shortest paths and the load balancing paths between all

pairs of nodes to verify the agent’s ability of transferring

knowledge across different networks. Finally, we compare two

experiments, one with top-down belief and the other without

top-down belief, to assess the effect of top-down beliefs on the

performance of agent’s learning ability of the causal structure.

A. Experiments setup

Four network topology attribute files from The Internet

Topology Zoo [24] are obtained to validate the effectiveness

of the proposed solution. The NetworkX tool takes these files

as the input to generate a variety of paths, including those

with and without loops. We randomly select some paths and

remove their intermediate links to make them disconnected.

In this way, we construct our dataset, which includes both the

connected and disconnected paths and the paths with and with-

out loops. Besides, we randomly set bandwidth as the weight

for each link. The hardware environment of experiments is i5-

8265u CPU, 20GB memory and 512GB SSD. The software

environment is Ubuntu 18.04, Python 3.7 and NetworkX 2.4.

The experiment is divided into the training phase and

the testing phase for evaluating the framework’s ability of

knowledge transfer for autonomous path selection. In the

training phase, we implement the classic shortest path routing

algorithm [25] and load balancing algorithm [26] on the

network with a given topology to collect the target path

between any pair of nodes.1 The dataset of collected target

paths is denoted as Dtarget. At the same time, we implement

a common pathfinding algorithm [27] on the network with the

same topology to obtain all simple paths between any pair

of nodes, denoted by Dsp. That is, Dsp contains Dtarget,

i.e., Dtarget ⊂ Dsp. In addition, in order to introduce noisy

1For the sake of clarity of illustration, we choose classic algorithms as
examples for evaluation. It is worth noting that the proposed model framework
can be applicable to learn knowledge of any network protocols and algorithms.

data to assess the robustness of the proposed framework, we

implement a random path selection algorithm and obtain the

noisy “path” data, denoted by Dnoise. The paths in Dnoise

have loops and even false paths composed of disconnected

links. In brief, the training process is as follows. First, the

agent receives the data of Dtarget, Dsp and Dnoise. Second, it

analyzes the characteristics of Dtarget in the background data

Dsp ∪ Dnoise and infers the subconstraints. Third, it learns

the causal structure. This causal structure is the generation

model that can generate Dtarget from Dsp∪Dnoise. It is worth

noting that the agent does not know the specific algorithm

that is used to generate Dtarget. In the testing phase, we

migrate the agent to another four new network environments

to evaluate the framework’s ability of transferring the learned

causal structures across different networks.

(a) Equality μ = υ

(b) True inclusion μ ⊂ υ

Fig. 4. The agent’s learning performance on ωi = (μlast, υcandidate, η0)
with the proposed model.

Fig. 5. The agent’s learning performance on ωi =
(μhistory , υcandidate, η1) with the proposed model, η1: Equality
μ = υ.



B. Learning subconstraints
The results of learning subconstraints ωi =

(μlast, υcandidate, η0), are shown in Fig. 4, demonstrating

that the agent is capable of learning the specific combination

of subconstraints. The two sub-figures indicate the

representations of subconstraints in the two types of η0
relationships 2, as discussed in Section III-B1, corresponding

to the equality μ = υ and true inclusion μ ⊂ υ, respectively.

As shown in the sub-figure 4(a), the agent learns that the

subconstraint μlast : {φ1} = υcandidate : {φ0} shows a high

probability in the data. It means that the node φ0 connected

by the candidate link υcandidate is the same as the node

φ1 connected by the last selected link μlast. The agent

encodes the subconstraint ωi = (μlast, υcandidate, η0)
as μlast : {φ1} = υcandidate : {φ0}. Take a

look at another sub-figure 4(b), the subconstraint

μlast : {φ1} ⊂ υcandidate : {φ0, φ1} shows a high

probability. It means that one of the two nodes {φ0, φ1}
connected by the candidate link υcandidate should be the same

as the node {φ1} connected by the previous link μlast. The

agent encodes the subconstraint ωi = (μlast, υcandidate, η0)
as μlast : {φ1} ⊂ υcandidate : {φ0, φ1}. To facilitate the

understanding, its schematic diagram is shown in Fig. 6.

Subconstraints with a high probability indicate that the ωi

is learned by the agent. These two sub-figures illustrate the

common objectives for path selection tasks: when selecting

the next link in the network, the agent must ensure that this

link is connected to the previous one. The agent encodes this

common-sense knowledge from the perspectives of these two

relationships.
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Fig. 6. The sketch map of subconstrain μlast : {φ1} ⊂ υcandidate :
{φ0, φ1}.

The results of learning performance on ωi =
(μhistory, υcandidate, η1) are shown in Fig. 5. The

prominent column indicates that there is a subconstraint:

μhistory : {φ1} = υcandidate : {φ0}, times : 1. {φ1}
represents the set of nodes connected by the link that the

agent has selected before μhistory . When the agent selects the

next hop link υcandidate, the node {φ0} the link connects to

should occur only once in {φ1}. It only occurs once because

the next hop link is connected to the last link previously

selected, but has no connection to the path before the last

link. To facilitate the understanding, its schematic diagram

is shown in Fig. 7. It expresses a common object for path

seletion that the paths do not include loops.
When performing different path selection tasks, network

operators have different intentions for the path selection task.

2Note, due to space limitation, we only show the experiments for two types,
but the experiments for all five types are valid.
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Fig. 7. The sketch map of subconstrain μhistory : {φ1} = υcandidate :
{φ0}, times : 1.

These intentions are usually expressed as pursuing the path

to obtain the maximum or minimum value of a certain

performance metric. Fig. 8 shows the two intents grasped

by the agent. When the agent does not know the specific

path selection algorithm, it learns the intention of selecting

shortest paths from the network data, and judges that the data

are collected from the shortest path algorithm, as shown by

the solid line in the figure. In addition, the agent obtains the

intention of the path with the minimum delay from the data,

and draws the conclusion that the data was collected from the

load balancing algorithm. The agent encodes the knowledge

about the intent of path selection in the form of probability

distribution.

Fig. 8. The agent’s learning performance on ωi =
(μmeasurement items, η2) with the proposed model.

C. Knowledge transfer for the same task across different
networks

According to the experimental results conducted in Section

IV-B, the common objectives for path selection learned by an

agent can be summarized as follows:

1) When selecting the next link in the network, the agent

must ensure that this link is connected to the previous

one;

2) The path does not contain loops;

3) The intent of selecting the shortest paths;

4) The intent of selecting the path with the minimum delay.

The above 4 items are recorded as ω1, ω2, ω3, and ω4,

respectively. The agent learns the knowledge of ω1 and ω2.

ω3 is learned from the data provided by the shortest path

algorithm, and ω4 is learned from the data provided by the

load balancing algorithm.

With ω1, ω2 and ω3, the agent performs 300 random

attempts in the experiment. In each attempt, the purpose is to



(a) The agent’s atomic schema belief about finding the shortest paths

(b) The agent’s abstract schema belief about finding the shortest
paths

Fig. 9. The agent’s top-down belief of finding the shortest paths.

enable the agent to learn the belief of successfully executing

the task of finding the shortest path under different logical

relationships of ω1, ω2 and ω3. Fig. 9(a) shows the agent’s

atomic schema belief about finding the shortest paths. The

experimental results illustrate that the linear structure has the

highest belief. Under the guidance of this belief, the agent

believes that the linear logical relationship is most likely to

successfully perform the task of finding the shortest path.

Since the linear structure shows the strongest belief, we only

reveal the experimental results of the abstract schema induced

by the linear structure, as shown in Fig. 9(b). The abscissa

in the figure represents the specific causal structure, and the

numbers 1, 2, and 3 denote ω1, ω2, and ω3, respectively.

Experimental results show that [1, 2, 3] has the biggest belief,

which means that in the agent’s belief, the causal structure of

finding the shortest path task is the sequential structure: ω1 ⇒
ω2 ⇒ ω3.

In order to verify that the knowledge learned by the agent

is transferable, we set up four different network topology

environments, namely IBM network topology, CWIX network
topology, BT Europe network topology, and Darkstrand net-
work topology. Fig. 10 shows that the agent uses its belief

to execute the causal structure ω1 ⇒ ω2 ⇒ ω3 in four

network topological environments to find the shortest path.

The abscissa in the figure represents the three steps that the

agent completes searching for the shortest path. The first step,

ω1, is to find all the connected paths in the network. The

second step, ω1 ⇒ ω2, is to remove those paths with loops

based on the first step. Finally, in the third step, ω1 ⇒ ω2 ⇒
ω3, the agent selects the shortest path by comparing the length

(hops) of the path. Note that in each step, the measurement

R is equal to 1, indicating that the agent has not missed any

shortest paths in the network. Moreover, the measurement P
is improved step by step, demonstrating that the paths selected

by the agent at each step are becoming more in line with the

requirements of the shortest paths. In the last step, both the R
and the P are equal to 1, showing that the agent finds all the

shortest paths accurately without any wrong paths.

D. Knowledge transfer for the different but similar tasks
Both the shortest path and the load balancing belong to the

path selection problem. The structure of them share a certain

similarity. In this section, we will evaluate the effectiveness

of our proposed framework on using prior knowledge of

performing a network task to improve the performance of

learning to carry out a different but similar task. To achieve this

purpose, we conduct the following experiments. After learning

the shortest path task, the agent has a priori knowledge of

the path selection. We make another experiment to verify

whether the a priori knowledge learned by the agent from

the shortest path task can enable the agent to learn the load

balancing task more effectively. When the agent learns the

load balancing task, we compare two cases, one is that the

agent possesses the prior knowledge learned from the shortest

path task, and the other is that the agent does not have such

prior knowledge. In Fig. 11, experimental results demonstrate

that, using prior knowledge, the agent needs less attempts to

obtain the causal structure in most episodes. This proves that

the prior knowledge learned through our model has a certain

universality for a similar but different task.

E. Remarks
Through the above experiments, it is verified that using the

hierarchical architecture we proposed in this paper, the causal

structure learned by the agent has the ability of transfer, and

the a priori belief of atomic schema and abstract schema is

beneficial in the event of learning similar but different tasks

for path selection. Using prior knowledge for the discovery of

other network management tasks will continue to be studied

in our future work.

V. CONCLUSION

In this paper, we leveraged theory-based causal induction

and Bayesian inference to design a new knowledge represen-

tation and learning framework for network automation. The

proposed framework can enable an agent to have transferable

knowledge across different network environments. This frame-

work integrated the top-down prior knowledge and bottom-up

likelihood learning. Through our framework, agents can effec-

tively learn and express the transferable network knowledge.

Using a classic network path selection task as an example,

extensive experimental results showed that the knowledge

learned by an agent through the proposed framework can real-

ize autonomous path selection, according to network operator’s

intents, in different network environments. We also verified

through experiments that after learning a network task, the

prior knowledge learned is conducive for the agent to learn a

similar but different task.



(a) IBM network topology (b) CWIX network topology (c) BT Europe network topology (d) Darkstrand network topology

Fig. 10. Transfer learning performance of finding the shortest paths

Fig. 11. The performance of the agent when learning load balancing tasks,
with and without prior knowledge learned from the shortest path task.
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